БИОТЕХНОЛОШКЕ ОСНОВЕ ВОЂАРСТВА

УЗГОЈ МАЛИНА . NET
предоруке за узгој малина

SCAENED BY MOMIR
Биотехнологске основе воћарства - прво издање

Рецензенти
Проф. др Доброслав Раховић
Проф. др Миладин Шошкић

Издавач
NEWSLINES Београд

За издавача
 Војислав Љумовић

Уредници издања
 Весна Росић
 Војислав Љумовић

Лектиура - коректура
 Мирослава Ђурић

Комисија за премаузапис
 Бранко Лазаревић

Комисија за премаузапис уредник
 Горан Живковић

Штамба
 Premis - NEWS - Београд

Коришћење цртежа није дозвољено без сагласности аутора

Тираж 1000
ПРЕДГОВОР

Вођке су вишегодишње билјке и у односу на једногодишње, одликују се по многим специфичним обележјима. Вођарска производња је такође карактеристична. Она захтева одређене услове гајења као и неке практичне поступке.

После Другог светског рата вођарска производња у Југославији почина да губи натурални карактер. Напуштањем расутоћа гајења вођака, вођарска производња почина да добија карактеристике робне производње. Осим тога што су плаћа вођаци подигнути широм земље с одабраним сортом бољег квалитета и с већим приносима по јединици површине, почела је ера механизације, што раније, на малим површинама није било могуће а и конфигурација површине то није увек дозвољавала. У различарским крајевима су подигнути велики вођаци. Ново вођарство прати савремена технологија чувања свежих плодова у хладњачама а и капацитети за прераду вођа су повећани подизањем нових и реконструкцијом старих. Побољшана је путна мрежа, уведен разна саобраћајна средства са уређајима за хладење, што обезбеђује бољи транспорт до удаљенијих потрошачких центара. Све је то утицало да вођарство постане високоакумулативна грана пољопривреде.

Познавање природе вођака и њиховог односа према условима средине, представља важну основу за њихов размештај у простору и за примену најрационалнијих процеса у производњи вођа. Вођке, јест, расту, оплемењују средину и дају добре економске ефекте само под одређеним условима. Према томе, они имају ограничен производни простор. У свему томе, врло је значајно познавање биолошко-физиолошких процеса. Теоријско знање је гаранција за успешну и интензивну вођарску привреду и као средство боље експлоатације живе природе и других природних богатстава везаних за вође и производњу вођа, па и у условима мање повољним за успевање вођака.

Вођарство је наука која изучава законитости у животу вођака, упознавајући морфолошке карактеристике појединих органа као и њихове функције. Осим тога, бави
се и неким практичним поступцима; умножавање сорти, препоручаје и одређује режим исхране воћака, начин одржавања влажности земљишта, добро здравствено стање и др.

У овој монографији изложена је најнеопходнија теоријска основа биофизиолошких процеса, ради лакше и потпунијег схватанја сложених поступака за рационалну производњу воћа. Одређени захвати (резидба, ђубрење, наводњавање и др.) мењају физиолошку равнотежу воћке, успостављену пре извођења тог захвати. То практично значи да се на бази општих теоријских знања из физиологије, биологије и екологије воћака, остварује складна комбинација биолошко-физиолошких законитости и економије са технологијом гађења воћака. Доследно примењена теоријска знања у воћарској производњи сигурно доприносито стицању сигурности производача у постигању позитивних резултата.

Као универзитетски наставници бавили смо се и научно-истраживачким радом, што нам је омогућило да дођемо до сопствених научних резултата. Многи научни резултати наших истраживача, као и практично искуство, овом монографијом постају свима доступни. Настојају смо да се користимо нама доступном најновијом литературом из многих земаља, посебно оних чије је воћарство с дугом традицијом и на високом савременом нивоу.

Ова монографија је припремљена претежно по наставном програму за студента Пољопривредног факултета у Београду.

Оцењујемо да ће корисно да послужи и студентима других факултета, као и свима који своја знања из воћарске вештине желе да употпуње, било професионално или аматорски.

Аутори
УВОД

Воћарство је дисциплина која се бави изучавањем законитости у животу воћака и њиховог реаговања на еколошке услове средине. То је наука која се бави упознавањем биолошких особина воћака, значи, биофизичке основе размножавања (оплођење, генеративно и вегетативно размножавање), затим, физиолошким процесима који настају применом агротехничких и помотехничких поступака (режим исхране, одржавање земљишта у воћњацима, резидба, наводњавање, заштита од паразитских и пастрошких оболења и друго), који мењају физиолошку равнотежу воћака.

 Воћарска наука има задатак да на бази општих биолошких и конкретних теоријских знања омогући рационалну и благовремену примену практичних поступака и остваривање складне комбинације биологије воћака са екологијом и техником њиховог гајења. Због тога је неопходно познавање биологије појединих врста, и сорти воћака, као основе за унапређење воћарске производње. Савремена воћарска производња поставља сложене захтеве у искоришћавању живе природе при гајењу воћака. У те захтеве спада обезбеђење оптималних услова за вегетативни раст и генеративни развој. Човек у том процесу има веома значајну улогу. Он, у ствари, животне манифестације воћака усмерава у правцу остваривања што веће родности, а тиме угледе на њихову економичност. Да би организатор производње у томе успео, мора да познаје врсте и сорте воћака. Избор сорти појединих врста воћака за гајење у неком еколошком оквиру, није могуће правилно извршити ако се не заснива на познавању њихових морфолошких и физиолошких особина, а нарочито на познавању органолептичких, биохемијских, физичких и морфолошких особина плодова с једне стране, и начина реаговања сорти воћака на еколошке услове с друге стране. Применом одговарајућих агротехничких и помотехничких захвата могуће је неке недостатке еколошке средине ублањити, али не и сасвим отклонити.
Само правилно изабране сорте воћака за одговарајуће локалитете дају обилније, сигурније и квалитетније приносе. Осим тога, у таквим условима су због веће продуктивности рада и трошкова производње нижи. Складна комбинација биолошких особина сорти воћака с еколошким условима и технологијом производње, представља сигурну основу за постижане квалитетне и ефикасне производње плодова. Према томе, основни задатак вођарства је као научне дисциплине, јесте да изучава и приказује (саопштава) морфолошке и физиолошке карактеристике сорти воћака, као и однос према еколошким и патолошким чиниоцима.

Практична корист познавања биолошких, физиолошких и морфолошких особина воћака, посебно појединих органа нпр. плодова, служи као солидна основа за индустријску прераду и развој те индустрије. Познавање плодова као сировине у преради је значајно у добијању финалних производа. Овај значај је израженији кад се има на уму обиле воћака и деловање многих чинилаца на квалитет плодова.

Хемијски састав плодова воћака је сложен и недовољно проучен. У овом погледу располаже се најопштијим хемијским саставом плодова што за конзервну индустрију плодова није јасно, као и на уму да је врло сложен хемијски састав плодова – преко 50 састојака, који се у неједнаким количинама налазе у њима. Количина појединих састојака у плодовима воћака је у директној зависности од еколошке средине, као и од утицаја других чинилаца. Поједине сорте, само под оптималним условима, манифестују своја типична својства изражена преко морфолошких, физиолошких, биохемијских и органолептичких особина плодова. Све ово потврђује да је вођарство једна научна дисциплина коју више него друге науке карактерише обележје ограниченог простора, односно, потврђује да је та дисциплина која има регионално или чак микроеколошко обележје. Према томе, страна искуства стечена при гајењу воћака, у нашим условима треба проверавати.

Од непосредног је значаја и познавање физиологије размножавања. То је услов и основа за правилну, рационалну и економски исплативу производњу подлога и садница одабраних сорти воћака. То је и један поуздан начин у промени структуре вођарске производње.

Физиологија исхране воћака је од посебног значаја. Минерална исхрана воћака треба да је заснована на одговарајућој интервенцији, која има научну подлогу у циљу спречавања недовољне ефикасности примене ђубрења и расипања средстава. Недовољно познавање физиологије исхране воћака доводи до нежелених последица.

Физиолошке основе су такође нужне, и за примену многих пометичких захвата у том правцу је велики практичан значај ваљано познавање формирања цветних пупољака, процеса и чинилаца фотосинтезе.

Биолошка знања, доселедно примењена у вођарској пракси, ослобађају производача несигурности и доприносе редовнijiјој родности воћака.
Вође је намирница велике биолошке вредности. Оно је извор градивних и заштићених материја људског организма. У многим случајевима деле у и дијетотерапијски. Осам тога, као прерађено или свеже, вође је и предмет трговине. Доприноси развоју многих индустријских грана (производња амбалаже, транспортних средстава, механизације, хемијске индустрије итд.).

Значајна је улога вођака у борби против ерозије. Оне својим кореном везују земљиште подложно ерозивним процесима.

 Вођке доприносе побољшању климе и сл. Многе вођке су добра пчелиња лаша.

Драо неких вођака има велику вредност и примену у индустрији намештаја, грађевинарству, као и у хемијској индустрији.

Овим нису исцрпљене све користи које вођарство пружа. Али, и оно што је у том смислу изнесен, довольно је убедљиво да се вођарство, као врло значајна грана пољопривреде, на одговарајући начин третира.

Током времена у појединим крајевима Југославије било је покушаја да се гаје извесне врсте вођака. Један број тих врста и њихових сорти задржао се и данас, док је други број пре или после пропадао зато што им услови нису одговарали. Неке од њих су пропале и због недовољног искуства у њиховом гајењу.

 Вођарство као наука и као привредна грана није много старо. Први подаци о помошним процесима потичу из 16. века. Најчешће су развој вођарства ометали ратови.

Развој вођарске привреде у нас везан је за манастире. На манастирским имањима су гајене квалитетне сорте појединих врста вођака. Калуђери су се бавили и разним вештинама у вођарству (калемљење).

Између два светска рата било је више покушаја да се вођарска производња унапреди. Настојало се да се пошт сортимент замени бољим, као и да се један број врста и сорти гаје, које се раније нису гајиле. Овом циљу служила је мрежа српских расадника, ниже и средње пољопривредне школе, трговинске коморе и Пољопривредно-шумарски факултет у Земуну. Посебан допринос свему томе дало је Министарство пољопривреде – Одељење за биљну производњу, затим Српско пољопривредно друштво, Задужбина „Николе Спасића” у Београду и др.

 Вођарство Југославије је имало велике штете и у току Другог светског рата.

Ова монографија треба да послужи оспособљавању за укључивање у радне процесе, извршавањем одређених послова и задатака.
ВОЂАРСТВО У ПРИВРЕДИ ЈУГОСЛАВИЈЕ

Вођарство Југославије у периоду после Другог светског рата претрпело је низ позитивних промена. Најзначајнија промена је у томе, што се вођарска производња третира као значајна грана пољопривредне производње. Подигнути су многи план-тажни засади на површинама од неколико стотина хектара, чак једне врсте воћака — Бела Црква, Сремска Митровица, Београд, Смедерево, Подгорица итд. У то време, наша организација је радила на стварању савременог вођарства, чија је одлика максимална производња по јединици површине уз најниже трошкове. То значи, да се заснива на савременим решењима: на избору сорте, подлоге и система гајења; на примени механизације и заштите; на ускладиштењу, преради, обезбеђењу пласмана и међународној трgovini и слично. Поред тога, савремена вођарска производња се не може замислити без свесног деловања човека. Зато је и најважнији услов у вођарству, способност воћара да правилно примени тековине науке и технике, да организује практичну делатност на научној основи.

За овакву оријентацију у вођарству постојали су врло убедљиви разлози. Међу њима је и економска заинтересованост произвођача. Интензивни засади воћака дали су високе приносе, и до 60 т/га (jabuka i крушка). Број воћних стабала расте, као и приноси по га. Повећање приноса је резултат побољшања технологије производње.

У развоју воћарске производње наше земље после Другог светског рата могу се истићи неколико периода:

Сл. 1 — Гајење воћака, класично и на површинама изнажиже релєфа
Први период обухвата време до 1958. године. Овај период се карактерише укрупњавањем површина под воћкама на класичној основи — стари сортимент са недовољном технологијом. Приноси су остали ниски, а квалитет плодова незнатно побољшан.

Трећи период почиње 1970. године, односно, 1971. године и још траје. Основно обележје воћарства у овом раздобљу је тражење решења да се смање трошкови производње и повећају приходи, нарочито неких врста воћака уз побољшање квалитета. У том правцу решења се траже у подизању плантажа са већим бројем воћака по јединици површине — тзв. густа садња, што подразумева и коришћење слабобујних подлога. Осим тога, нужно је максимално коришћење механизације у процесу производње, посебно резидбе и берибе. Већ стечена искусња показују да је оријентација на густу садњу воћака правилан пут у организовању произвођења плодова воћака. У таквим плантажама остварено је рационалношће воћака, висок принос по јединици површине, добар квалитет плодова и ниж трошкови по килограму плодова, као и већа продуктивност.

![Слика 2 - Нове савремене гајење воћака и на равним површинама](image-url)
Производња воћа је данас углавном концентрисана на приватном поседу. Ова производња је значајна у неким подручјима. За тржиште се производи на великим плантажама у државном и задружном сектору. На индивидуалним гајинствима у новчаним приходима од пољопривреде, воћарство и виноградарство учествује са просечно око 10%. То је значајан извор прихода. У брдско-планинском подручју овај процент је знатно већи. Индивидуална гајинства захватају око 95%. Брдско-планинско подручје чини више од половине територије Србије.

И у брдско-планинском подручју може се организовати рентабилна и квалитетна воћарска производња, готово свих континенталних врста воћака. То је један од начина да се активирају ова подручја и преко воћарске производње могао би се остварити извор дохотка.

ПОВРШИНЕ ПОД ВОЂАЦИМА И ЊИХОВА ЛОКАЦИЈА У СР ЈУГОСЛАВИЈИ

У СРЈ пољопривредне површине крећу се око 6.242.000 ha, у томе је обрадивих око 4.865.000 ha или око 77,93%. Под вођацима је око 271.000 ha. Они учествују у пољопривредним површинама 4,34%, а у обрадивим 5,57%. Удео вођака у пољопривредним површинама република је неједнак, што је и разумљиво с обзиром на укупне земљишне површине појединих република.

<table>
<thead>
<tr>
<th>Таб. 1 – Пољопривреде и обрадиве површине и удео вођаца у њима</th>
<th>површине</th>
<th>вођац</th>
<th>површине</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>пољоп. у 1.000 ha</td>
<td>обрадиве у 1.000 ha</td>
<td>%</td>
</tr>
<tr>
<td>Србија–централ. део</td>
<td>3.366</td>
<td>2.651</td>
<td>78,76</td>
</tr>
<tr>
<td>Србија – Косово</td>
<td>584</td>
<td>407</td>
<td>69,69</td>
</tr>
<tr>
<td>Србија – Војводина</td>
<td>1.775</td>
<td>1.621</td>
<td>91,32</td>
</tr>
<tr>
<td>Србија – свега</td>
<td>5.725</td>
<td>4.679</td>
<td>81,73</td>
</tr>
<tr>
<td>Црна Гора</td>
<td>517</td>
<td>186</td>
<td>35,98</td>
</tr>
<tr>
<td>заједно</td>
<td>6.242</td>
<td>4.865</td>
<td>77,94</td>
</tr>
</tbody>
</table>

Црна Гора. – У структури пољопривредних површина Црне Горе под вођацима се налази 2,13%, а у обрадивим површинама 5,91%. Изнад републичког про-
се, површине под вођњацима су општине Бијело Поље, Беране и Плав (са 1,95% до 4,0%); Будва и Бар (4,1% и 6,0%); Херцег Нови, Котор и Тиват су са преко 6,0%.

Србија (укупно). — У пољопривредним површинама вођњаци учествују са 4,54% односно са 5,56% у обрадивим површинама.

Површине под вођњацима од 6,77% до 12,80% су у општинама: Београд, Сопот, Аранђеловац, Брус, Горњи Милановац, Кнић, Косјерић, Краљево, Крупак, Крушевац, Кучево, Куршумлија, Љиг, Лозница, Љубовија, Мајданpek, Мали Зворник, Медвеђе, Мионица, Петровац, Прибој, Прокупље, Рача, Рашка, Смедерево, Светозарево, Ужице, Трстеник, Варварин, Владичин Хан, Владимирци, Власотинце, Жабари и Жагубица; од 12,81% до 18,00% општине: Александровац, Ариље, Чачак, Крагујевац, Лучани, Осечина, Пожега, Рековац, Топола, Ваљево и Врњачка Бања.

Косово и Метохија. — На територији Косова и Метохије вођњаци учествују у пољопривредним површинама са 2,05%, односно 2,95% у обрадивим површинама. У општинама Исток, Клиса, Подујево, Србија, Урошевац и Вучитри површине под вођњацима су између 1,70% и 3,40%; између 3,4% и 5,1% су у општини Ђаковица, а преко 5,1% у општинама Дечани и Пећ.

** Војводина.** — У структури пољопривредних површина Војводине вођњаци учествују 0,96% и у обрадивим површинама 1,05%. Ове површине су од 0,67% до 1,34% у општинама: Нови Сад, Рума и Сента; између 1,34% и 2,0% су у општинама Бела Црква, Инђија и Књажа, а преко 2,0% у општинама Бечич, Ириг, Сремска Митровица и Суботица.

Иако се у плантажном воћарству одступио од принципа рејонализације, јер се воћке гаје где су се до скоро гајиле само ратарске културе, има значаја да се овом питању посвети одговарајућа пажња. Ово због тога, што воћарски редион постоје и при најинтензивнијој производњи, и то не само због климатских и земљишних специфичности него и због економских и других разлога.

**Југославија је претежно брдско-планинска земља. Од обрадивих површина брдско-планинског подручја вођњаци заузимају око 6% Међутим, и у брдско-планинском подручју може се организовати квалитетна и рентабилна производња. У тамошњим еколошким условима већ су стекена врло позитивна искуства у квалитетној и рентабилној производњи, првенствено ситног воћа, али исто тако и јабуке, крушке, а посебно шљиве. Остварени су приноси црне рибизле 7.600–10.000 kg/ha; малине 10.000–15.000 kg/ha; шљиве око 25.000 kg/ha, јабуке 25.000 kg/ha итд. Брдско-планинска подручја се могу најбоље привредно активирати баш кроз интензивно воћарство. Тиме би се решила и друга питања, као што је социјално.
ПРИНОСИ И КВАЛИТЕТ ПЛОДОВА

Можемо рећи да нам је воћарска структура доста лоша и да не одговара потребама и могућностима рационалног искоришћавања воћа. Нарочито је неповољна околност, што шљива тако изразито доминира, док је остало воће релативно мало заступљено. Приноси воћа по годинама могу бити променљиви због разних чинилаца.

Таб. 2 – Производња воћа у тонама (СТЈ, 1994)

<table>
<thead>
<tr>
<th>врста</th>
<th>година</th>
<th>просечно</th>
<th>учешће у укупном приносу (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>јабука</td>
<td>204.000</td>
<td>225.000</td>
<td>214.500</td>
</tr>
<tr>
<td>крушка</td>
<td>74.891</td>
<td>83.263</td>
<td>79.077</td>
</tr>
<tr>
<td>луња</td>
<td>13.315</td>
<td>14.814</td>
<td>14.064</td>
</tr>
<tr>
<td>шљива</td>
<td>374.000</td>
<td>519.000</td>
<td>446.500</td>
</tr>
<tr>
<td>трешња</td>
<td>30.919</td>
<td>30.941</td>
<td>30.930</td>
</tr>
<tr>
<td>вишња</td>
<td>164.088</td>
<td>93.105</td>
<td>98.596</td>
</tr>
<tr>
<td>кајсија</td>
<td>30.600</td>
<td>20.913</td>
<td>25.756</td>
</tr>
<tr>
<td>брескова</td>
<td>52.002</td>
<td>45.389</td>
<td>48.695</td>
</tr>
<tr>
<td>орах</td>
<td>19.666</td>
<td>22.383</td>
<td>21.024</td>
</tr>
<tr>
<td>остало конт. воће (^1)</td>
<td></td>
<td>133.833</td>
<td>11,98</td>
</tr>
<tr>
<td>маслина</td>
<td>1.035</td>
<td>947</td>
<td>991</td>
</tr>
<tr>
<td>смоква</td>
<td>1.731</td>
<td>1.737</td>
<td>1.734</td>
</tr>
<tr>
<td>агруми</td>
<td>1.690</td>
<td>1.286</td>
<td>1.488</td>
</tr>
<tr>
<td>УКУПНО</td>
<td></td>
<td>1.117.188</td>
<td>100,00</td>
</tr>
</tbody>
</table>

У укупној производњи воћа учествују: јабучасто – 307.641 t или 28,50% и даље коштичаво – 650.477 t (58,04%); језгрasto – 21.024 t (1,88%); жужно – 4.213 t (0,37%); остало – 133.833 t (11,98%).

Оснивају се „родним“ и „неродним“ годинама последицу су примитивне агrotehnike и мноштва слабородних сорти. Међутим, потребно је истаћи да се у последње време у погледу приноса примећују позитивне промене: засади у друштвеним сектору дају високе приносе, али се и у приватном сектору запажа значајан напредак.

\(^1\) Малина, јагода, купина, рапица, боровница, шумска малина и јагода, лешник, бадем, ружин шипак и др.
НАЧИНИ ИСКОРИШЋАВАЊА ВОЋА

Док у производњи воћа, нарочито у последње време, остварујемо све боље резултате, дотле у његовом искоришћавању има нерационалности, нарочито у индивидуалном сектору.

Просечна производња воћа у 1992. и 1993. години износи 1.117.188 т или 111,7 kg po становнику. Од тога је прерађено у домаћој прераци и индустрији око 52% или 580.937 тona1.

Међу прерађевинама доминирају производи од шљиве – сува шљива, пекмез, ракија. С правом истичемо да је искоришћавање нашег воћа нерационално, пошто се највеће количине претварају у алкохолне напитке.

Таб. 3 – Домаћа прерада воћа

<table>
<thead>
<tr>
<th>година</th>
<th>сува шљива (тона)</th>
<th>пекмез</th>
<th>маслин. уде у хиљадама лит.</th>
<th>ракија (у хиљадама лит.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>од шљиве</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>мека</td>
</tr>
<tr>
<td>1965</td>
<td>3.048</td>
<td>5.099</td>
<td>356</td>
<td>32.867</td>
</tr>
<tr>
<td>1988</td>
<td>9.166</td>
<td>6.844</td>
<td>54</td>
<td>36.017</td>
</tr>
<tr>
<td>1990</td>
<td>3.747</td>
<td>6.450</td>
<td>144</td>
<td>25.081</td>
</tr>
<tr>
<td>1991</td>
<td>2.177</td>
<td>7.022</td>
<td>1.556</td>
<td>25.539</td>
</tr>
<tr>
<td>1993</td>
<td>5.584</td>
<td>11.121</td>
<td>1.376</td>
<td>35.114</td>
</tr>
</tbody>
</table>

Изменом сортне структуре појединачних врста воћака и побољшаном технологии у процесу производње, знатно је побољшан квалитет плодова. Квалитет плодова у друштвеном сектору је на нивоу квалитета напредне светске производње, док се у приватном сектору стално побољшава.

У свету стално се више расте потрошња воћа у разним облицима. Међутим, по потрошњи воћа у свету наша земља је иза Италије, Француске, Шпаније, Грчке, Енглеске, Швајцарске, Шведске, САД итд. У нас се троши око 53 kg свежег воћа по становнику, док је ова потрошња у неким земљама и преко 100 kg. У структури потрошње свежих плодова воћа у нас највише учествује јабука, док остале врсте имају незнатан удео. У виду прерађевина потроши се по становнику око 59 kg.

1 Од произведеног воћа преради се 10,43% јабукастог и даље 70,41% коштичавог, јагодастих 12,02%; јепрастог 2,05% и суптропског 0,22%.
<table>
<thead>
<tr>
<th>врста вода</th>
<th>вода</th>
<th>белки</th>
<th>уља</th>
<th>углеводы</th>
<th>вода</th>
<th>мегер. соли</th>
<th>вит. С</th>
<th>вит. C mg %</th>
<th>вредност (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>јабука</td>
<td>86,00</td>
<td>0,30</td>
<td>0,30</td>
<td>12,00</td>
<td>0,90</td>
<td>0,40</td>
<td>0,27</td>
<td>12,0</td>
<td>52,4</td>
</tr>
<tr>
<td>крушка</td>
<td>83,50</td>
<td>0,50</td>
<td>0,40</td>
<td>13,30</td>
<td>1,90</td>
<td>0,38</td>
<td>1,20</td>
<td>5,0</td>
<td>58,9</td>
</tr>
<tr>
<td>дуња</td>
<td>83,10</td>
<td>0,42</td>
<td>0,50</td>
<td>15,50</td>
<td>1,90</td>
<td>0,44</td>
<td>0,39</td>
<td>13,0</td>
<td>68,0</td>
</tr>
<tr>
<td>шљива</td>
<td>85,70</td>
<td>0,70</td>
<td>0,10</td>
<td>12,30</td>
<td>0,70</td>
<td>0,50</td>
<td>0,54</td>
<td>0,38</td>
<td>11,0</td>
</tr>
<tr>
<td>брсеква</td>
<td>87,50</td>
<td>0,72</td>
<td>0,10</td>
<td>10,50</td>
<td>0,68</td>
<td>0,63</td>
<td>0,63</td>
<td>7,0</td>
<td>54,1</td>
</tr>
<tr>
<td>краје</td>
<td>85,30</td>
<td>0,90</td>
<td>0,10</td>
<td>12,40</td>
<td>0,70</td>
<td>0,60</td>
<td>0,60</td>
<td>10,5</td>
<td>63,9</td>
</tr>
<tr>
<td>трема</td>
<td>83,60</td>
<td>0,80</td>
<td>0,50</td>
<td>14,00</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>18,0</td>
<td>60,0</td>
</tr>
<tr>
<td>вишња</td>
<td>84,80</td>
<td>0,90</td>
<td>0,50</td>
<td>13,00</td>
<td>0,30</td>
<td>0,60</td>
<td>0,60</td>
<td>18,0</td>
<td>59,2</td>
</tr>
<tr>
<td>јагода</td>
<td>88,70</td>
<td>0,90</td>
<td>0,40</td>
<td>8,00</td>
<td>4,00</td>
<td>0,60</td>
<td>0,60</td>
<td>11,0</td>
<td>25,0</td>
</tr>
<tr>
<td>малина</td>
<td>84,50</td>
<td>1,30</td>
<td>0,30</td>
<td>8,70</td>
<td>5,33</td>
<td>0,51</td>
<td>0,22</td>
<td>17,0</td>
<td>58,4</td>
</tr>
<tr>
<td>купина</td>
<td>84,70</td>
<td>1,20</td>
<td>1,00</td>
<td>8,60</td>
<td>4,00</td>
<td>0,51</td>
<td>0,90</td>
<td>17,0</td>
<td>22,0</td>
</tr>
<tr>
<td>боровинка</td>
<td>84,90</td>
<td>0,60</td>
<td>0,60</td>
<td>13,60</td>
<td>0,87</td>
<td>0,30</td>
<td>0,85</td>
<td>51,0</td>
<td>54,0</td>
</tr>
<tr>
<td>нараница</td>
<td>85,70</td>
<td>0,96</td>
<td>0,26</td>
<td>0,14</td>
<td>0,53</td>
<td>0,50</td>
<td>0,50</td>
<td>22,0</td>
<td>146,0</td>
</tr>
<tr>
<td>маслина</td>
<td>74,80</td>
<td>1,38</td>
<td>13,90</td>
<td>2,92</td>
<td>1,20</td>
<td>5,80</td>
<td>3,3</td>
<td>73,0</td>
<td></td>
</tr>
<tr>
<td>смоква</td>
<td>80,20</td>
<td>1,30</td>
<td>0,50</td>
<td>10,50</td>
<td>1,60</td>
<td>0,70</td>
<td>0,70</td>
<td>15,0</td>
<td>705,0</td>
</tr>
<tr>
<td>орах</td>
<td>4,80</td>
<td>14,60</td>
<td>62,70</td>
<td>13,50</td>
<td>2,70</td>
<td>1,68</td>
<td>15,0</td>
<td>0,8</td>
<td>651,0</td>
</tr>
<tr>
<td>белем</td>
<td>5,70</td>
<td>18,30</td>
<td>54,10</td>
<td>16,00</td>
<td>3,80</td>
<td>2,65</td>
<td>2,65</td>
<td>5,0</td>
<td>690,0</td>
</tr>
<tr>
<td>ленник</td>
<td>6,20</td>
<td>13,90</td>
<td>61,80</td>
<td>12,60</td>
<td>3,10</td>
<td>2,49</td>
<td>4,40</td>
<td>3,8</td>
<td>74,0</td>
</tr>
</tbody>
</table>
Изградња хладњача знатно доприноси стабилизацији тржишта воћа у процјењу сезоне потрошње воћа у свежем стању. У нашој земљи већ су изграђени бројни објекти за чување воћа (расхладна складишта).

Међутим, ови капацитети за чување воћа искоришћени су са око 50% што значи да је постојећа расхладна мрежа у овом погледу недовољно искоришћена, пре свега зато, што немамо квалитетних производа који би се чували, тј. чије би се чување исплатило.

Из наведених података јасно се види да је биланс производње и искоришћавања воћа у Југославији неповољан.

VIŠKOVNI VOĆA ZA IZVOZ

Ако изуземо шљиву, и то само у родним годинама, ми још не производимо количине воћа које би биле доволне за оптималне потребе наше становништва у рационалној структури исхране. Међутим, наша воћарска производња у друштвеним сектору, показује тенденцију пораста који је знатно бржи од прираштаја становништва, тако да са сигурносћу можемо рачунати да у догодно време обезбедимо растврђене вишкове воћа у свежем, конзервисаном и прерађеном стању за извоз.

Као врло значајне производе воћарства који се извозе, треба поменути воће с коштаним плодовима, свеже и суво, које у укупној производњи воћа учествују са 59,62%. Нарочито се извози сува шљива. Извесне количине сува шљиве по годинама варирају. Појединих година извезе се преко 30.000 тона. Вредност извоза воћа и воћних прерађенина је значајна ставка у структури вредности извезених пољопривредних производа.

Voće kao hrana, tehnološka sировина i predmet trgovine

Извадемо да је човек пре упознао вредност воћа у исхрани него што је почео да га производи. Хранљива вредност воћа релативно је добро позната, због тога се воће препоручује као саставни део оброка. Редовна употреба воћа у људској исхрани успешно делује на развој и здравствено стање људског организма, на његову физичку конституцију и радну способност.

Органске материје (шећери, масти и белачевине) у воћним плодовима често су изнад квалитета у другим намирницама. Али, хранљива вредност воћа састоји се и у минералним солима, витаминима и неким другим супстанцијама.

Свеже воће, као и свеже поврће, врло успешно делује на пробаву и промет материја у организму, што увек треба имати на уму при исхрани, нарочито деце и недовољно ухрањених особа. Не треба губити из вида ни калоричну вредност неких
врста воћа. На пример, банана, рогач и сушени плодови смокве, шљиве, кајсије и др. су богати шећерима, а орах, лешник и бадем, мастима и беланчевинама.

Врло је значајна физиолошка улога и других састојака воћа, као што су органске киселине, пектини и несварљиви угљени хидрати. Према најновијим истраживањима пектин спречава нагомилавање холестерола у крвним судовима и крви, спречава атеросклерозу. Воће је корисно и као дијетална храна, која потпомаже лечење низа болести – бубрегних, стомачних, срчаних и др.

Према томе, воће има знатну хранљиву и пробавну вредност, али и лековитост коју не треба занемаривати.

Поред потрошње воћа у свежем стању, оно се троши и у прерађеном. Такав облик искоришћавања све више је у употреби.

Као врло значајне производе воћарства који се извозе, треба поменути воће с коштичавим плодовима, свеже и суво. Нарочито се извози сува шљива. Појединох година извезе се и до 30.000 т. Вредност извоза воћа и воћних прерађенина је значајна ставка у структури вредности извезених полуприродних производа.

МОГУЋНОСТ ПРЕРАДЕ И КОНЗЕРВИСАЊА ВОЋА У ПРОИЗВОДНИМ ГАЗДИНСТВИМА

Према подацима из наше праксе и искусвима других земаља, веома добри резултати у преради постигу се ако се прерађивачки објекти директно везани за производњу. У такvim условима, при доброj организациji, постиже се економичнija и квалитетнија производња.

Економичност се засниva на бољем и потпуниjем искоришћавању воћa, смањењу транспортних трошкова и губитака везаних за дужи транспорт, уговар, истовар и др.

Квалитет се обезбеђује правовременом бербоm, односно прерадом, јер се у тим условима најсигурниjе може постићи оптимални временски период од бербе до прераде.

Осим тога, у склопу општиh mera заштите животне средине наjвећi део отпадакa коjи се jавlа у преради треба oставити на jви, односно воћљаку, као неку врсту зеленишног ђубрива. Тиме се у великоj мери смањује загађеност отпадних вода и смањују трошкови транспортa и уклањања отпадакa. Ово је могуће само тамо где се, ако не потпуна, а онa бар делимична прерада обави на месту производње.

Изалажење могућности и решења за прераду у производним газдинствима има посебан значај и са гледишта обезбеђења хране у случају општенародне одbrane.
У газдинству, као и у индустрији, воће може да се преради, мада у далеко мањим размерама, као полупрерађени и готови производи.

Полупрерађени производи би свакако били економичнији јер не захтевају велику опрему, а то би било од велике користи индустрији која ове производе користи као сировину за даљу прераду у периоду кад нема свежег воћа.

Као готови производи у газдинству се могу произвести: сушено воће, делимично пререли сок јабуке и сиће. Отпадак и неквалитетни део воћа може још да се употреби за алкохолну прераду.

Полупрерађени производи од воћа

Међу полупрерађеним производима најбржа је и најједноставнија производња *пуплине*, хемијски конзервисане.

Под пуплом се подразумева полупрерађени производ који садржи целу или делове плодова са минималном количином налива коме је додат конзерван. По стандардним прописима ограничена је количина конзервана која се сме наћи у производу, а додати налив може бити највише до 10% нега тежине производа.

За производњу пупле могу се употребити све врсте воћа: коштичаво – вишња, трешња, шљива, бреска и кајсија, јабучасто – јабука, крушка и дуња, јагодасто – јагода, малина, и шумски плодови – купина и шипурак.

Да би се добила квалитетна пупла, јер од тога зависи и квалитет готовог производа који се од ње добија, неопходно је:

– здраво и зрело свеже воће,
– добра и хигијенска амбалажа и
– што је могуће мања количина конзервана неопходна да обезбеди одржавање воћа у здравом стању одређени временски период.

Припрема воћа. Ситно коштичаво воће треба само опрати и из њега одстрањити коштице и дршке, а оштећене и оболеле плодове одбацити.

Јабучасто воће, поред правна и пребирања, треба грубо исећи, уситнити како би се што боље исцрплива примена амбалаже, што захтева и даља прерада, јер се то воће углавном користи за производњу мармеладе.

Јагоде се такође морају пажљиво опрати и пребрати. Гајење јагода са простирком или пластичном фолијом омогућава добијање врло чистих плодова. Малина и купица се, због специфичне грађе плода, не перу.

О избору и припреми воћа мора се водити расчун јер је то најважнији услов за обезбеђење потребног квалитета. За пуплу се могу користити ситнији плодови, који при класирању представљају класу слабијег квалитета према оценама за потрошњу у
свежем стању, али морају бити потпуно здрави, довољно зрели и са свим основним карактеристикама сорте којој припадају.

Припрема амбалаже. Као амбалажа за хемијски конзервисану пулпу користе се пластична бурада са поклоцима. Раније су коришћена дрвена бурада запремине 200 литара, парафинисана са унутрашње стране ради лакшег прања и одржавања потребних хигијенских услова.

Бурад морају бити добро опрана и по могућности стерилизована врелом водом или неким хемијским средством. Како је то повратна амбалажа, треба увек настојати да се помаже једном оперу, јер развој микроорганизама ствара опасност накнадне инфекције производа преко амбалаже.

Врсте хемијских конзерванаса и припрема раствора. Познато је да се за конзервисање популреперажних производа као најпоузданје средство користе сумпор-диоксид (SO₂), а само за одређене намене популреперажен производ, мравља киселина.

Најпогоднији извор сумпордиоксида је сумпораста киселина (H₂SO₃), која се у продавци налази као 6 %-ни раствор, и њене соли калијум-бисулфит Ca(H₂SO₃)₂ и чврсте соли K₂SO₃, Na₂SO₃ и калијум-метабисулфит (K₂S₂O₅) – со пиросумпорасте киселине.

Мравља киселина се налази као концентровани 80 %-ни раствор.

Највећа количина сумпор-диоксида која се смештује у пулин, према стандардним прописима, јесте 0,25 %, изражено као укупни сумпор-диоксид. Међутим, пожељно је да та концентрација у производу буде и мања, јер ће се при дањој прерађивању лакше одстранити, што је веома значајно за постижење одређеног квалитета. Но, треба знати да мање концентрације (до 0,20 %) могу да обезбеде конзервисање само уз беспрекорне хигијенске услове.

Сумпор-диоксид, односно сумпораста киселина, додава се као водени раствор који се припрема у концентрацији неопходној да се добија 10 % тежине производа обезбеди потребан садржај сумпор-диоксида. Концентрација сумпор-диоксида у раствору контролише се ареометром по Екелу или Бомеу. На основу прочитане вредности из табеле долази се до концентрације сумпор-диоксида. Сумпор-диоксид врло лако испарава, па се концентрација брзо мена, о чему треба водити рачун при раду. Осим тога, радници који раде са овим раствором морају бити на одређени начин заштићени, јер сумпор-диоксид делује штетно на органе за дисање.

Осим сумпорасте киселине, као што је наведено, може се употребити и мравља киселина. Међутим, пониже она у обичним условима није испарљива, а већа концентрација делује штетно на слузокошу органа за варење, може се употребити само ако је пулина намешена производни сируп, који се најчешће производи од малине, затим вишње и евентално купине. Поништо није увек поуздан конзерванс, дозвољена концентрација мравља киселине при конзервисању пулипе је 0,35%.
Добро затворену бурад, на којој се мора назначити врста воћа и врста и количина додатог конзерванса, треба држати на сувом месту, заштићеном од директног дејства сунца и атмосферских непогода.

Уколико постоје услови за цењење сока, може се и он конзервисати мрављом киселином у истој концентрацији, али се и овде мора водити рачуна о ограниченој могућности коришћења сока са додатком мравље киселине. Овако конзервисан полу-прерађени сок познат је у прaksi под називом „сјерви воћни сок” или „сукус”.

Готови произведи од воћа

Међу готовим производима, за услове привређивања пољопривредних газдинстава најприхватљивија је производња сушеног воћа.

Сушење воће се не само лакше и сигурније чува, већ се смањењем процента воде у њему смањују транспортни трошкови, потребна амбалажа и простор за чување. Сушење може да се обави: на сунцу, тј. коришћењем соларне енергије, и у сушницама.

Сушење на сунцу је најекономичније што се тиче трошкова енергије, али је неопходно обезбедити доста простора и хигијенске услове како не би дошло до инфекције.

Постављање и коришћење сушенца и у овим условима је могуће ако се за извор топлоте користи чврсто или течно гориво.

Готово све врсте воћа могу да се суше без неке посебне припреме, али су за сушење нарочито погођено шљиве, грожђе, кајсије и смокве. Уколико се суше јабуке и крушке, неопходно је обавити сумпорисанје да би се спречила промена боје, тј. потамњивање.

Сушени производи накују се у полиетиленске вреће или картонске кутије и чувају у сувој, чистој и промајној просторији.

Делимично преврели сок јабуке може да буде интересантан производ. Та прерада је позната у северним деловима претходне Југославије (Словенија), као и у неким другим земљама (Француска, Немачка, САД и др.).

Исцеђени сок јабуке се пусти да спонгтано ферментира, при чему настаје извесна холицина алкохола, која не би требало да је већа од 1%. Уколико је ферментација интензивнија, онда се овај преврели сок меша са непреврелим. Прекид ферментације се најједноставније постиже додатком сорбинске киселине или калијум-сорбата.

Овако конзервисан производ није за шири тржиште уколико се не добије посебно одобрено, јер према југословенским прописима конзервисање сокова хемијским средствима није дозвољено.

Додата количина калијум-сорбата или сорбинске киселине треба да је 0,1%. Калијум-сорбата се може додати и нешто више, али не изнад 0,13%.
Постуно преврели сок јабуке, као и осталих врста воћа, може да се накнађе подвргне сирћетној ферментацији. Воћно сирће је тражени и цењени производ, како у домаћинству, тако и за индустријске потребе.

ВАЖНИЈИ ЧИННИЦИ ЗА ДАЉИ РАЗВОЈ ВОЋАРСТВА ЈУГОСЛАВИЈЕ

Наша земља је међу реткима које се одликују врло повољним природним условима за организовање савремене и рентабилне воћарске производње. Ови услови омогућују гајење континенталних врста воћака, како и неких сунтропских.

Југославија захвата велики део Балканског полуострва. Она заузима 102.173 km². У томе су пољопривредне површине 6.242.000 ha, од чега обрадиве површине 4.865.000 ha. Учешће воћака у пољопривредним површинама 4,34%, односно обрадивим 5,57%.

Воћарство наше земље, иако екстензивно, сматрано је једним међу малобројним, које је имало значајну улогу у међународној трговини. Томе је доприносио велики број стабала шљиве (претежно пожегаче) од које су се производиле велике количине плодова. Од ње су били познати производи: ракија, пекмец, сува шљива и свежи плодови. Осушена шљива се из Србије извозила и до 30.000 t (1881–1900).

Наводи се неколико чинилаца који имају утицај на ширење воћарства.

Хладњаче

Успешан унутрашњи и још више спољни промет не може се замислити без довољно расхладног складишног простора. То је апсолутно неопходно за обезбеђење дужег чувања воћа и за равномерно снабдевање тржишта, преко целе године. Осим тога, тиме се утиче и на рационалније трошење, избегавају се шишеви у понуди воћа.

Хладњаче за воће треба подизати у непосредној близини производње. То у нас није увек случај, оне су претежно подигнуте у појединим потрошачким центrima.

Пакирнице

За успешну припрему воћа за тржиште неопходне су савремене пакирнице. Њих треба да прате уређаји за класирање и друге операције, зависно од врсте плодова (за бреске, систем четки за скидање маља). Прве пакирнице у Белој Цркви, Сремској Митровици, Београду, дале су велики допринос у ширењу воћарства.
УВОД

Саобраћај

Плодови воћака, нарочито неких, су подложни брзом кварењу. То је наметнуло потребу за развијенијим, бржим и јефтинијим саобраћајем. У том погледу учињене су значајне промене, које се могу у позитивном смислу кориговати. Воћарска производња – један значајан део, налази се у брдско-планинском крају у којем је саобраћај врло неразвијен, нако нареде претежно о дрвомском саобраћају. Главна воћка је, тамо, шљива која се прерађује, не увек рационално, у ракију, пекмез, суши се на класичан, домаћи начин који не даје квалитетну суву шљиву. Активирање саобраћаја у брдско-планинском подручју знатно би утицало на побољшање воћарства, мењајући структуру, сортимент и начин искоришћавања.

Плантажно воћарство се, у ствари, развија покрај постојеће саобраћајне мреже, путне и железничке, што значи да се оно прилагођавало развијенијем саобраћају. Овде саобраћајни услови задовољавају потребе промета воћа. Саобраћај се у нас побољшава што је значајно за развој воћарства.

За транспорт свежих плодова: јагоде, трешње, малине и сл. све се више користе авиони односно камиони са расхладним уређајима, што омогућује преношење воћа на велика растојања.

Сушнице за воћне плодове

Наша најзаступљенија врста воћака – шљива и у оквиру ње врло раширена сорта пожегача, давно је наметнула потребу изградње врло великог броја сушница. То је, а и данас је, један од рационалнијих начина прераде шљиве. Многи пољопривредници су имали сопствене сушнице, које су застареле. У последњих 30–40 година је подигнуто око 500 индустријских сушница калифорнијског типа. У њима се сушене шљиве обавља уз велике предности над оним старим: дају осушене плодове одличног квалитета уз већу продуктивност и мање трошкове сушења.

Индустрија за конзервисање и прераду воћа

Са обновом воћарства после Другог светског рата развијала се и индустрија прераде. Подигнути су нови капацитети и обновљени стари за индустријску прераду воћа. Неки од њих су врло савремено опремљени. Њихов утицај је велики, посебно на ширење неких врста воћака (бресквама, вишња, итд.). Очекује се и да убудуће ови утицаји буду још израженији.

Организација рада у воћарству

Од организације рада у воћарству зависи поред осталих и његова продуктивност. У нашим новим плантажама она очигледно заостаје кад се упореди са земљама
интензивне воћарске производње. За одржавање (ha) воћарске производње у Швајцарској је потребно 338 радних часова, Немачкој – 375, Холандији – 404, а у нашој земљи око 650 часова. Производи се 100 kg воћа за 2,4 радна часа у Швајцарској, у Холандији за 3,8; Немачкој за 6,2 а у Југославији за око 10 радних часова.

Због тога је потребно више напора за побољшање организације рада у воћарству, као значајног чиниоца за унапређење воћарства, јер је то предуслов за смањење трошкова производње што утиче на повећану акумулативност воћарства. Реално је да се повећа наша производња воћа и побољша његов квалитет.

Механизација у воћарству

Увођење нових механизационих процеса учиниће производњу воћа јефтинијом. У томе се види велики утицај механизације не само на већу продуктивност већ и лакше и брже савладавање многих поступака у примени агротехничких и помотехничких мера у гајењу воћака. Она ће имати значајан допринос и на промену структуре по врстама и сортама воћака.
ВОЂКЕ И ЕКОЛОШКИ ЧИНИОЦИ

Екологија вођака је део помолошке науке који се бави проучавањем узајамних односа вођака и спољашње средине.

Све биљне врсте па и вођке, веома су зависне од еколошким чиниоцима, тј. веома осетљиво реагују на спољашњу средину.

1. Жivot, родност и рентабилност производње вођака као вишегодишњих биљака изузетно су зависни од животног станишта (биотопа) у којима се они гаје.

Због тога се у воћарству мора посветити изузетна пажња еколошким чиниоцима, да би се обезбедио добар избор сорти и вођке правилно развијале и гајиле.

Сви еколошки чиниоци неког животног станишта делују као целина, а ради лакшег проучавања могу се поделити на две групе: абииотичке и биотичке чиниоце.

Абиотички чиниоци обухватају сложено дејство физичко-хемијских услова средине (земљиште, поднебље-климу и орографију); а биотички - утицај других живих бића (биљака, животиња и човека).

ВОЂКЕ И ЗЕМЉИШТЕ

Земљиште је супстрат или физичко станиште у којем се вођке укорењују и из којег се снабдевају водом са раствореним минералним материјама. Оно је извор живота вођака.

Због тога је оценена прикладности земљишта за гајење вођака, као и добро познавање особина земљишта од изузетног значаја за воћарску науку и праксу, јер су вођке вишегодишње културе, а неке на истом станишту могу да остaju читав низ година (10–30–60 и више).

Утицај земљишта на вођке испољава се преко његових физичких, хемијских и биолошких особина.
ФИЗИЧКЕ ОСОБИНЕ ЗЕМЉИШТА

За успешно гајење воћака врло су важне физичке особине земљишта, јер се оне тешко могу поправљати.

Од физичких особина најважније су дубина и структура земљишта.

С обзиром да су воћке, с изузетком малог броја, са развијеним кореном, чија се мрежа простире у дубини слојеве до 100 cm, то је природно да би земљиште требало да има што дубљи слој у којем се развија коренова мрежа воћака.

Треба имати на уму да се различите врсте воћака разликују у погледу развијености корена по дубини, односно површини.

Зато је битно да активан слој буде довољно дубок, пропустљив, растресит и структуран, а да се испод оранчничког слоја, налази пропусна здравица са повољним водно-ваздухним режимом (50% воде : 50% ваздуха).

То су, значајна својства од којих зависи општи пораст и простирање корена у земљишту.

Земљишта са високом подземном водом, неповољним топлотним и ваздухним режимом, нису подесна за највећи број воћака.

Таб. 5 - Физичке и хемијске особине земљишта (Булацковић, 1970)

<table>
<thead>
<tr>
<th>показатељи</th>
<th>варијанте земљишта</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Α</td>
</tr>
<tr>
<td>крптен песак 0,2</td>
<td>7,33</td>
</tr>
<tr>
<td>ситан песак 0,2 - 0,02</td>
<td>59,26</td>
</tr>
<tr>
<td>глина 0,002</td>
<td>14,53</td>
</tr>
<tr>
<td>колониди 0,002</td>
<td>18,86</td>
</tr>
<tr>
<td>укупан песак 0,02</td>
<td>66,60</td>
</tr>
<tr>
<td>укупна глина 0,02</td>
<td>33,40</td>
</tr>
<tr>
<td>хигроскопна влага %</td>
<td>2,14</td>
</tr>
<tr>
<td>макс. хигр. кап. %</td>
<td>4,71</td>
</tr>
<tr>
<td>мртва влага %</td>
<td>9,43</td>
</tr>
<tr>
<td>pH у H2O</td>
<td>7,33</td>
</tr>
<tr>
<td>pH у KCl</td>
<td>5,90</td>
</tr>
<tr>
<td>на 100 гр земље:</td>
<td></td>
</tr>
<tr>
<td>P2O5 mg</td>
<td>11,56</td>
</tr>
<tr>
<td>K2O mg</td>
<td>9,66</td>
</tr>
<tr>
<td>хумус %</td>
<td>1,48</td>
</tr>
<tr>
<td>N %</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Пропустљивост земљишта се може врло лако испитати копањем рупа до дубине од 100 cm. Ако се вода у овим рупама задржи 3-4 дана после престанка кише,
земљиште је непопустиљиво и није погодно, без претходне поправке, за гајење воћака нарочито оних са дубоким кореном. Ово стање може да се поправи подривањем и изградњом система дренажних канала.

Земљишта са плитким активним слојем су мање погодна за гајење већине воћака, јер се на таквим земљиштима корен мање развија, а самим тим и надземни део воћке ће бити мање развијен, мање родан, лошијег квалитета плода и смањене отпорности према ниским негативним температурома, суши, болестима и штеточинама.

Минимална дубина активног слоја је око 0,5 m (за јагоду), 0,80 m за остале врсте из групе ситног воћа и 1,5—2,0 m за остале врсте воћака.

Од физичких особина значајна је и структура земљишта. Структура је зависна од односна глине и песка. На њу утиче и количина крчч (CaCO₃) у земљишту, као и органских материја (хумуса). За успело гајење воћка најбоља је мрвичаста структура. Ову структуру треба пажљиво чувати, јер она може да се уништи преобличим наводњавањем, наводњавањем заслањеном водом или обрадом влажног земљишта тешким машинама.

Добро структура земљишта омогућава лако пролирање најактивнијих жила корена и позитивно делује на општи развитак корена. Таква земљишта су добро аерисана. Са друге стране неаерисане земљишта су неповољна пре свега, зато што у њима долази до угуштања корена па и саме воћке. Врло често се у анаеробним условима у ћелијама корена нагомилавају токсичне материје које изазивају изумирање воћака. Дешава се и низ других процеса, претварају се нитрати у нитрите који токсично делују на корен.

Мокро и збијено земљиште не садржи више од 1% кисеоника у односу на добро растрасито и пропуши земљиште. Воћке у оваквом земљишту развијају мањи корен и то више површински.

Познато је да, у погледу захтева воћака према структури земљишта, постоје разлике између појединих врста, сорти и подлова.

Највећи број истраживача осврће се на структуру земљишта погодну за гајење воћака употребно, док је врло мало података о специфичним захтевима појединих врста, сорти и подлова. Љ. Трентин (Милковић, 1991) сматра да се у погледу захтева према структури земљишта, све воћке могу поделити у две групе: јабучaste и коштинчаве (таб. 6).

<table>
<thead>
<tr>
<th>врста честинца</th>
<th>јабучасте воћке</th>
<th>коштинчаве воћке</th>
</tr>
</thead>
<tbody>
<tr>
<td>глина и прак</td>
<td>45 %</td>
<td>30 %</td>
</tr>
<tr>
<td>песак</td>
<td>30 %</td>
<td>35 %</td>
</tr>
<tr>
<td>креч</td>
<td>15 %</td>
<td>25 %</td>
</tr>
<tr>
<td>хумус</td>
<td>10 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Таб. 6 — Погодна структура земљишта за воћке
Међутим и ова подела је подложна критици јер је осетљивост појединих врста воћака, у оквиру исте групе, веома различита према односу глине и крече, (нпр. у групи коштинавих воћака, шљива боље подноси знатно тежа земљишта са већим количинама крече од бреске; или јабука боље подноси тежа земљишта од крушка, итд.), те се и ова подела може схватити уопштено и прилично оквирно.

И на kraju, земљишта се по саставу могу поделити на јлинковита са 45–100% глине и праха, исковита са преко 55% укупног песка, шловаца са 20–60% глине и праха и са 40–65% укупног песка, кречна са преко 20% CaCO₃, и хумусна са више од 3% хумуса.

ХЕМИЈСКЕ ОСОБИНЕ ЗЕМЉИШТА

Хемијске особине земљишта зависе од његовог органског и минералног дела. Оба ова комплекса делују у земљишту као јединствен систем.

Органски комплекс сачињавају све супстанце створене биолошким путем, а које се налазе у земљишту или на његовој површини. Живи део ове материје (флора и фауна) назива се екзот, а њен изумрли део, који је у непрецидним процесима разлагања, трансформације и синтезе назива се хумус.

Неоргански комплекс земљишта сачињавају биогени, корисни и случајни елементи.

Хемијске особине земљишта делују на воћке јлоношићу и бојалистивом.

Под јлоношићом земљишта се подразумева количина приступачних хранљивих елемената у погодном облику, како их корен воћке може усисати; тако се под бојалистивом земљишта подразумева укупна количина хранљивих елемената у њему без обзира у каквом се облику они налазе. Скоро да је правило, да су богата земљишта обично и плодна, мада постоје и богата, али неплодна земљишта.

Таб. 7 – Класификација земљишта према садржају хранљивих елемената

<table>
<thead>
<tr>
<th>елементи</th>
<th>земљиште</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>сиромашино</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>7</td>
</tr>
<tr>
<td>K₂O</td>
<td>15</td>
</tr>
</tbody>
</table>

За воћке су од посебног значаја заступљеност P, K, Ca и Mg у земљишту, и хумуса као извора азота.

На бази заступљености ових елемената (mg у 100 грама ваздушно суве земље), земљишта су подељена у сиромашина, средње обезбеђена и добро обезбеђена. У хемијске особине земљишта спада и pH вредност. За успешно гајење воћака најбоља су слабо кисела земљишта, чија је pH вредност око 5,5–6,5. Међутим, и овде треба
вагасити да различите врсте, односно сорте, имају неједнаке захтеве у погледу pH вредности земљишта.

На како киселим земљиштима анаеробна микрофлора троши знатне количине калцијума и магнезијума, те воћке често оскудевавају у њима.

У земљиштима са јаче израженом алкалном реакцијом (pH преко 7) блокира се гвожђе и манган услед чега се јавља хлороза.

Сви недостаци хемијских особина земљишта могу се кориговати додавањем органских и минералних ђубрива, неутрализацијом киселих земљишта, калцификацијом итд.

БИОЛОШКЕ ОСОБИНЕ ЗЕМЉИШТА

Земљиште представља повољну средину за живот многобројних организама биљног и животињског порекла, који директно или индиректно утичу на његову плодност. Земљишну флору сачињавају бактерије, алге и гљиве, а фауну: протозое, нематоде, инсекти, кишне глисте, мекуши и др.

Што су повољнији услови за рад и живот ове земљишне заједнице, то је већа њена активност и утолико је израженија плодност земљишта. Међутим, неки од ових организама својом активношћу и присуством у земљишту наносе знатне штете воћкама. Ја се првенствено мисли на вирусе и патогене бактерије који изазивају обољења корена воћака, као и на неке глодаре (мишеви, волухарице) који својим активностима механички оштећују корен, а често и коренов врат воћака.

ТИПОВИ ЗЕМЉИШТА ЗА ГАЈЕЊЕ ВОЂАКА

Већ је истакнут општи значај земљишта за гајење воћака преко његових физичких, хемијских и биолошких особина.

Готово свим врстама воћака одговарају дубока, структурна, растресита земљишта са повољним водно-ваздушним режимом, добром хемијским и биолошким особинама.

Од појединих типова земљишта, за успевање воћака су значајни: чернозем у свим варијантама, гајњача и алунитална земљишта.

Мање су погодна лесивирана земљишта, а лоша су јесено-боје и Јовгозеласта земљишта.

Такође су неповољна застрашена и Јубитка земљишта.

Тешка и влажна земљишта су хладнија, тешко се обрађују и обрада је могућа само у одређено време. Уколико се не примењују благовремена обрада, воћке развијају плитак корен, осетљивије су лети према суши, а зими према мразу.

Лака земљишта су редовно топла. Уколико се редовно обавља ђубрење и наводњавање воћке добро напредују, дају добар квалитет плодова, а и раније сазревају.
БИОТЕХНОЛОШКЕ ОСНОВЕ ВОЂАРСТВА

ВОЂКЕ И КЛИМА

Клима представља скуп метеоролошких чинилаца неког подручја карактеристичних за дуже временско раздобље.

Како се активност вођака одвија унутар две, физички различите средине – у приземном слоју ваздуха, атмосфери и горњим слојевима земљишта, које подједнако значајно утичу на пораст и развиће вођака, те ће се посебно обрадити елементи климе, приземног слоја ваздуха и климе земљишта.

На климу атмосфере једног краја незнатно утиче човек и није могуће поправити је и учинити прикладном за гајење вођака ако је она неповољна. Што значи да се климатски услови атмосфере врло често јављају као ограничавајући чинилац у организовању вођарске производње.

С друге стране, на побољшање климе земљишта може се значајно утицати низом агroteхничких мера (наводњавањем, оводњавањем, застирањем земљишта итд.).

За живот вођака најзначајнији су следећи климатски елементи: светлост, топлота, вода и влажност, и ветар.

Слика 3 – Вођке (као и друге биљке) расељу у два јермостора: средине: 1) ваздухом јермостор, наеземном делу и 2) јермоземном делу – јермоземном слоју земљишта. Наземни делови је хабитус, а јермоземни, коренова мрежа.

СВЕТЛОСТ

Светлост служи вођкама као директан извор енергије, за процес фотосинтезе и као извор топлоте, неопходан за нормалан ток других физиолошких процеса.
Свећа 2% сунчеве светлости која падне на лист воћке се апсорбује, претварајући се у хемијску енергију угленикових и других јединица, док се највећи део светлости одбија и претвара у топлотну енергију (Odier, 1978).

 Воћке су изразите фототифне биљке (љубитељи светлости), што се види из њихове грађе, развијености круне, распореда грана, положаја гранчица, распореда лишћа и уопште целе њихове архитектуре, којом су прилагођене да максимално користе светлост. Она утиче на воћке својим интензитетом, квалитетом, трајањем и периодичношћу осветљавања.

Светлост допире на разна места на Земљиној површини у различитим јачинама. Најмања је на полутару, а најзабележива на поливима. На Земљину површину сунчева светлост допире као директна и дифузна. Део директне сунчеве светлости, кад је атмосфера преобраћа се у дифузну. За развој воћака корисна је и једна и друга светлост. Међутим, директна сунчева светлост је од већег физиолошког значаја за већину врста воћака од дифузне.

Тако на пример: јабука постиже оптимум фотосинтезе при интензитету инсолације од 12.000 лукса; винова при инсолацији од 16.000 до 71.000 лукса итд.

По облачном времену и у сенци делује само дифузна светлост.

Сунчева светлост је неопходна за пораст младара и грана, за диференцијацију пупољака у родне, за обојеност и квалитет плодова. Мада је облик круне воћака зависан од генетских фактора, светлост такође врло значајно утиче, како на њен облик, тако и на њену развијеност, функцију лишћа, формирање појединих грана, размештај родних гранчица, одржавање плодова, квалитет и трајањност плодова итд.

Светлост, као еколошки фактор се не може једнозначно појачати или смањити, али се деловање светлости може у извесној мери регулисати, и то посредним путем, мењајући јачину осветлениости размаком садње, обликом круне, резидбом, правцем редова, избором рељефа и експозиције и другим мерама које пружају повољније услове за боље осветљавање свих делова круне воћака.

Интензитет светлости у воћњаку зависи и од положаја засада (отворени положаји добијају више светлости, него они у увалама и уским долинама); од надморске висине смањење надморских висина интензитет светлости опада (због тога су на већим висинама плодови боље ободени); од рељефа и експозиције терена (најсупутнији су јужни положаји, а најслабије осучани северни); од ближине већих водених површине (на обалским подручјима мора, језера, долинама река, јачи је интензитет осветлениости јер се светлост одбија од водене површине и повећава општа осветлениост) и др.

Јака светлост је неопходна и корисна свим воћкама, а потребе за њом су различите у зависности од врсте.

Тако на пример, коштичаве врсте воћака имају веће потребе за светлошћу од јабучастих.
У пракси се запажа да воћке у густом склопу, услед недостатка светлости расту више у висину, у основи, гране им огољавају, јаче је развијена круна са осветљене стране, формирају више танких, мало разгранатих лепораста, имају знатно мање цветних пупољака, лишће је танко, ситно и бледо, троши више органских материја, него што може да их створи фотосинтезом.

Имајући све наведено у виду, воћар је дужан да настоји у воћарској пракси да постигне оптималне услове осветљености воћака.

ТОПЛОТА – температура

Од климатских елемената највећи значај за гајење воћака има температура. Њоме су регулисане многобројни биохемијски и физиолошки процеси не само код воћака већ и у земљишту.

То је један од фактора растења и развића воћака. Основне животне функције – фотосинтеза, дисање, транспирација, зимско миравање, апсорбовање минералних материја код воћака су у директној зависности од температуре.

Температура доприноси отпорности воћака према мразу и суши, а такође делује на хемијске, физичке и микробиолошка процесе у земљишту.

Сви ови врло сложени процеси се одигравају између температурних кардиналних тачака (минимума и максимума).

Велика су варирања, не само по врстама већ и по сортама, у погледу захтева за овим температурним кардиналним тачкама. У природи је сваке воћке да се на одређен начин понаша пема температурном режиму. Воћке су то својство у својој еволуцији усталиле.

Тако, на пример: јабука може да живи на температурама између +50 и -45°C, али успешна производња јабуке може да се организује од +35 до -25°C; шљива може да живи на температурама између +50 и -56°C, а успешна производња шљиве може се остварити у границама од +35 до -25°C; неке врсте jazoda успевају на температури од +37,8 до -52°C, а неке у границама од +46,1 до -5°C, итд.

Међу листопадним воћкама, јабука и вишња захтевају најмање топлоте, затим шљива, крушка, трешња, дуња, кајсија, орах, бресква, бадем, маслина и смоква, (Šit, 1940, 1952).

Варијабилност у потребама за топлотом постоји и у оквиру исте врсте, односно рода. Тако нпр. јабука M. baccata подноси врло ниске, негативне температуре (-50°C), док M. pumila, као врста јужних крајева, већ значајно страда при температурі од -25°C.

Разне врсте воћака имају различите потребе за топлотом (таб. 8).
Таб. 8 — Просечне суме температура за цветање неких воћака (*Paggrenpol*)

<table>
<thead>
<tr>
<th>врста воћака</th>
<th>температурна сума (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>огроzd</td>
<td>229</td>
</tr>
<tr>
<td>рибизна</td>
<td>278</td>
</tr>
<tr>
<td>кајсија</td>
<td>293</td>
</tr>
<tr>
<td>трешња</td>
<td>314</td>
</tr>
<tr>
<td>шљивиа</td>
<td>321</td>
</tr>
<tr>
<td>вишња</td>
<td>327</td>
</tr>
<tr>
<td>рескавиа</td>
<td>373</td>
</tr>
<tr>
<td>орах</td>
<td>435</td>
</tr>
<tr>
<td>дуња</td>
<td>539</td>
</tr>
<tr>
<td>малина</td>
<td>625</td>
</tr>
</tbody>
</table>

Различите врсте воћака такође различито реагују и према апсолутним минималним температурама, које у зависности од учесталости појављивања могу изазивати измрзавање делова или целе воћке. Зато се температуре називају критичним (таб. 9).

Таб. 9 — Критичне ниске температуре за поједине врсте воћака (*Миљковић, 1991*)

<table>
<thead>
<tr>
<th>врста воћака</th>
<th>критичне температуре (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>лимун</td>
<td>-3 до -4</td>
</tr>
<tr>
<td>паранца</td>
<td>-4 до -6</td>
</tr>
<tr>
<td>мандарина</td>
<td>-6 до -12</td>
</tr>
<tr>
<td>маслина</td>
<td>-10 до -15</td>
</tr>
<tr>
<td>смоква</td>
<td>-10 до -18</td>
</tr>
<tr>
<td>трешња</td>
<td>-18 до -22</td>
</tr>
<tr>
<td>брескава</td>
<td>-20 до -24</td>
</tr>
<tr>
<td>орах</td>
<td>-20 до -29</td>
</tr>
<tr>
<td>бадем</td>
<td>-20 до -23</td>
</tr>
<tr>
<td>кајсија</td>
<td>-20 до -25</td>
</tr>
<tr>
<td>лешник</td>
<td>-26 до -30</td>
</tr>
<tr>
<td>крушка</td>
<td>-20 до -30</td>
</tr>
<tr>
<td>вишња</td>
<td>-25 до -30</td>
</tr>
<tr>
<td>дуња</td>
<td>-30</td>
</tr>
<tr>
<td>јабука</td>
<td>-25 до -35</td>
</tr>
<tr>
<td>шљивиа</td>
<td>-35</td>
</tr>
</tbody>
</table>

Осетљивост воћака према ниским температурама различити је у појединим периодима године, односно фазама вегетације.
Таб. 10 – Утицај ниских температура (-21°C) на измрзавање цветних пунољака сорти воћака у условима Чачка (Евика Мрадишић и сор., 1987, 1988)

<table>
<thead>
<tr>
<th>врста – сорта</th>
<th>% измрзлих цветних пунољака</th>
</tr>
</thead>
<tbody>
<tr>
<td>ЈАБУКА</td>
<td></td>
</tr>
<tr>
<td>мелозе</td>
<td>11,11</td>
</tr>
<tr>
<td>златни делишес</td>
<td>14,89</td>
</tr>
<tr>
<td>ричаред</td>
<td>27,90</td>
</tr>
<tr>
<td>ред грив нојман</td>
<td>11,11</td>
</tr>
<tr>
<td>старкримсон</td>
<td>55,55</td>
</tr>
<tr>
<td>чачанска позна</td>
<td>2,13</td>
</tr>
<tr>
<td>ред јонатац</td>
<td>14,51</td>
</tr>
<tr>
<td>КРУШКА</td>
<td></td>
</tr>
<tr>
<td>дрсвушка</td>
<td>0,00</td>
</tr>
<tr>
<td>вилијамовка</td>
<td>3,77</td>
</tr>
<tr>
<td>моретнијева</td>
<td>18,96</td>
</tr>
<tr>
<td>красанка</td>
<td>4,26</td>
</tr>
<tr>
<td>јапанска шарена</td>
<td>19,04</td>
</tr>
<tr>
<td>херко</td>
<td>28,00</td>
</tr>
<tr>
<td>јапанска лепотица</td>
<td>0,00</td>
</tr>
<tr>
<td>јапанско злато</td>
<td>4,16</td>
</tr>
<tr>
<td>калуђерка</td>
<td>11,36</td>
</tr>
<tr>
<td>фетелова</td>
<td>4,47</td>
</tr>
<tr>
<td>боскова бочица</td>
<td>4,00</td>
</tr>
<tr>
<td>ШЉИВА</td>
<td></td>
</tr>
<tr>
<td>руттенштетер</td>
<td>13,50</td>
</tr>
<tr>
<td>стенли</td>
<td>17,20</td>
</tr>
<tr>
<td>калифорнијска плава</td>
<td>15,70</td>
</tr>
<tr>
<td>италијанка</td>
<td>2,90</td>
</tr>
<tr>
<td>аженка 707</td>
<td>6,40</td>
</tr>
<tr>
<td>президент</td>
<td>4,80</td>
</tr>
<tr>
<td>шимерова рана</td>
<td>11,60</td>
</tr>
<tr>
<td>БРЕСКИВА</td>
<td></td>
</tr>
<tr>
<td>спринг голд</td>
<td>70,66</td>
</tr>
<tr>
<td>ред хап</td>
<td>56,94</td>
</tr>
<tr>
<td>ред хевен</td>
<td>51,47</td>
</tr>
<tr>
<td>крст хевен</td>
<td>35,51</td>
</tr>
<tr>
<td>елберга</td>
<td>40,67</td>
</tr>
</tbody>
</table>

Тако, на пример, према подацима Wast.-Edelfsona, код јабуке отворени цветови измрзавају на температурама од -1,65°C до -2,20°C, а заметнути плодови на температурама од -1,1°C до -1,6°C; док код трешње и за цветање и за заметнуте плодове критичне температуре су од -0,55 до -2,2°C. Из овога би се могло закључити (по истом аутору) да цветови воћака страдају на температурама од -0,55 до -3,5°C, док тек
Заметнути плодови показују већу осетљивост и измрзавају на температурама од -1 до -2,2°C.

Сл. 4 – Оштећена од ниских негативних температура: (горе лево) оштећени срасни гео гране брексве; (горе десно) оштећен илош јабуке; (доле лево) оштећени илодови крушка; (доле десно) паје оштећене од негативних температура, већ је то оштећење кајсије од айолексије.

И апсолутне максималне температуре су неповољне за воће, пре свега, зато што изазивају слабљење биохемијских и физиолошких процеса, па чак изазивају и престанак стварања организацких материја.

По неким ауторима температуре изнад +40°C, штетно делују на биохемијске процесе, на тај начин што стварају веће количине материја токсиног карактера, које инактивирају процесе у клеткама. Још штетније су температуре изнад +50°C јер доводе до коагулације протоплазме.

Високе температуре као и ниске се неповољно одражавају у свим фазама годишњег циклusa. Ако воће не проведу одређен број часова при температури испод -7°C у зимском периоду, у пролеће ће доћи до поремећаја у одвијању појединих фаза (кретање вегетације, цветање). Уколико дође у зимском периоду до пролога топлих заздужних маса (изнад 7°C) и такво стање се задржи недељу дана, активирају се цветни лупољаци, па и камбијум, нарочито са југозападне стране, што смањује отпорност на ниске негативне температуре. Ова појава је најчешћа код воћака с кратким периодом биолошког мировања (бадем, кајсија).

Високе температуре су неповољне и у фази цветања воћака, јер доводе до асушивања жида што знатно смањује оплодњу, а time и редност доводе у питање. На ову појаву врло осетљиво реагује трешња сорте, гермердорфска.
Таб. 11 - Развој цветних пупољака јабуке (златни делишес и црвен делишес) и у том периоду критичне температуре (°C)*

<table>
<thead>
<tr>
<th>Могуће критичне T_b</th>
<th>-8,9</th>
<th>-8,9</th>
<th>-5,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне T_b за око 10%</td>
<td>-9,4</td>
<td>-7,8</td>
<td>-5,0</td>
</tr>
<tr>
<td>Критичне T_b за око 90%</td>
<td>-17,0</td>
<td>-12,0</td>
<td>-9,4</td>
</tr>
<tr>
<td>Датум</td>
<td>20. март</td>
<td>3. април</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Могуће критичне T_b</th>
<th>-2,8</th>
<th>-2,8</th>
<th>-2,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне T_b за око 10%</td>
<td>-2,8</td>
<td>-2,2</td>
<td>-2,2</td>
</tr>
<tr>
<td>Критичне T_b за око 90%</td>
<td>-6,1</td>
<td>-4,4</td>
<td>-3,9</td>
</tr>
<tr>
<td>Датум</td>
<td>3. април</td>
<td>8. април</td>
<td>11. април</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Могуће критичне T_b</th>
<th>-2,2</th>
<th>-1,7</th>
<th>-1,7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне T_b за око 10%</td>
<td>-2,2</td>
<td>-2,2</td>
<td>-2,2</td>
</tr>
<tr>
<td>Критичне T_b за око 90%</td>
<td>-3,9</td>
<td>-3,9</td>
<td>-3,9</td>
</tr>
<tr>
<td>Датум</td>
<td>18. април</td>
<td>25. април</td>
<td></td>
</tr>
</tbody>
</table>

1 - Почетак букрења пупољака
2 - Интензивно букрење пупољака
3 - Појава „миштих“ ушије
4 - Појава црвено-врх пупољака
5 - Разрастање пупољака у цваст
6 - Појава „болона“
7 - Почетак цвећања
8 - Пуно цвећање
9 - Прецветање

* Приредили С. Булатовић, Евица Мратинић, 1996.
Таб. 12 - Развој цветних пуцољака крушке (виљамовка, анжујка) и у том периоду критичне температуре (°C).*

<table>
<thead>
<tr>
<th>Могуће критичне Т°</th>
<th>-7.8</th>
<th>-5.0</th>
<th>-4.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне Т° за око 10%</td>
<td>-9.4</td>
<td>-6.7</td>
<td>-4.4</td>
</tr>
<tr>
<td>Критичне Т° за око 90%</td>
<td>-18.0</td>
<td>-14.0</td>
<td>-9.4</td>
</tr>
<tr>
<td>Датум</td>
<td>23. марта</td>
<td>31. марта</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Могуће критичне Т°</th>
<th>-2.2</th>
<th>-1.7</th>
<th>-1.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне Т° за око 10%</td>
<td>-3.9</td>
<td>-3.3</td>
<td>-2.8</td>
</tr>
<tr>
<td>Критичне Т° за око 90%</td>
<td>-7.2</td>
<td>-5.6</td>
<td>-5.0</td>
</tr>
<tr>
<td>Датум</td>
<td>5. април</td>
<td>9. април</td>
<td>14. април</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Могуће критичне Т°</th>
<th>-1.7</th>
<th>-1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне Т° за око 10%</td>
<td>-2.2</td>
<td>-2.2</td>
</tr>
<tr>
<td>Критичне Т° за око 90%</td>
<td>-4.4</td>
<td>-4.4</td>
</tr>
<tr>
<td>Датум</td>
<td>18. април</td>
<td>25. април</td>
</tr>
</tbody>
</table>

1- Почетак буријеног буцољака
2- Интензивни буријен буцољак
3- Појава "лазићу" зацрта
4- Појава црвеног ореха буцољака
5- Разрастање буцољака у цвесту
6- Појава "базола"
7- Почетак цвестија
8- Пуно цвестије

* Приређено С. Бугарићем, Енц. Мрсалић, 1996.
Таб. 13 - Развој цветних пупољака шљиве у том периоду критичне температуре (°C)

<table>
<thead>
<tr>
<th>Могуће критичне T°C</th>
<th>13. марта</th>
<th>20. марта</th>
<th>27. марта</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне T°C за око 10%</td>
<td>-10,0</td>
<td>-8,3</td>
<td>-6,7</td>
</tr>
<tr>
<td>Критичне T°C за око 90%</td>
<td>-18,0</td>
<td>-16,0</td>
<td>-14,0</td>
</tr>
<tr>
<td>Датум</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1. март</td>
<td>2. март</td>
<td>3. март</td>
</tr>
<tr>
<td>Могуће критичне T°C</td>
<td>3. април</td>
<td>8. април</td>
<td>12. април</td>
</tr>
<tr>
<td>Критичне T°C за око 10%</td>
<td>-4,4</td>
<td>-5,0</td>
<td>-2,8</td>
</tr>
<tr>
<td>Критичне T°C за око 90%</td>
<td>-8,9</td>
<td>-3,3</td>
<td>2,8</td>
</tr>
<tr>
<td>Датум</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4. април</td>
<td>5. април</td>
<td>6. април</td>
</tr>
<tr>
<td>Могуће критичне T°C</td>
<td>16. април</td>
<td>23. април</td>
<td></td>
</tr>
<tr>
<td>Критичне T°C за око 10%</td>
<td>-2,8</td>
<td>-1,1</td>
<td></td>
</tr>
<tr>
<td>Критичне T°C за око 90%</td>
<td>-2,2</td>
<td>-2,2</td>
<td></td>
</tr>
<tr>
<td>Датум</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>7. април</td>
<td>8. април</td>
<td></td>
</tr>
</tbody>
</table>

1- Почењак бубрења пупољака
2- Пољаца црвених врха
3- Пољаца "база ко"
4- Почењак цветања
5- Пуно цветање
6- Почењак бреквења
7- Брезвења
8- Почењак вореске лохе

Проранић С. Булатовић, Експ. Мраташ, 1996.
Таб. 14 - Развој цветних пунољака бреске и у том периоду критичне температуре (°C)

<table>
<thead>
<tr>
<th>Могуће критичне T°</th>
<th>-5,0</th>
<th>-6,1</th>
<th>-5,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне T° за око 10%</td>
<td>-7,8</td>
<td>-15,0</td>
<td>-13,0</td>
</tr>
<tr>
<td>Критичне T° за око 90%</td>
<td>-17,0</td>
<td>-19,0</td>
<td>-14,0</td>
</tr>
<tr>
<td>Датум</td>
<td>7. марта</td>
<td>16. марта</td>
<td>19. марта</td>
</tr>
</tbody>
</table>

Могуће критичне T°
Критичне T° за око 10%
Критичне T° за око 90%
Датум

- Лачетак будења Џубољака
- Лачетак извора врха
- Лачетак "бокина"
- Лачетак цветних

- Путно цревишаре
- Почетак бреживашитне
- Предизвикате

Печатан у С. Благоеву, Енчо Мостарчић, 1999.
Таб. 15 - Развој цветних пуполака кајсије и у том периоду критичне температуре (°C)

<table>
<thead>
<tr>
<th>Могуће критичне температуре</th>
<th>-5,0</th>
<th>-9,4</th>
<th>-18,0</th>
<th>8. марта</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне температуре за око 10%</td>
<td>6,7</td>
<td>4,4</td>
<td>7,2</td>
<td>22. марта</td>
</tr>
<tr>
<td>Критичне температуре за око 90%</td>
<td>13,0</td>
<td>-10,0</td>
<td>-2,8</td>
<td>28. марта</td>
</tr>
<tr>
<td>Датум</td>
<td></td>
<td>16. марта</td>
<td>4. април</td>
<td></td>
</tr>
</tbody>
</table>

1- Почелци буђења буђењака 5- Пуно цвење
2- Појава црвеног врха 6- Почелци прецветовања
3- Појава "базона" 7- Прецветовање
4- Почелци цвења
Таб. 16 - Развој цветних пупољака трешње (бинг, ланберт) и у том периоду критичне температуре (°С)

<table>
<thead>
<tr>
<th>Датум</th>
<th>5. април</th>
<th>9. април</th>
<th>14. април</th>
</tr>
</thead>
<tbody>
<tr>
<td>Надморска висина</td>
<td>23. марта</td>
<td>31. марта</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Могуће критичне температури (°С)</th>
<th>7,8</th>
<th>5,0</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне температури за око 10%</td>
<td>-9,4</td>
<td>-6,7</td>
<td>-4,4</td>
</tr>
<tr>
<td>Критичне температури за око 90%</td>
<td>-18,0</td>
<td>-14,0</td>
<td>-9,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Датум</th>
<th>18. април</th>
<th>25. април</th>
</tr>
</thead>
<tbody>
<tr>
<td>Надморска висина</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Могуће критичне температури (°С)</th>
<th>-2,2</th>
<th>-1,7</th>
<th>-1,7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне температури за око 10%</td>
<td>-3,9</td>
<td>-3,3</td>
<td>-2,8</td>
</tr>
<tr>
<td>Критичне температури за око 90%</td>
<td>-7,2</td>
<td>-5,6</td>
<td>-5,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Датум</th>
<th>7. април</th>
<th>8. април</th>
</tr>
</thead>
<tbody>
<tr>
<td>Надморска висина</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Могуће критичне температури (°С)</th>
<th>-1,7</th>
<th>-1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Критичне температури за око 10%</td>
<td>-2,2</td>
<td>-2,2</td>
</tr>
<tr>
<td>Критичне температури за око 90%</td>
<td>-4,4</td>
<td>-4,4</td>
</tr>
</tbody>
</table>

Датум		

Надморска висина		

- Почењак бућења Јубиљанака
- Појава црвеног врха
- Појава "талови" (1. април)
- Почењак цветања
- Пуно цветање
- Почењак јрециштавања
- Прециштавање
- Почењак Јоркота Ђоуча

Приредила: С. Булатовић, Еване Мргановић, 1996.
Осим тога високе температуре у току лета изазивају ожењине на деблу, рамсним гранама, плодовима и лицину.

Како врло остврле према високим температурама истичу се врсте: огрозд, крушка, шљива и орах.

Visoke temperature при крају лета су неповољне и због смањене трајањности плодова јер успоравају фотосинтезу и акумулацију органских материја, а поштепено транспирацију и еванготранспирацију.

Температура земљишта утиче на сложене процесе у земљишту и аспорпцију моћ корена, што се одражава и на опште стање вође. У зимском периоду често долази до оштећења корена или његових делова. Због тога је познавање термичких граница, у оквиру којих се креће температура земљишта на разним дубинама, од великог практичног значаја.

Температура земљишта је често у току лета и за 20°C нижа од температуре ваздуха, док је зими редовно виша. Годишњи ход температуре земљишта има један максимум и један минимум. Максималне температуре су у јулу или августу, а минимальне у јануару или фебруару. Највећа су температурна колебања на површини и опадају са дубином.

Таб. 17 - Границе и најчешће вредности апсолутних максималних и минималних температуре земљишта на разним дубинама (1951-1975) у °C (Одбореци, 1970)

<table>
<thead>
<tr>
<th>дубина (cm)</th>
<th>апсолутни максимум</th>
<th>апсолутни минимум</th>
</tr>
</thead>
<tbody>
<tr>
<td>граничне вредности</td>
<td>најчешће вредности</td>
<td>граничне вредности</td>
</tr>
<tr>
<td>2</td>
<td>33,3–60,0</td>
<td>40–50</td>
</tr>
<tr>
<td>5</td>
<td>28,4–56,8</td>
<td>35–45</td>
</tr>
<tr>
<td>10</td>
<td>26,5–48,9</td>
<td>30–40</td>
</tr>
<tr>
<td>20</td>
<td>21,6–38,8</td>
<td>25–35</td>
</tr>
<tr>
<td>30</td>
<td>19,4–34,0</td>
<td>25–35</td>
</tr>
<tr>
<td>50</td>
<td>19,0–31,0</td>
<td>20–30</td>
</tr>
<tr>
<td>100</td>
<td>20,0–28,6</td>
<td>20–25</td>
</tr>
</tbody>
</table>

ВОДА

Поред светлости и топлоте вођа спада у најважније климатске чиниоце за биљни свет и за вође, а има и посебан значај у физиолошком и еколошком погледу. Физиолошки значај воде огледа се пре свега у чињеници да се основни животни процеси у биљној хелији не могу ни замислити без њеног присуства. Она је саставни део протоплазме, 75–90% као структурна компонента хелије.
Вода је дисперзиони средина за протоплазматичне колоиде, раствараич и транспортно средство за растворене материје и учењу у многим биохемијским и метаболичким реакцијама у бијлој ћелији (оксидација липида, угљених хидрата итд.). Вода одржава тургидност ткива воћке. Њен довољно висок садржај је неопходан предуслов за одржавање нормалног интензитета процеса размене материја у биљном организму.

Процес фотосинтезе, као један од основних физиолошких процеса врши се само уз присуство воде, која непосредно учењује као извор водоника. Вода непрекидно струје кроз воћку, транспирштући преко надземних делова биљке, уз истовремено испаравање нових количина кореновим системом и на тај начин регулише температуру ортане, односно воћке.

Целокупан процес промета воде (примање – спровођење – расходовање) представља водни режим било које биљке, што у широм смислу значи учење воде у њим физиолошким процесима. Водена фаза у биљни протеже се од коренових драпица до епидермиса листва, непрекидно противашући све активне ћелије ткива биљног организма. Благопарећи оваквом садржају и промету воде у биљци, остварује се јединство воћке и земљишта и узајамна веза воћке са околном средином.

Зато у животу воћке, (као и осталих гајених биљака) где је циљ гајења принос чељу факторима који одређују његову висину, најважније место припада водном режиму.

Неусклађеност између поменутих основних елемената водног режима воћке може довести до водног дефицитага.

У недостатку воде плодови отпадају, цветни пупољци се не формирају, смањује се прираст вегетативне масе, (круне и корена) резерве хранљивих суставци су мање, па се смањује отпорност воћака према ниским негативним температурама.

Заступљеност воде у воћкама је око 50%. У појединим њиховим органима плодовима) она се креће и до 90%, па је разумљиво зашто су за обилан род и добар квалитет плода неопходне велике количине воде.

Вода се налази у средини у којој се воћке гаје – у земљишту и ваздуху, па се говори о влажности земљишта и релативној влажности ваздуха.

 Воћке подмржују своје потребе за водом из падавина (киша, снег, магла, роса) и наводњавањем. Вода у ваздуху има посредан значај за воћке, јер може допринети да се смањи транспирација и тиме воћкама олакша опстанак уколико потребе воћака за водом у земљишту нису довољне.

Потребе воћака за водом варирају у зависности од врсте, сорте, старости зелада, родности, периода и фазе вегетације. За нормално успевање и редовно, и обилно плодоношење, јабука захтева веће количине воде него друге воћке, затим слива, па орах, брескв, кајсија, вишња и бадем.
Младо стабло троши сразмерно више вода него стабло на почетку плодоношења. Стабло у роду троши више вода од онова које није родило.

Потрошња воде је у периоду вегетације већа него током миравања. Нарочито су потребне веће количине воде за вегетативни прираст и растење плодова. Недостатак воде у другој половини вегетације посебно је неповољан за квалитет плодова. У то време може доћи и до отпадања плодова ако је дефицит воде велики.

Табл. 18 — Преглед усисне моћи коренових длачица у атмосферама

<table>
<thead>
<tr>
<th>врста воћака</th>
<th>атмосфера</th>
</tr>
</thead>
<tbody>
<tr>
<td>јабука</td>
<td>7,6-17,3</td>
</tr>
<tr>
<td>крушка</td>
<td>9,9-18,5</td>
</tr>
<tr>
<td>трешња</td>
<td>11,1-20,4</td>
</tr>
<tr>
<td>вишња</td>
<td>–21,7</td>
</tr>
<tr>
<td>бресквава</td>
<td>11,6-12,7</td>
</tr>
<tr>
<td>кајица</td>
<td>8,4-13,7</td>
</tr>
<tr>
<td>шљивава</td>
<td>–11,9</td>
</tr>
</tbody>
</table>

Недостатак воде у земљишту је највижљивији на лишћу које тада почине да губи тургор, вене, и у најтежим случајевима опада.

Кад воћке услед недостатка воде почну да вену и у таквом стању остају трајно и поред обезбеђења влаге, тургор им се не успоставља — тај момент се назива коефицијент свемулошти.

 Воћке се снабдевају водом из земљишта апсорцијом помоћу коренових длачица. Усисна моћ тих длачица зависи пре свега од саме природе воћке. Она је неједнака по врстама, и сортама воћака.

Од укупне усисане количине воде, воћке задрже у ткивима мање од 1%, а остатак испари путем транспирације.

Велике потребе воћака за водом могу се видети и по транспирационом коефицијенту, који се креће од 200 до 500, а за плодове достизе и до 1000. У целом вегетационом периоду јабучасте врсте воћака транспирашу 198 mm, а коштиче 165 mm.

Потребе воћака за водом се повећавају са порастом средње вегетационе температуре (шаб. 19).

Када се у току вегетације анализира распоред падавина, тада највећу пажњу треба обратити на рокове, кад воћке имају веће потребе према вази. То је у летњим месецима, када уз повољне температуре воћке имају интензивну фотосинтезу, транспирацију, пораст летораста, диференцирање светланих пупољака и брз пораст и дозревање плодова.
Таб. 19 - Потребе воћака за водом (Kemmer, Schults)

<table>
<thead>
<tr>
<th>Средња темп. ваздуха за време вегетације (°C)</th>
<th>Годишње потребе падавина (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Јабука</td>
</tr>
<tr>
<td>14,8</td>
<td>610</td>
</tr>
<tr>
<td>16,0</td>
<td>700</td>
</tr>
<tr>
<td>16,7</td>
<td>760</td>
</tr>
<tr>
<td>20,4</td>
<td>1060</td>
</tr>
</tbody>
</table>

Уколико у тим фазама није повољан распоред падавина, мора се интервенисати наводњавањем.

При недостатку влаге у земљишту, мање је воде у ћелијама, а и недовољан је зоток кисеоника, јер се стоме затварају и тада се сложенија једињења разлажу на једноставнија, а резервне материје се троше при дисању.

Као последица таквог стања смањује се отпорност према ниским, негативним температурама и долази до општих поремећаја који могу да изазову потпуно утиснуће воћке.

Честа је и појава да при јачој суши лишене одузима воду из ткива граници, а на тај начин се умањује активност камбијума и слаби секундарно дебљање (Chandler, 1925).

<table>
<thead>
<tr>
<th>Месец</th>
<th>Кајсија</th>
<th>Трешња</th>
<th>Вишња</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>сува матер.</td>
<td>вода</td>
<td>сува матер.</td>
</tr>
<tr>
<td>јануар</td>
<td>56,01</td>
<td>43,99</td>
<td>53,66</td>
</tr>
<tr>
<td>фебруар</td>
<td>55,11</td>
<td>44,89</td>
<td>51,68</td>
</tr>
<tr>
<td>март</td>
<td>49,86</td>
<td>50,14</td>
<td>44,76</td>
</tr>
<tr>
<td>април</td>
<td>48,03</td>
<td>51,97</td>
<td>43,58</td>
</tr>
<tr>
<td>мај</td>
<td>58,05</td>
<td>41,95</td>
<td>53,53</td>
</tr>
<tr>
<td>јун</td>
<td>80,23</td>
<td>19,77</td>
<td>78,32</td>
</tr>
<tr>
<td>јул</td>
<td>73,95</td>
<td>26,05</td>
<td>72,89</td>
</tr>
<tr>
<td>август</td>
<td>66,85</td>
<td>33,15</td>
<td>65,76</td>
</tr>
<tr>
<td>септембар</td>
<td>60,79</td>
<td>39,21</td>
<td>58,99</td>
</tr>
<tr>
<td>октомбар</td>
<td>54,90</td>
<td>45,10</td>
<td>52,82</td>
</tr>
<tr>
<td>новембар</td>
<td>54,18</td>
<td>45,82</td>
<td>53,67</td>
</tr>
<tr>
<td>децембар</td>
<td>54,02</td>
<td>45,98</td>
<td>52,95</td>
</tr>
</tbody>
</table>
Табела број 20 илуструје наведени цитат Chandler-а, где се као последица екстремно јаке суше, код испитиваних врста воћака у јуну, јулу и августу управо десило извлачење воде из ткива родних гранична од стране лишка.

Борба против суше врши се и избором подлоге, које боље подносе недостатак воде. Постоје врсте воћака које имају способности одупирања суши специфичним грађом корена. Овом особином одликују се: бадем, бресква, малина, цанарика, шљива, кајсија и нар.

Бадем је најотпорнији према суши захваљујући дубоком корену као и особини да при појави суше редуцира лишће, те тако спречава претерану транспирацију.

И претерана влажност није повољна за воћке. Она такође изазива слаб развој корена, његово прерано изумирање, продужава вегетацију, што доводи до лошег сазревања ткива при чему се повећава осетљивост према мразу, а добијају се и плодови слабијег квалитета.

Нарочито су неповољни они терени на којима се вода задржава, те због недостатка кисеоника долази до гушења (асфикације) корена.

Падавине (воћени шалози) су важан чинилац климе. Кишна, снег, магла, роса и град у најзначајнији облици па давина у наших крајевима.

Киша неповољно делује ако пада у време цветања, опрашишивања и оплођења воћака, јер отежава лет пчела, смањује температуру ваздуха и успорава клијавост полена.

Снег може да нанесе велике штете воћкама ако падне пре опадања лишћа. Тада често долази до ломљења грана. Међутим, у току зиме снежни покривач штити коренов систем воћака од измрзавања.

Магла и роса практично не утичу на количину па давина, али могу да користе или штете при гајењу воћака. Корисне су у сушном периоду године, јер овлаже земљу и воћке. Транспирација овлажених воћака је смањена јер мора прво да испара капљице росе са лишћа. Могу да буду и штетне јер подстичу образовање рђасте превлаке на покожици плода неких сорти, а и стварају повољне микроуслове за развој гљивичних болести.

Град је најчешће праћен олупом и штетно делује на воћке. Он не само да уништава род у години кад се појави, већ често и оштећује надземне органе па се последице санирају неколико година.

Влажност земљишта је компонента водног биланса земљишта. Проучавањем динамике влажности земљишта утврђено је да су најмање записи продуктивне влаге управо у површинском слоју земљишта до 10 cm. То је и разумљиво, јер је исправање овог слоја највеће.

Динамика влажности земљишта мења се под утицајем па давина.
Исиправање (евапорација) земљишта је такође компонентра водног баланса земљишта. Познавање евапорације земљишта је значајно за успешно гајење воћака, због наводњавања, јер при одређивању норми и рокова наводњавања, мора се узети у обзир и количина воде која испари.
Испаравање је у аридним подручјима веће него у хумидним.

ВЕТАР

Ветар или ваздушна кретања се јавља као разлика у ваздушном притиску. Сгустујања ваздуха иду из предела са већим барометарским притиском ка пределима са мањим.

Ветар је у већини случајева неповољан климатски чинилац за производњу воћа. Његов утицај зависи од јачине, праваца и учесталости, као и од физиолошког стања воћке у моменту појављивања.

Штетно дејство ветра је јаче уколико је његова брзина већа. Појава ветра у теку вегетације појачава транспирацију воћака 2 до 5 пута, исушује земљиште и ваздух, појачава ерозију, исушује жиг тучка, спречава лет пчела, изазива отпадање плодова пре туне зрелости, омета благовремено заштитно прскање воћака, потпомаже ширењу штеточина и често изазију и ломе воћке, изазива асиметрични развој куке.

У фази цветања неповољни су суви источни ветрови који убрзавају цветање и исушију жиг тучка, чиме ометају нормално оплођење, што се одражава на смањење резности.

Код нас у периоду вегетације преовладавају ветрови западног праваца. То је резултат да се врло често могу запазити врхови воћака, а понекад и читаве воћке нагнуте према истоку.

Дејство ветра је корисно у изузетним случајевима. Њиме се преноси полен и за тај начин доприноси опрашивању и оплођењу неких воћака (орах, лешник, кестен). Ветар спречава претерану влажност ваздуха, чиме се смањује појава гљивичних обољења, умањује опасност од позних пролећних мразева и сл.

Штетно дејство ветра може се знатно ублажити подизањем ветрозаштитних уناسева. Ови појасеви умањују брзину ветра, чиме се смањује транспирација и површинско земљишно испаравање за неколико пута.

ОРОГРАФИЈА

У орографске чинице убрајају се: надморска висина, рељеф (нагиб терена), позиција, као и близина већих водених површина.
НАДМОРСКА ВИСИНА

Надморска висина није чинилац који директно спречава гајење воћака. Она више долази до изражавају својим посредним деловањем на температуру средине и на њена колебања која не погодују већини врста воћака.

Положаји на великим надморским висинама нису погодни за гајење воћака због опасности од појаве позних пролећних мразева, као и раних јесенњих мразева и због ниских зимских температура и снажних ветрова. На великим надморским висинама обично су плодови воћака лоши јесен, а летораси чешће не дозревају потпуно. Од овог правила има и изузетака (таб. 21).

Таб. 21 – Физичко-хемијске особине плода аутохтоних сорти јабука гајених на различитим надморским висинама (Евандра Мрајанић, Т. Вушић, 1995)

<table>
<thead>
<tr>
<th>сорта</th>
<th>маса плода (g)</th>
<th>суша матер. (%)</th>
<th>ук. киселине (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000-1200 (m)</td>
<td>100 (m)</td>
<td>1000-1200 (m)</td>
</tr>
<tr>
<td>црвенокорка</td>
<td>120,60</td>
<td>70,30</td>
<td>19,40</td>
</tr>
<tr>
<td>дуњка</td>
<td>153,53</td>
<td>123,16</td>
<td>18,00</td>
</tr>
<tr>
<td>дренајка</td>
<td>45,38</td>
<td>97,19</td>
<td>17,70</td>
</tr>
<tr>
<td>црвенајка</td>
<td>88,94</td>
<td>69,05</td>
<td>17,60</td>
</tr>
<tr>
<td>дрнида</td>
<td>61,40</td>
<td>55,00</td>
<td>15,96</td>
</tr>
<tr>
<td>будимка</td>
<td>147,00</td>
<td>156,00</td>
<td>13,50</td>
</tr>
</tbody>
</table>

Са повећањем надморске висине смањује се температура ваздуха. То се одражава на касније кретање вегетације као и доциније пренесења свих осталих фенофаза, осим опадања лишка, које се јавља ранје, као последица раних јесенних мразева.
Сматра се да за сваких 200 м надморске висине почетак вегетације касни за око 4 до 6 дана (Милосављевић, 1984).

Врсте воћака различито реагују на надморску висину. Тако се према већини аутора воћке углавном могу успешно гајити до надморске висине:

3.000 m Јагода
2.000 m Рибизла
1.800 m Лешник и оскоруша
1.400 m Јабука и трешња
1.200 m Крушка и шљива, малина
900 m Орах
600 m Кестен, купина, кајсија
300 m Бресквас, маслина
Различито реагују и сорте у оквиру исте врсте на промену надморске висине. Тако нпр. на надморској висини од 1.000 m летње сорте јабуке се понашају као јесене, а јесене као зимске, док зимске сорте на тој висини најчешће не дозревају.

ПОЛОЖАЈ ТЕРЕНА

Положај терена према странама света утиче на светлост, температуру и атажност.

На јужним надморским висинама и географским ширинама погодније су јужне експозиције за успешно гајење воћака јер су најбоље осветљене, најтоплије и најсуње; а најслабије осветљене, најхладније и највлажније – северне. Остале експозиције чине прелаз између њих.

Обратно, на мањим надморским висинама и географским ширинама најпољује услове за гајење воћака пружају севернији положаји.

То су опште констатације, мада се поједине врсте, па и сорте исте врсте воћака, неједнако понашају, о чему се води рачуна за сваки конкретни локалитет.

Свака експозиција има своје повољне и неповољне особине, у зависности од тога у којем се подручју налазимо и које врсте воћака желимо да гајимо.

Северне експозиције се одликују мањим температурним осцилацијама и јевом релативном улажностном ваздуху, те су на њима воћке мање изложене суши.

Јужне експозиције се одликују уетлом топлотом, бољим осветљењем и јачом евапор-транспирацијом, те су на њима воћке угрожене суском.

Уопштено увезхи у хумидним подручјима, где је клима хладна, за воћњак треба бирати јужне, југозападне и југоисточне експозиције; у семиаридним и аридним подручјима, где је топла клима, северне и северозападне.

НАГИБ ТЕРЕНА

Нагиб (инклинација) терена је врло значајан у остваривању рентабилне производње у воћарству. Нагиб утиче на количину влаге, температуру и светлост терена. Утиче такође и на примену механизације и комуникације у воћњаку, као и на појаву ерозије.

Нагиб терена није ограничавајући фактор у организовању воћарске производње тако да се и терени са врло оштрим релјефом могу користити за подизање воћака.

Они се претходно морају припремити изграђивањем тераса. Облик и величина тераса зависи од нагиба. Терене до 3° није потребно терасирати. На површинама с падом од 3° до 9° сађење воћака се обавља по изохипсама -- контурно.
Терени с благим нагибом имају извесну предност над потпуно равним површинама. Та предност огледа се у израженијем струјању ваздуха, па је мања опасност од измрзавања. Струјање ваздуха зависи и од других чинилаца, пре свега од тога да ли се ради о отвореним или затвореним положајима.

Површине нагиба преко 9° се терасирају. Изградња тераса представља посебно побољшање терена за гајење воћака.

Терасама се даје контрапад од око 5% и пад по дужини 0,5–1%. Да би се извели вишкови воде са тераса, оне се морају прекидати на одређеним дужинама уз уређење канала за одвођење воде. Мрежа путева је тако постављена да омогућује улазак машина на терасе.

На врло великим нагибима није увек могућа примена механизације, ако при том круна воћака није у једној равни, у таквим је случајевима потребно да се терасе изграђују са повећаним међутерасним простором на коме се обавља садњење воћака. Равна површина тераса служи за пролаз машина.

Површине са нагибом од 5–9° није потребно терасирати. На њима је довољно изградити банкине.

Банкине су гледенома узвишења са каналима на горњој страни за прихватење дотеклих вода из међуспратова. Ширина банкина треба да је најмање 2,5 m, и мора да обезбеди пролаз машинама. Банкине се постављају у правим контурним линијама са дужинским падом 0,5–1%. Воћке се саде паралелно са банкинама, с редовима одмах уз банкине.

Ако је нагиб терена већи од 10–15% трошкови терасирања се знатно по-већавају.

Терени с нагибом изнад 30% нису погодни за гајење воћака.

ВЕЛИКЕ ВОДЕНЕ ПОВРШИНЕ

На погодност положаја за гајење воћака утичу и велике водене површине (мора, језера, велике реке).

Близина великих водених површин смањује велика температурна колебања, повећава релативну влажност ваздуха и на тај начин утиче на каснији почетак вегетације и фенофазе цветања у пролеће, а истовремено продужава вегетацију и омогућава боље дозревање плодова у јесен.

Незалежен водена површине, (Јадранско море, Егејско море, велика језера — Охридско, Преспанско; велике реке — Дунав), ублажавају зимске температуре и по-большавају климу тих подручја.

Многа од тих подручја управо и представљају значајне центре у производњи воћа.
Сл. 5 – Кружене воде
МОРФОЛОГИЈА ВОЋАКА

Воћке су као вишегодишње дрвенасте биљке цветнице у процесу филогенезе и онтогенезе створиле специфичне органе.

- Органи воћака се приметно разликују по врстама и по сортама. Међутим, они показују велику сличност у морфолошком, анатомском и физиолошком погледу.

Као и код осталих цветница органи воћака се деле на: вегетативне и генеративне.

Вегетативни органи служе за одржавање живота јединке и код воћака су диференцирани на: корен, стабло и лист.

Генеративни или фруктафикациони органи су органи за размножавање који омогућавају опстанак врсте. То су цвети, семе и йелод.

КОРЕН

Корен је подземни вегетативни орган воћака. Он неограничено расте врхом у земљиште. Радијално је симетрије, а код воћака је вишегодишњи и добро развијен.

Његова улога је многострука. Он учвршћује воћку у датом хранљивом простору и држи је у усправном положају. Из земљишта усисава воду и у њој растворене неорганске супстанце и спроводи их у стабло. Корен служи и као орган за складиштење органских супстанци, које сам синтетише (као што су неке аминокиселине, белачевине, липиди и др.) као и за вегетативно размножавање воћака.

Корен воћака може да води порекло од коренка клице (radicula embryo) и од адветивних пугољака.

У првом случају настаје тзв. генеративни — Јрави — премарни или главни корен који се јавља код воћака размножених семеном.
У другом случају настаје тзв. верешајеви корен, који је сендогеног порекла и јавља се код воћака вегетативно размножених (резницама, маграњем, од делова прва- вог корена и др.). Овај корен је секундарне грађе јер му је камбријални прстен настао искључиво од секундарног меристема, услед одсуства прокамбријума.

И један и други корен састоје се од главног и бочних коренова: првог, другог и „п”-тог скелетног реда.

Главна жила корена је продужетак дебла и зове се срежена жила.

У оба корена такође, према развијености срећемо два типа корена.

1. Скелетни и полускелетни чије су димензије 20 и више см у пречнику и дужине 0,3 до 14 м, који има механичку и спроводну улогу.
Пример од корена:

Слика 7 – Корен: "прави" незнатно мање: до 3 mm у пречнику и до неколико cm, и који има узисну апсорпцију улогу. У истим условима "прави" корен је јачи, виталнији, продире, дубље у земљиште и обезбеђују већу бујност, док "ађевени" плиће продире у земљиште и заузима мању површину.

<table>
<thead>
<tr>
<th>врста</th>
<th>простирање корена у дубину (m)</th>
<th>простирање корена у ширину (m)</th>
<th>највећа маса корена (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>јабука</td>
<td>3,0</td>
<td>6,0</td>
<td>10-75</td>
</tr>
<tr>
<td>крушка</td>
<td>4,0</td>
<td>5,0</td>
<td>30-90</td>
</tr>
<tr>
<td>дуња</td>
<td>2,0</td>
<td>2,0</td>
<td>20-60</td>
</tr>
<tr>
<td>домаћа шљива</td>
<td>1,0</td>
<td>3,0</td>
<td>15-35</td>
</tr>
<tr>
<td>цанарика</td>
<td>5,0</td>
<td>6,0</td>
<td>40-90</td>
</tr>
<tr>
<td>бресква</td>
<td>1,5</td>
<td>3,0</td>
<td>20-50</td>
</tr>
<tr>
<td>кајсна</td>
<td>1,5</td>
<td>3,0</td>
<td>20-50</td>
</tr>
<tr>
<td>трења</td>
<td>3,0</td>
<td>3,0</td>
<td>30-80</td>
</tr>
<tr>
<td>бадем</td>
<td>6,0</td>
<td>6,0</td>
<td>40-100</td>
</tr>
<tr>
<td>орах</td>
<td>8,0</td>
<td>8,0</td>
<td>40-100</td>
</tr>
<tr>
<td>рибизда</td>
<td>0,6</td>
<td>1,0</td>
<td>15-35</td>
</tr>
<tr>
<td>јагода</td>
<td>0,3</td>
<td>0,4</td>
<td>10-20</td>
</tr>
</tbody>
</table>
Развитак корена у хоризонталном или вертикалном правцу веома је неједнак и зависи од врсте и сорте, од типа воћњака, физичко-хемијских особина земљишта, висине подземних вода, старости воћњака, начина искоришћавања земљишта у воћњаку итд.

Већина воћњака корен развија претежно у ширину, уколико то омогућавају услови земљишта. На сувим и бесплодним земљиштима корен у свом хоризонталном развоју може 2–4 пута превазићи пречник, односно обим круне. С друге стране, тешка и збијена земљишта условљавају развијање дебелих и плићих скелетних жила.

Маса корена (око 2/3) се налази на дубини од 70 cm. Ова чињеница се мора за сваку воћну врсту посебно имати у виду при примени агротехничких мера: обрада земљишта, ђубрење, наводњавање итд.

Вегетативне подлоге, код којих је адвентивни корен, (нарочито јабуке и дуње) одликују се веома разгранатим, жиличастим кореном са безброј жилицом. Корен је умерено развијен, како у хоризонталном, тако и у вертикалном правцу. Основна маса корена вегетативних подлога ретко прелази дубину од 50 cm.

МИКОРИЗЕ У РИЗОСФЕРИ ВОЂАКА

У ризосфери воћака маса земљишта је прожета физиолошки активним кореном. Код највећег броја воћних врста (jabuka, крушка, шљива, вишња, бадем, агруми, све јагодасте врсте и др.), у том делу се развија специфична микрофлора од земљишних гљива, које су адаптирани на симбиотске живот са кореном воћака.

Тај симбиотски однос назива се микориза. Гљиве у тој заједници обезбеђују углавном азотну, а воћке угљенохидратну храну.

Према узајамној вези биљака, гљива и корена код воћака се разликују следеће микоризе:

1. Екриномикориза – када хифе гљива обухватају површину корена.
2. Ендохрофта – када хифе гљива пролиру у ткиво корена.
3. Ендо-екриномикориза – или прелазна микориза, када се хифе гљива налазе и на површини и у ткиву корена.
4. Перидомикориза – када се хифе гљива налазе у близини корена.
5. Псевдо-микориза – лажне микоризе.

Оптималнi услови за појаву и развој микориза су истовременi и оптималni услови успевања воћака.
КОРЕНОВ ВРАТ

Под кореновим вратом се подразумевава део стабла који чини прелаз између корена и стабла.

То је сужени део, место на којем хипокотил прелази у коренак и где се корен и стабло непосредно наслажају и анатомски везују.

Среће се код генеративно размножених воћака и потиче од хипокотиледоног стива килице. Одликује се развијеним вегетативним пунољацима (од којих настају избојци) и представља стадијно најмлађи део воћке.

Код вегетативно размножених воћака не постоји овакав коренов врат, већ тзв. тажени коренов врат, који се од правог кореновог врата разликује стадијски, а сличне је анатомске грађе и функције.

Улога кореновог врата је да служи као мост за прелаз органских материја у оба правца. У њему се такође врши нагомилавање и складиштење органских материја.

Поред ових физиолошких функција, коренов врат има и практичан значај: по њему се одређује дубина садње воћака; а код неких воћних врста служи и за размножавање награњем (код дуње, шљиве, јабуке).

С обзиром на велики садржај акумулираних хранљивих материја, као и то да је приступачно место на воћки, коренов врат је врло често изложен нападу различитих штетника, пре свега гладара (мишева, кунића, зечева и др.) од којих га морамо заштитити.

СТАБЛО

Стабло воћка је вегетативни орган који заједно са лишћем гради изданак. Оно је радијалне грађе и благодарећи апикалном меристему у врховима вегетационе хупе, може неограничено да расте. Стабло воћка се по правилу развија у ваздуху.

Стабло већине воћака се састоји од главне осовине настале од вођице (дебла), која најчешће расте вертикално навише и основних (скелетних, рамених) грана - крunci, које расту под извесним углом.

На стаблу већине дрвенастих воћака листови су спирално распоређени, а у тазуху листова налазе се пунољаци.

Интернодије могу бити дуже или краће од чега непосредно зависи растојање између суседних листова. Дужина интернодија је условљена врстом, односно сортом.

Стабло воћка је по правилу сажног дебла и крунк великих размера. То се постиже секундарним дебљањем које настаје радом камбијалног прстена.
Функција стабла воћака је, као и код већине биљака, да ксилемским елементима спроводи воду и у њој растворене неорганске материје из корена у лишће (асимилативним путем) флоеским путем у обрнутом смеру (асимилативним путем). Оно носи и излаже светлости лишће и цветове и повезује их у јединствен систем. Поред тога, стабло може да служи и за складиштење одређених резервних материја.

Сл. 8 – Архитектура стабла воћака: 1 – коренова мрежа, 2 – коренов врал, 3 – гебло, 4 – круна, 5 – гране ЈРВ. рега, 6 – гране другог рега, 7 – гране третег рега и 8 – вођица
Дебло

Дебло је усправни и неразгранати део стабла који се налази између корена, односно кореновог врата и првих рамених грана крune.

Оно има вишеструку улогу у животу воћака: повезује корен са круном, држи круну са свим њеним „теретом” у усправном положају, спроводи воду са раствореним материјама у оба правца. У паренихмским ћелијама дебла нагомилавају се резервне органске материје. Живе ћелије дебла дишу, а кроз лентицеле на кори дебла обавља се размена гасова.

Сл. 9 – Детаљ анатомске структуре дебла воћака у функцији транспорта минералних и органских материја. Вода и минералне материје се транспортују сувовим сножићима (9) – ксилемом (5), органска материја суворима цевима (7) – флоемом (3).

Према диференцираности дебла све дрвенасте врсте воћака се могу поделити у три групе:

1. Групу чине воћке без типичног дебла. Оне су у облику жабућа или шиба (frutex). Код њих се из корена развија више стабала, односно грана, обично јаче здравелих у приземном делу.

2. Овај тип стабла се среће код: рибизле, огрозда, боровнице, шипурка, сорти лепшина и др.
II пруцу чине воћке са мање или више развијеним деблом, које је обично праћено већим бројем изданака или избојака. Њихово стабло је у облику полужбуне или жолушаа (suffrutex).

Овај тип стабла се среће код дуње, већине сорти лешника, неких форми шипурака, неких сорти вишње, шљиве и др.

III пруцу чине воћке са снажно развијеним деблом и разгранатом круном. Оне су у облику сарабла или арбор (arbor).

Овај тип стабла се код највећег броја воћних врста: јабуке, крушка, трешње, бреске, шљиве, кајсије, ораха, кестена, неких сорти дуње и већине сорти вишња, агрума и др.

Код већине поменутих врста дебло може да се образује на три начина:
- од сорте (при калемљењу при земљи),
- од подлоге (при калемљењу у круну),
- од деблотворца (при двогубном калемљењу).

Дебло ових воћака се одликује висином, дебљином и правцем пружања.
Оно може бити: ниско (до 40 cm), полуниско (од 40 до 80 cm), полувисоко (80–120 cm) и високо (од 120 до 200 cm).

Висина дебла зависи од многобројних фактора; у првом реду од биолошке карактеристике врсте и сорте, услова средине, као и од жеље вођара.
У интензивним засадима дебло већине воћака је ниско до полуниско.

Разлог томе је у чињеници да ниско дебло испољава низ предности: краћи је пут за пролаз воде и минералних материја ка лишћу и органских материја у обрнутом правцу; мањи је утрошак организких и неорганских супстанци за образовање дебла; јачи је развитак круне; мања је изложеност дебла мразу, болестима и штетоницама; мање је отпадање плодова како због боље исхранености, тако и због слабијег утицаја штетног дејства ветра; лакше је и брже спровођење помотетичких мера (резидба, прскање, берба).

С друге стране, воћке са високим деблом омогућавају лакшу манипулацију по воћаку, бољу примену механизације, избегавање значајнијих штетења цветова од позних пролећних мразева, свођење штете од глодара само на дебло итд.

КРУНА

Круна код воћака је разгранат изданик, који се састоји од грана различите величине, на којима су распоређени пупољци, лишће, цветови и плодови. Она је носилац родности воћака.

Величина, структура и облик круне су условљени првенствено наследном основом врсте и сорте, бујношћу подлоге, дужином дебла, положајем, условима гајења, углом под којим се пружају основе скелетне гране, присуством или одсуством вођице и начином формирања.
Према начину формирања постоје два типа крune: Јирордан (слободан) и јебунасћа.

Природна крна може по облику бити: пирамисална, округла (котласта, пехараста) и јебунасћа (ампераста).

Сл. 10 – Графички приказ облика крune и висине стабла које више сорти шљеве
(Mirjana Bugajević, 1974)

Пирамисална крна се одликује централном скелетном грном (вођном), док код округла и јебунасће крune вођа одсуствује. Пирамисална крна може бити: врећенасћа, прва пирамисална, елажена, лијерна и побољшана лијерна. Она се среће код ораха, кестена, јабуке и шљеве.

Окуругла крна је карактеристична за бреску, кајсију, неке сорте шљиве и јабуке.
Жбунаста круна се формира код патуљастих воћака (куруксе, јабуке, лешника и вишње).

Природан тип круне, без обзира на облик, по правилу је густ, засећен и са малим бројем обрасцајућих грана које носе род. Због таквих карактеристика круне плодови не могу нормално да се развијају, принос је низак, а квалитет плодова незадовољавајући.

Вештачки облици круне се формирају готово код свих воћних врста и могу бити разноврсни (кордуне, палмете, чираки, облик слова „V“, облик вазе итд.). Вештачки облик круне мање или више одступа од природног, па захтева мању или већу интервенцију воћара.

Групи вештачких облика круне припада и тзв. Ђоложени (пушећи) облик круне. Назива се још арктички – минусијски тип круне због тога, што је карактеристичан за производњу у најсуровијим условима (Сибир, Канада), у којима је зими снег скоро потпуно покрива и на тај начин штити од измрзавања.

Постоје и арелазни (полуприродни) облици круне који имају просторан (троизмензионалан) распоред и развијају се уз извесну интервенцију човека. У овај тип круне спадају побољшана пирамидална круна и вретенаст жбун.

За вештачки и арелазни тип круне карактеристична је добра осветљеност, оптималан број обрасцајућих грана које доносе род, висок принос и одличан квалитет плода. Зато се у интензивној воћарској производњи ова два типа круне најчешће и користе.

ГРАНЕ И ГРАНЧИЦЕ

Гране представљају скелет круне. Централна грана, која се развија непосредно из дебла назива се воћица. На њој су спирално распоређене основе – рамене – првичне или гране I реда. На њима се налазе бочне - секундарне или гране II реда, на овима, гране III реда итд.

На овим гранама се при крајњем разграњавању образују многобројне гранчице. То су релативно најмлађи, а стадијно најстарији органи, од којих зависи обнова и продуктивност крошње воћака.

Све те гранчице могу да се поделе у зависности од врсте пупољака које носе, на две велике групе: рогне и нерогне.

Рогне гранчице носе тзв. генеративне – цветне и мешовите пупољке из којих се образују цветови и плодови са одговарајућим лишћем.

Нерогне гранчице носе вегетативне пупољке из којих се образује скелет круне.

Разлике између ове две групе гранчица се уочавају не само по пупољцима које носе, већ и по другим карактеристикама као што су: развијеност, правац пружања, угао хелиотропизма, боја коре, итд.
РОДНЕ ГРАНЧИЦЕ ЈАБУЧАСТИХ ВРСТА ВОЂАКА

Код јабучастих врста вођака се могу видети наступајући типови родних граница:
- вите родне границе,
- крутне родне границе,
- прстенасти израштај,
- родни колаци,
- сложено родно дрво.

Подела је начињена на бази морфолошких критеријума: дужине, угла израстања из родног дрвета, распореда пупољака итд.

Поред разлика ове границе имају и један број заједничких особина:
- На терминалној позицији образују цветни пупољак, а латерално су распоређени вегетативни;
- Цветни пупољци су по типу мешовити, што значи да садрže истовремено зачетке и вегетативних и генеративних органа (више цветова и више листова истовремено итд.);
- Морфолошке разлике између цветних и вегетативних пупољака су јасно изражене (цветни су крупни и округласти, а вегетативни ситни, издужени, са оштirim врхом);
- На подусима искулчива образују појединачне пулољке један подус један пупољак;
- При резидби се не прекраћују јер би том мером био елиминисан једини цветни пупољак, па би граниче биле преведене у неродне. Ако их има много, проређују се уклањањем до основе.

Танке (вите) родне границе

Ове границе се савијају под теретом плода, па су у складу са том особином добиле име. Дуге су (најчешће) од 15–50 cm, доста су танке и чине прелаз између родних и неродних граница. На терминалној позицији образују цветни мешовити пупољак, а латерално су распоређени појединачни вегетативни пупољци. Изузетно се цветни пулољци могу образовати и латерално и то у два случая:
- Као сортно својство (златни делишес, јонатан,...);
- Под утицајем одређених помотехничких мера (побијањем, престеновањем и сл.).

Из родног дрвета израстају под оштром углом. При резидби се не прекраћују јер би се елиминисао једини цветни пупољак. Ако их има много уклањају се до основе. Интернидие ових граница су јасно изражене.

Вите родне границе се најчешће образују на периферним деловима круне.

Сл. 11 – Танка (вита) родна граница
Круте (несавитљиве) родне гранчице

За разлику од претходног типа не савијају се под теретом рода, па отуда и тај назив. Дуге су од 5–15 cm. На терминалној позицији образују цветни пупољак, а латерално су распоређени вегетативни. Имају изражене јасно уочљиве интернодије. Из родног дрвета израстају под првим углом. При резици се не прекраћују из истих разлога као и претходне. Пошто су на први поглед сличне витим гранчицама, најпоузданiji морфолошки критеријуми за детерминацију су: дужина (краће од витих) и угао израстања из родног дрвета.

Наборите родне гранчице (прстенасти израштаји)

У великом броју се образују у кречама младих јабука и тада представљају најважније родне гранчице. Дуге су између 2 и 5 cm. На терминалној позицији образују цветни пупољак, а латералне пупољке немају. Пошто настају трансформацијом лисних розета, латерално се уочавају набори, створени из ожилака опасних лисних петељки. Лисне петељке продиру дубоко у ксилемски део, па су и оживљени упадљиви. По овим наборима гранчице су и добиле име. Из родног дрвета израстају под углом од 90°, као и круте. Најсигурнији критеријум за разликовање наборитих од крутих родних гранчица је одсуство латералних пупољака (а самим тим и интернодија). Прекраћивање ових гранчица би било потпуно погрешно, јер би се на тај начин слиминисао једин пупољак. Ако их има много, проређују се резањем делова родног дрвета на којем су распоређени.

Родни колачи (родна складишта)

Родни колачи су проширења или задебљања различитих облика, која настају притицањем и акумулирањем материја (највише угљених хидрата) на местима где су одстрањени плодови или при основи петељке плода. Најзначајније су родне гранчице, (посебно код крушке) јер се на њима образују најкачестији плодови. На терминалној позицији се уочавају крупни ожилци петељки отпалих (обраних) плодова из претходне вегетације. Латерално формирају један цветни и

Сл. 12 – Крућа (несавитљива) родна гранчица

Сл. 13 – Вишегодишња (наборита) родна гранчица (краћко родно дрво)
едан до два вегетативна пуноља. Не издужују се врхом (на врху нема меристемског ткива, јер нема пуноља) већ бочно, из вегетативних пуноља. Из ових пуноља израстају најчешће вите и наборите родне границе. Развој витих је индикатор добре исхранењености воћке.

Родни колачи су знатно бројнији, крупнији и израженији код крушика него код јабука (биолошко својство) и код раних сорти у односу на позне. Код раних сорти сви плодови се одстрањују у фази кад је фотосинтетска активност лише врло висока, па се потенцијално добија јако много места за образовање родних колача. Крупињи су, јер је период аккумулације материја дужи. Код позних сорти највећи број плодова се одстрањује у периоду кад лише престаје да буде фотосинтетски активно, па изостаје и аккумулација, односно стварање проширења.

Сложено родно дрво настаје природним разграњавањем витих и кругих родних граница, као и њиховом одговарајућем резидбом. Сложено родно дрво је најчешће карактеристика старијих стабала.

РОДНЕ ГРАНЧИЦЕ КОШТИЧАВИХ ВОЂАКА

У најзначајније коштичаве вођке убрајају се: бресква, кајсија, шљива, вишња и трешња. За њих су карактеристични следећи морфолошки типови родних граница:
- мешовите родне границе; - мајски букетићи; - слабе (сламасте) родне границе; - превремене родне границе и - копљасти израстаји (трнолике родне границе).

Заједничка својства ових граница су:
- На терминалној позицији образују вегетативни пунољ, а цветни се латерално формирају;
- Цветни пунољци су по типу прости (бресква, кајсија и неке шљиве) и сложени (тресња, вишња и неке шљиве);
- Морфолошке разнице између цветних и вегетативних пунољака су знатно мање изражене него код јабучастих вођака. Нарочито код трешња и вишња (та и шљива) немогуће их је разликовати на основу изгледа;
- У зависности од типа, границе образују и појединачне (слабе, копљасти израстаје) и груплне пунољке (један нодус – више пуноља, мешовите родне границе и мајски букетићи);
- При резидби, опет у зависности од типа се и проређују и прекраћују.
Мешовите родне гранчице брекске

Дуге су најчешће између 20 и 50 cm. На терминалној позицији образују вегетативни пупољак, а групни пупољци су латерално распоређени. У групи се по правилу налазе три пупољка у колатералном низу (ко-уз, латерално-бочно, тј. један до другог, један уз бок другог) од којих су два крајња цветни, а средишњи је вегетативан. Према томе, мешовите гранчице су све једне, које бар на једном подусу имају групне пупољке, од којих је бар један цветни. Присуство групних пупољака у колатералном низу је најпоузданiji morfološki елемент за детерминацију ових гранчица.

Према распореду групних (цветних) пупољака дуж родне гранчице, све сорте брекске се деле у три групације: А, Б и Ц.

За мешовите родне гранчице типа А, особено је да групне (а самим тим и цветне) пупољке образују целом дужином, претежно на сваком подусу. Код типа Б ови пупољци се формирају на 2/3 гранчице при врху, док се при основи налазе појединачни вегетативни пупољци. Код типа Ц групни пупољци се формирају само на 1/3 гранчице, при врху, док су на простале 2/3 распоређени појединачни вегетативни пупољци.

Данаас практично, све најзначајније сорте брекске припадају групацији A.

Мешовите родне гранчице су најзначајније родне гранчице ове воћне врсте јер се (између осталог) на њима образују најквалитетнији плодови. Практично се, при резидби, само ове гранчице и остављају.

Мешовите родне гранчице трење и вишње

Ове гранчице се битно разликују од претходних, јер су знатно краће и немају групних пупољака. Цветни су распоређени на 1/3 гранчице при основи, а вегетативни на 2/3 при врху.

Мајски букетићи (мајске китице)

То су најбројније и најзначајније родне гранчице трешани и вишана. Образују се у крунама и других кошталавих воћака, али знатно ређе, и у букетићима имају мање цветних пупољака. Дуге су најчешће од 2–8 cm.

Сл. 15 – Мешовита родна граница брекске

Сл. 16 – Мешовита родна граница вишње
На терминалној позицији формирају вегетативни пунољак (б) око којег су густо, у виду букетића распоређени цветни пунољци (а). У букетићима се налази најмање три, а често и преко шест пунољака. У наредној вегетацији из терминалног вегетативног пунољка развија се кратки прираст, који поново на врху формира вегетативни пунољак око којег су густо распоређени цветни. Ово циклично самообновљавање мајских букетића код вишана траје 6 вегетација, а код трешана и 12.

При резидби се не прекраћују, (јер би се одбацили сви пунољци) већ се проређују сечењем родног дрвета на којем су распоређени.

ЛАТЕРАЛНО СЕ НА ЋИМА УОЧАВАЈУ ПРСТЕНОВИ ОЖИЉАКА НАСТАЛИ ОДВАЈАЊЕМ ЛЕТЕЉКИ ПЛОДОВА. НА ОСНОВУ ОВИХ ПРСТЕНОВА МОЖЕ СЕ ИЗРАЧУНАТИ (ИЗБРОЈАТИ) СТАРОСТ ОВИХ РОДНИХ ГРАНИЦИА.

СЛАБЕ (СЛАМАСТЕ) РОДНЕ ГРАНИЦЕ

Образују се у унутрашњим, засењеним деловима крune, па су танке и кржљаве, по чему су и добиле име. Дуге су између 10 и 15 cm (најчешће). На врху образују вегетативни пунољак, а латерално су распоређени појединачни цветни пунољци. Формирају плодове лошег квалитета, па се резидбом одстрањују. Ако се не одстрани, суше се одмах после доношења плода, а ако не образују плод, вегетирају још једну годину.

ПРЕВРЕМЕНЕ РОДНЕ ГРАНИЦЕ

Ове границе се по правилу развијају из средишњих вегетативних пунољака мешовитих родних граница у истој вегетацији у којој су и ти пунољци настали. Нормално би било да се развијају тек наредне године, па отуда и тај назив, превремене.

Нарочито су присутне у крошњама бујних бресака. Слабо су оборсле лишћем и доносе плодове лошег квалитета. Резидбом се уклањају до основе. На терминалној позицији имају вегетативни пунољак, а латерално цветне и вегетативне, појединачно распоређене.
Копљасти израштаји (Трнолике родне границе)

Најчешће се образују у крунама младих европских шљива и кашеја. Ограниченог су раста, јер им се терминални вегетативни пунољак трансформише здравењавањем у трн. Појединачни цветни и вегетативни пунољци су латерално распоређени.

НЕРОДНЕ ГРАНЧИЦЕ ВОЉАКА

Неродне границе код јабукастих и коштчивих вољака такође образују скелет круне.

Разликују се:
1. Водени (водни изданици, птићи), који су врло бујни и избијају из старијих делова стабла и грана.

2. Бујни неродне границе, које чине прелаз по бујности између водопија и нормалних летораста.

3. Легорасни су неродне границе које настају из бочних пунољака у пролеће и развијају се током целе вегетације.

4. Превремене границе које настају на леторастима из бочних пунољака.

5. Трнолики израштаји су неродне границе које се најчешће јављају код коштчивих врста вољака.

РОДНЕ ГРАНЧИЦЕ ЈЕЗГРАСТИХ ВРСТА ВОЉАКА

У групу језгарастог воља убрајају се: орах, лешник, бадем и кестен. Ове врсте се међусобно разликују морфолошком по својим репродуктивним органима или светним пунољцима.

Орах, лешник и кестен су вољке моноичне – једнодоме. Код њих су светови једнополни (мушки или женски) и налазе се на истој биљци.

Код све три врсте родне границе су по пореклу прошлогодишње.

Код ораха и кестена те границе латерално носе мушки цвасти – ресе. На врху границе се налази мешовити пунољак из кога ће у текућој вегетацији настати
лекораст, на чијој ће се терминалној (код неких сорти и латералној) позицији налазити женска цвасти – гломерула.

Код лешника на прошлогодишњој граничници из латералног пупољка ће се развићи две врсте граничнца:

− Примарне, које су настале из мешовитог пупољка лоцираног у пазуху листа и које, у зависности од дужине, најчешће на врху или на прва два нодуса носе женске цвасти – гломеруле.
− Родне граничнце које носе мушке цвасти – ресе.

Баеем се разликује од осталих врста језграстих воћа по томе што има хермафродитне цветове. Код бадема ср е е 5 категорија родних граничнца.
1. Мајски букетићи – најбржи и по старости најмлађе граничне у круни бадема.
2. Слабе (сламасте) родне граничнце. Ове граничнце почињу рано да оголавају. Танке су, ду ге 5–20 cm, са лисним пупољком на врху и цветним са стране.
3. Мешовите граничнцета, дужине 20–30 cm, код бадема се налазе на површини круне.
4. Кратко-родно дрво је са мање развијеним граничницама. Ова категорија није много заступљена. Чешће се јавља код бујних сорти и младих стабала.
5. Развијеније родно дрво чиње углавном једногодишње граничнце које расту усправно.

ЛИСТ

Лист је, поред корена и стабла, основни вегетативни орган воћака. Јавља се као израштај на стаблу и део је јединственог органа – издванка.

Лист је врло важан орган воћака јер се у њему одвијају најважнији физиолошки процеси: фотосинтеза (синтеза органских материја); дисање (разградња органских супстанци) и транспирација (одавање воде у виду водене паре).

Лист воћака је ограниченог раста, јер не задржава творно ткиво. Плоди од нодуса и таквог је распореда на издванку да омогућава воћкама оптимално иско-
ришћавање располаживе количине светлости. Од броја листова и њиховог здравственог стања зависи рођеност воћака и квалитет јагода.

Код воћака се срећу две категории лисћа:

1. *просто* — које се састоји само од једне лиске и које се среће код највећег броја воћака.

2. *сложено* — које се састоји од већег броја лиски и које може бити *перасно* (код ораха, оскоруше, малине, купине и др.), *сложено *перасно (код јагоде) и *сложено-реженевишно* (код смокве).

![Лисћи воћака](image)

Сл. 21 — Типови листова воћака: 1—jabuka; 2— grep; 3—kašija; 4—kod oraha; 5—jadoga.

Лиска се карактерише: површином, нерватуром, ивицом, обликом врха и основе. Ове особине лиске су карактеристика: врсте, сорте, топографије и старости воћака.

Облик лиске воћака је различит: овал, јајаст, овалан, ланцетаст и др.

За воћке је карактеристична хетерофилија тј. појављивање (налажење) лисћа различитог облика код исте биљке. Полиморфност лисћа код воћака најчешће је условљена њиховом топографијом и старошћу.

Величина лисца је такође различита и обично је већ код младих и неродних воћака, код триплоидних, бујнијих воћака.

Површина лиске воћака може бити глашта или маљава, равна и неравна. Код воћака, лисће је бифацијално, са лицем које је најчешће глатко, често прекривено кутикулам и наличјем које је маљаво и неравно, што омогућава стварање одређених услова за развој гљива.
МОРФОЛОГИЈА ВОЋАКА

Нервацијур листа воћака је мрежаста са варијантама: заступљенијом јерасистемом (код већине врста) и перистастом, код рибили и огроода. Код већине воћака између нерава на наличју листа налазе се многобројне стоме, кроз које се обавља размена гасова.

Ивица лиске код воћака може бити цела (код дуње) и назубљена (код већине врста).

Врх и основа лиске воћака такође могу бити различитог облика, што је пре свега карактеристика врсте, односно сорте.

Сл. 22 - Жлездаста израштаји код сорти брекве

Лисна дршка је дес листа помоћу кога је он учвршћен за стабло. Она постаје интеркаларним растењем творног ткива између лиске и лисне основе. Она се карактерише, пре свега дужином и дебљином као и жлездастим израштајима различитог облика. Ове особине лисне дршке условљене су врстом, сортом, топографијом, исхранношћу и здравственим стањем воћака.

У јесен, по завршетку вегетације, лисни највећег броја врста воћака отпада. Изузетак чини јагода, агруми и неке врсте купине, (Rubus dalmaticus) код којих се лист задржава и током зимског мировања, да би се почетком вегетације и појавом новог младог лишћа то лишће осушило.

Лист, међутим, може отпасти и у току вегетације ако је воћка недовољно исхранена и нападнута болнестима и штеточинама.

ПУПОЉЦИ

Пупољци су млади, неразвијени делови изданка. Према функцији, пупољци могу бити вегетативни и генеративни. Вегетативни пупољци имају у себи зачетке листа или лентораста, а генеративни пупољци садрже зачетке цвета или цвасти и листова. У вегетативне пупољке спадају: дрвни, лисни, адвентивни и латентни.
Дрвни пупољци су ситни, издуженог облика и оштри. Налазе се најчешће са стране, (латерално) у пазуху листа или на једногодишњим леторастима – терминално. Из терминалних дрвних пупољака касније настају снажени леторasti, а из латералних, нешто слабије развијени леторasti.

Лисни пупољци чине прелаз између дрвних (од којих су крупнији) и цветних (од којих су ситнији и шиљатији). Они су по правилу латерални и из њих се обично развијају тзв. лисне розете. Називача су још и прелазним пупољцима јер се у зависности од исхране и других услова из њих могу развијати не само листови, већ и леторasti и цветови.

Адвентивни пупољци настају из вегетативне куле и налазе се у ткиву скелетних грана и жила, односно у калуус стабла и перициклу корена. То су ситни пупољци из којих се развијају леторasti. Њихова улога је врло значајна при вегетативном размножавању воћака издацима, нагртањем и резницама. Код коштчацев воћака (за разлику од јабучастих) адвентивни пупољци кратко живе (брзо угињавају) те се зато ове врсте тешко или никако не могу подмлађивати.

Латерални или спрајнући пупољци мирују низ година. Налазе се при основама грана, прекривени кором и уочавају се као једва видљиво испуцање коре. Из њих се развијају бујни леторasti (водопије). Могу се активирати и подмлађивањем, јачом резидном круне, као и при механичким повредама грана (ломљењем). Погодни услови за активирање спрајнућих пупољака су дуге, топле и влажне јесени.

Генералнини – рејорудуктивни – цветни пупољци су релативно најкрупнији, округли и затупасти. Они могу бити: прости, просто-сложени и мешовито-сложени.

Прости цветни пупољци су они из којих се развија само један цвет. Ови пупољци се срећу код: бадема, брекве, неких шљива, кајсије, рибизле и др.

Просто-сложени пупољци су такви цветни пупољци из којих се под одређеним условима могу развијати само цветови или само лише. Зато су прости. Сложени су зато што дају већи број цветова, односно лише.

Ову врсту пупољака имају: трешња, вишња, неке сорте шљива, лимун и др. Мешовито-сложени пупољци су такви цветни пупољци из којих се развија више цветова и више листова.

Ови пупољци се срећу код: јабуке, крушке, ораха, лешника, малине, огнозда, рибизле и др.

Сви пупољци, према месту (топографији) на којем се развијају, могу се поделити на:

1. вршне (терминалне) и
2. бочне (латералне).

Вршни – терминални – апикални пупољци налазе се на врху граничне.

Бочни – латерални пупољци налазе се на стране граничне. Они могу бити: бакални – кад се налазе при основи (бази) граничне и мезијални – кад се развијају у средњем делу граничне.
Сви пупољци према распореду, код воћака могу бити: јојединачни и зруйни (двоструки, троструки, мајски букетићи и др.).

ЦВЕТ

Цвет је скраћени изданак ограниченог растења, чији су листови преобразени ради полног размножавања које се у њему обавља и доводи до образовања семена и плода.

Код највећег броја врста воћака цвет је тицичан – тициун са израженим следећим деловима:
- чашциом (calyx) – састављеном од 5 чашчиких листића,
- круцицом (corolla) – састављеном од 5 кручиких листића,
- брашицама (andrea seoem) – састављеном од већег броја филамената – 20–50, и једним
- хуљком (gyna seoem).

Чашца и круница граде цветни омотач (periant)

Сви наведени делови цвета, који представљају метаморфозирани листове, причвршћени су у заједничкој основи која се назива цветна ложа, испод које је цветна ушка која је непосредно везана за гранчицу.

Цветови већине воћака су интензивно обојени, те привлаче инсекте који преносе поленов прах и имају велику посредничку улогу у опрашивању и оплођењу. У подножју кручиких листића налазе се жлезде које луке спадак сок (нектар), код већине врста пријатног мириса (са изузетком крушка), чиме цветови такође привлаче инсекте.

Овај тицичан – тициун цвет назива се још и дозодолан или хермафродитан, јер се у једном цвету налазе и прашници и тучак, односно мушки и женски полни органи.

Код воћака постоје и јединополни цветови, тј. цветови који имају само прашнике или само тучкове (мушки и женски цветови).

Ове вођке са јединополним цветовима, означавају се често и као вођке са развојеним Јоваловима.

Овде се може разликовати више случајева:
1. Код неких вођка мушки и женски цветови се налазе на истој индивиду (орах, лешник, питоми кестен). Оне припадају групи јединоголих белака.
2. Код неких вођка има случајева да се на јединим индивидууме налазе само мушки, а на другим само женски цветови (актиниција, јапанска јабука, неке врсте јагода и др.). Оне припадају групи двоголих белака.
3. Код вођка има и представника многоголих белака, где се на једној индивиду налазе само хермафродитни цветови, на другој само мушки, а на трећој – само женски цветови. То се среће, од умерено континенталних врста, само код јагоде – *Fragaria elatior.*
Код једнодомних воћака чешће је појава гихољамије тј. различитог времена цветања мушких и женских цветова, од хомогамије.

Највећи број сорти ораха и лешника су иррошангарични (раније цветају мушки цветови), а само мањи број је иррошазиничан (раније цветају женски цветови).

Код хермафродитних цветова изражена је код неких врста и сорти воћака појава хетеросистилије, тј. појава неједнаке дужине прашних конца (филемената) и тучка.

По свом распореду цветови воћака могу бити: иојединачни и груписан у цвастим, рацемозне и цимозне.

Од рацемозних цвасти које се карактеришу моноплидијалним гранањем код воћака срећу се: клас, реса, гроза, грања и иштп.

Клас је цваст код које се на дугачкој осовини налазе седећи цветови (без цветне дршке). Среће се код женске цвасти ораха.

Реса је клас са танким и савитљивим вретеном, услед чега обично виси и лako се покреће навуницали струјама. То је мушка цваст ораха лешника, питом кестена.

Гроза је цваст код које су на дугачкој главној осовини (вретену) поређани цветови са дршкама приближно исте дужине. Среће се код рибизле, боровнице, актинидије и др.

Објашњење:
1. прашник
2. антера
3. прашни кончић
4. жиђ шучка
5. сгубић
6. илодник
7. шучак
8. ободни листић
9. круничи листић
10. чашични листић
11. илодиште
12. основа
Гроња је модификовани грозд, од кога се разликује по томе што су дршке цветова идући према основи вртега све дуже, тако да сви цветови стоје на приближно истој висини. Среће се код јабуке, крушке, глова и др.
Шаиш је цваст код којег је главна оса скраћена и са ње полазе цветови на дугачким дршкама које износе цветове на приближно исту висину. Среће се код трешње, вишње, дрена и др.

Цимозне цвасти су симподијално разгранате цвасти, где главна осовина рано завршава раст развијањем цвета на своме врху. Једна или више бочних осовина, које полазе испод првоначалог цвета, настављају раст и надвисују осовину првог реда. Ове осовине другог реда, такође завршавају цветом. Растење преузимају осовине трећег реда итд. Ову цваст срећемо код јагоде, агрума, малине, купине итд.

Са. 25 – Цвештеви–цвасти: 1, 1a, 1б, 1ц, 1г–рибизла; 2–малина, 3–јабода, 4–орах (а–жена, б–мушка); 5–лехник (а–жена, б–мушка)
Код воћака срећемо и један специфичан облик цвасти који неки аутори називају сиконија. То је цваст смокве.

ПЛОД

Плод (fruktus) воћака је у биолошком смислу орган који се после оплођења развија из плодника, односно из плодника и других делова цвета или цвасти, који за извесно време затвара семе, штити га и помаже његово рассејавање.

После оплођења настају велике промене у цвету. Код већине биљака с једне стране сасушују се и отпадају чашница, круница, прашници и стубић са жиgom. С друге стране настаје прилив хранљивих материја у семене заметке и у зидове плодника, код неких и у цветну ложу, осовину цвасти итд. На рачун ових материја развија се плод, а у плоду семе са клицом. Зид плодника се развија у плодов омогућујући перикарпије, који код већине воћака представља јестиви део плода.

И код воћака, као и код већине биљака плодови се према начину постанка могу поделити на две велике групе:
1. моноантокарпни плодови — плодови који су настали из једног цвета.
2. полиантокарпни плодови — плодови који су настали из цвасти.

Код већине врста воћака плодови припадају првој групи.
Даља подела моноантокарпних плодова шематски изгледа овако:

МОНОАНТКОКАРПНИ ПЛОДОВИ

A. посебни

<table>
<thead>
<tr>
<th>I пучајући</th>
<th>II непучајући</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. махуна</td>
<td>1. збирна орашица</td>
</tr>
<tr>
<td>a) сушни</td>
<td>b) сочин</td>
</tr>
<tr>
<td>1. орашица</td>
<td>1. коштунца</td>
</tr>
<tr>
<td></td>
<td>2. бобица</td>
</tr>
</tbody>
</table>

Б. збирни

1. збирна орашица
2. збирна коштунца

Како се плод развија из плодника који представља део тучка, а овај може бити изграђен из различитог броја карпела (оплодних листића), тако и плод може бити саграђен из различитог броја карпела (једне или више, које могу међусобно бити слободне или срасле).

Махуна је сушни, пучајући плод, настао од једне карпеле, који се отвара према уздужним пукотинама — по леђном и трбушном шаву.

Перикарпи махуне има релативно једноставну структуру. Састоји се од танког слоја епікарпија (састављеног од дебелозидних ћелија), непшто дебљег мезокарпија и ендокарпија изграђених од танкозидних ћелија. Са сазревањем плода перикарпи се суши.
Код воћака се среће само код рогача.
Орашца је сушни, једносемени плод који се не отвара. Може бити изграђена од једне или више карпела.
Код воћака се среће тзв. монокарића орашца и то код питомог кестена и лешника. Код лешника, орашца је затворена у чврсту творевину која се зове кукула, а код питомог кестена у творевину која се зове јешница.
Косајуница је сочни, непуцајући плод који има све делове перикарпа - егзокарди, мезокарди и ендокарди. Може бити изграђена од једне карпеле (монокарићна косајуница); две или више међусобно срастаћи карпела (синкарди на косајуница). Егзокард и ендокард одговарају лици и наличју оплодних листића.
Код монокарпних коштунције егзокард је најчешће танак и састоји се од епидермиса и неколико слојева коленхима. На површини епидермиса налази се кутикула и једноћелијске дланке. Мезокард је изграђен од већег броја хелија паренхима, којима се величина повећава од периферије ка центру. Паренхимске хелије мезокарда испуњене су разним хранљивим материјама (шейери, витамини, бојене материје и др.). Ендокард се састоји од чврсто повезаних склеренди који образују компакту.
Монокарпне коштунците среће се код следећих врста воћака: шљиве, бреске, кајсие, вишке, трешње, мареле, дрена, маслине, бадема, ораха и др.
Код ораха и бадема меснати део плода (мезокарп) није јестив, већ чини омотач зелене боје, који се назива клатина или душка и који је непријатног, горког укуса. Ендокард је светломерке боје, такође одрвенео, и у њему се налази једно семе без ендосперма са јако развијеним набраним котиледонима богатим уљем, шећером и другим материјама које представља јестиви део плода.
У томе се огледа специфичност коштунције ове две врсте воћака.

Сл. 26 – Шематски јачак плодова: а) јабуке, б) трешње, в) рибизле, г) маслине, е) јагоде и ф) лешника.
Синкарпна коштуница, која представља посебан случај коштунице, среће се у групама јабукастих врста воћака (jabuka, крушка, дуња, мушмула, оскоруша и др.). Перзаменине коморице одговарају ендокарпу, а око њих се налази једна мања месната зона мезокарпна, док је њима остало сочине део плода настао од цветне ложе.

Бобица је сочини, непуцајући плод код кога се плодов омотач састоји из два дела: егзокарп (у виду танке спољне кожице) и мезокарп са ендокарпом (највећи меснати део плода). Код воћака је бобица синкарпна, настала у целини од зида плодника. Среће се код: рибизле, боровнице, огрозда, актинидије, јапанске жабуке, агрума и др.

Код агрума се јавља специфична сочна бобица. Гинецеум агрума је синкарпана, настао од великог броја карнела (до 20), које образују тучак са надцветним плодником. Плод је сочинјен перикарп на чијој површини је егзокарп, изграђен од коленхимских ћелија са многобројним присутним жлездама које луше старска уља. Мезокарп је образован од сочних творевина, цврстерејте је структуре са слабом везом међу ћелијама, настао од субепидермалног ткива унутрашње стране плодника. Ендокарп има на својој површини сочне мешкове који су у облику вишећелијских длачака и у зрелом плоду потпуно испуњавају окц плодника.

Збирни плодови састављени су од више посебних плодова који су обично повезани заједничком цветном ложом.

Код воћака се среће збирна орашица код јагоде и руке; збирна коштуница, код малине и купине.

Групу Јолантинокарпних плодова чине тзв. срасли плодови и плодови настали од цвasti. Први настају срастањем перикарп плодова из два или више цветова, а воћа код које се среће је ананас (где је већи број бобица срасло меснатом особином).

Плодови воћака настали од цвасте срећу се код смокве и дуда. У грађи плода смокве учествује особина цваста која опкољава појединачне плодиће орашице. Код дуда у састав плода улази женска цваст (реса). Сочни делови су настали од цветног омотача појединих цветова, а унутра се налазе посебни плодови (орашице).

СЕМЕ

Семе воћака се развија из семеног заметка обично после оплођења.

Оно садржи клицу (embryo) и различиту количину ендосперма (грчки endom унутра, spermo семе). На површини семена налази се опица – семенача (шеста). Она настаје од интитумената. Понекад у састав семенача улази и део нулеуса. Клица настаје од оплођене јајне ћелије, а ендосперм од оплођене централне ћелије, са другим сперматичним ћелијам.

Клица се састоји од: коренчића, стабаоцета, пупољчића и два развијена котиледона или клицина листића.
Сл. 26-а – Узгужени пресек јабуке: 1–јежељкино удублјење; 2–йожецица; 3–мезокарп; 4–семена кућица; 5–семене коморице; 6–йожачично удубалење; 7–чашично удубалење; 8–чашични лисићи; 9–чашични канал; 10–месо јабуке; 11–семе јабуке; 12–клича (embryo); 13–семенаача (ишеста)
БИОЛОГИЈА ВОЂАКА

ИНДИВИДУАЛНО РАЗВИЋЕ (ОНТОГЕНЕЗА) ВОЂАКА

У животном циклусу вођака који почиње заместањем ембриона, а завршава се угнитућем вођке, настају велике биохемијске, физиолошке и морфолошке промене.

Сви ти сложени процеси који карактеришу индивидуално (онтогенетско) развиће вођака, почињају на деоби ћелија. Одликују се континуитетом при преласку из једног стања у друго и иреверзивном су (неповратном) карактера.

Све вођке размножене полним путем (сејанци) пролазе током индивидуалног живота кроз четири квалитативно различита стадијума развића: ембрионални, јувенилни (младалачки), сидајјум зрелости (репродуктивни) и сидајјум стариости.

I Ембрионални сидајјум вођака почиње оплођењем јајне ћелије и образовањем зигота, ембриона (клипе) и семена. Траје до клијања семена и формирања прва два примарна листа, који омогућавају младом сејанцу аутотрофну исхрану.

 Вођке (сејанци) у овом стадијуму се одликују пластичношћу генотипа (који тек почиње да се манифестује преко примарне морфогенезе), подложношћу и наследним променама и израженом осетљивошћу према свим неповољним чиниоцима средине.

На ове карактеристике ембрионалног стадијума вођака (као и на стадијност уопште) први је указао Мичурин.

Он је приметио да одређеним поступцима са семеном вођака, као што су: излагање семена утицају ниским температура, јонизујућим зрачењем, условима и дужином чувања и др., може да се утиче на промене одређених наследних карактеристика семена добијених од родитеља. То је обилато користио у свом оплемењивањачком раду.

Тако је, на пример, семе хибрида Pityus ussuriensis X дилова маслова, излагао ниским температурама (стратификовао) и од њега добио велики број сејанаца са добрим особинама.
Супротно томе, од нестратификованих семена добио је само сејанце са поширом особинама усуријске крушке.

II Јуневилни (млади) стадијум воћака почиње клињањем семена, односно образовањем првих вегетативних органа и траје до образовања првих репродуктивних органа, тј. до почетка плодоношења.

Сејанци у овом стадијуму су трновити, леторасти су им танћи и бројнији, а лишће ситније и тање него код сејанаца у стадијуму зрелости. Њихово дрво садржи мање количине угљених хидрата (скроба, шећера), белачевиха, липида, минералних материја и др., а веће количине хемицелулозе, целулозе и лигнина. Они су знатно адаптивнији условима средине, са израженим способностима репарације и регенерације, односно, интензивног вегетативног размножавања, што има практичну примену у расадничкој производњи.

 Воћак у овом стадијуму још увек су лабилног јеновитог тј. подложене су променама под утицајем различитих чинилаца: еколошке средине, мутагених фактора, јонизујућег зрачења, коришћењем при трансплантацији стадијно старије компоненте – метода мендира и др.

 Јуневилни стадијум код воћака траје различито време и зависи од врсте, сорте, родитељског пара, еколошких и агroteхничких услова гајења.
Таб. 23 – Трајање јувенилног стадијума воћака

<table>
<thead>
<tr>
<th>врста воћака</th>
<th>трајање јувенилног стадијума (година)</th>
</tr>
</thead>
<tbody>
<tr>
<td>јагода</td>
<td>2-3</td>
</tr>
<tr>
<td>малина</td>
<td>2-3</td>
</tr>
<tr>
<td>купина</td>
<td>2-3</td>
</tr>
<tr>
<td>борошица</td>
<td>3-4</td>
</tr>
<tr>
<td>бресква</td>
<td>3-4</td>
</tr>
<tr>
<td>кајсија</td>
<td>3-4</td>
</tr>
<tr>
<td>вишња</td>
<td>3-4</td>
</tr>
<tr>
<td>шљива</td>
<td>4-6</td>
</tr>
<tr>
<td>јабука</td>
<td>6-10</td>
</tr>
<tr>
<td>крушка</td>
<td>8-12*</td>
</tr>
<tr>
<td>бадем</td>
<td>4-6</td>
</tr>
<tr>
<td>кестен</td>
<td>4-6</td>
</tr>
<tr>
<td>орах</td>
<td>8-12</td>
</tr>
</tbody>
</table>

III Стадијум зрелости воћака почиње почетком плодоношења тј. стварањем првих цветних пунољака и траје све до наглог опадања или престанка родности.

Са гледишта практичне производње, овај стадијум је најзначајнији у животу воћака. Зато је основна тежња воћарске производње да агро и помо-техничким мерама пруже оптималне услове да воћка што пре ступи у стадијум зрелости и да у њему што дуже остане.

Способност полног размножавања сејанаца воћака у стадијуму зрелости праћена је низом промена: губитком трnovитости у зони образовања цветних пунољака у вишим деловима, појавом крупнијег лишћа, дебљих летораста, повећаном количином угљених хидрата, масти протеина и минералних материја, родношћу и смањеном способности вегетативног размножавања, зацећивања рана и прилагођавања.

 Воћке у овом стадијуму су саставног генотипа, те разни спољни утицаји не могу изазвати квалитативне – наследне промене, већ само квантитативне анатомско-биохемијско-физиолошке промене.

IV Стадијум старости је последњи у онтогенези воћака. Одликује се губљењем репродуктивних функција, одсуством пластичности и вегетативног размножавања и угинућем воћке.

У овом стадијуму превладају процеси разлагања над процесима синтезе, као и процеси старења над процесима обновљања, што доводи до постепеног оголавања и сушења круне, и на крају, до природне смрти воћке.

* Мирушина крушка – 37 година.
Проучавање стадијног развића воћака трају свега неколико деценија. То је недовољно за доношење коначних судова, јер индивидуално развиће сејанаца може да траје и више стотина година.
Зато стадијно развиће треба схватити само као општи оквир у онтогенези воћака.

ПЕРИОДИЧНОСТ У ЖИВОТНОМ ЦИКЛУСУ ВОЂАКА

Воћке размножене вегетативним јучем и умножене камелињем, налазе се у статусу зрелости. Оне у том стадијуму остану током читавог живота. Па ипак, и оне у свом животном циклусу под утицајем наследних особина сортре и подлоге, као и дејства еколошке средине и примењене агротехнике, пролазе кроз одређене периоде растења и плодоноснења. Посматрањем развића воћака од времена сађења па и његове утре, могу се уочити велике квантитативно-калибриге промене, које се и визуелно запажају на свим деловима и органима воћке, а најочуљивије су на круни и границама.
С обзиром на те промене, у животу вођака разликујемо више периоди или циклуса.
Прву поделу животног циклуса вегетативно размножених воћака на периоде учинио је совјетски научник Шитов. Он је у животном циклусу вођака разликовао 9 периоде. Између наведених периоди је било оштрих граница при прелазу воћке из једног у други период. Ова подела, која је базирана на животном циклусу јабуке, била је практично неприменима за већи број врста воћака, нарочито за оне, чији је животни циклус кратак, какав је, углавном, код свих врста из групе ситног воћа.
То је био разлог да ова Шитова подела, која је дуго времена била прихваћена као једина, претрпела критике и модификације.
Дана се од већине аутора прихваћено да се у животном циклусу вођака разликују три периода: период расиђења, период рођости и период съштедијног циклуса. Младе воћке најпре интензивно расту, да би се пред крај овог периода просечна дужина летораста сузнала, а број обрастајућих грана повећава. Већина воћака у овом периоду не рађа, а његов крај се препознаје појављивањем првих цветних пупула, цветова и плодова. Код већине врста и сорти воћака, први плодови који се тада јављају, знатно су крупнији, а по облику одступају од стандардна за дотичну сорту.
Период рођности се одликује масовним образовањем цветних пупула и обилним плодоноснењем. У почетку овог периода пораст сврховних грана слаби, а обим круне се незнатно увећава, да би у једном делу овог периода круна била потпуно формирана и способна да даје обилне количине плода. Тај формиран је период рођости многи
називају гуном рогнушу. Након тога, доњи делови скелетних грана огољавају и зона плодоношења све више се примиче периферији круне, а родност опада. При крају овог периода почну да угињавају поједине, обично слабије, скелетне гране, јављају се и водопије, а обим круне се смањује.

Сл. 28 – Периоди развоја воћака: 1) брз јораст и вегетативних органа, 2) јернио растења и почењак плодоношења, 3) јернио плодоношења и усвојеног раскрења, 4) период јуне родности, 5) почењак опадања родности и сушења неких грана, 6) јернио сушења грана и граници, обновљено вегетативних делова на периферији круне, 7) јернио сушења скелетних грана, распушење водопија и даље смањење родности, 8) сушење већих грана, јачи јораст и водопија из изданка, 9) вођке, орнуче (сасушење)

Неки аутори су у овом периоду уочавали и два потпериода: распуше родности и прогресивно опадање родности.

У јернио су стариот наступа масивно сушење крупних скелетних грана. Долази до појаве великог броја водопија, које указују на присуство скорог краја животног циклуса воћака. Родност попуно изостаје. Пред крај овог периода вођке испољавају животно стање само преко дебла које има извесне животне активности. На крају, читава вођка угињава.

Јасно је да између ова три периода не постоје никакве опште, јасне границе. Њихово трајање условљено је врстом, сортом, условима средине и примењеном агротехникум. Тежња је у интензивној воћарској производњи да се у периоду раскрења образује што пре развијена и правилна круна, а да период родности што дуже траје. На
тому су засноване све агротехничке мере неговања воћака. Овај тренут период ентропије није интересантан за интензивну производњу, те се засади обично крије већ на почетку овог периода.

Познато је да је код неких млађих воћака растење кућне претежно периферијско или центрифугално. За то време, скелетне гране постају све више оголене. Међутим, кад воћка остаја, процес је обрнут, центрицитеталан, јер се периферијске гране почињу прогресивно сушити, а обнова кућна се заснива на водопијама, које настају из спавајућих или адентивних пупољака доњих делова скелетних грана.

Код обновљене кућне исти је ток развијка грана и њиховог сушења. Основне скелетне гране могу се обновити само једанпут, док се скелетне гране другог, трећег или вишег реда могу обновити више пута у току живота воћака. Тако се смањују обрастајуће и скелетне гране кућне воћака. Најмлађе периферијске гране кућне су биолошки најстарије, те најраније и изумире. И обрнуто - основне скелетне гране су стадијно најмлађе, а с обзиром на време постанка, најстарије, те најдолгије и пропадају. Због тога је нова кућна, која се развија на водопијама из скелетних грана стадијских млађа, па су и плодови на њој карактеристични за тај стадијум, јер су лепши, а бујност ових грана је већа.

На тај начин се у куци воћака дешава истовремено сушење стадијских најстаријих граничца и израстање нових граничца, из стадијских младог ткива скелетних грана. Ова појава, која је нарочито изражена код дуговечних јабукастих воћака, а у мањој мери код коштичавих (касеја, неке врсте и сорте шљива), природна је последица неједнаких могућности да се развију сви пупољци на воћкама. Познато је да су воћке способне да сваке године повећавају број пупољака у геометријској прогресији, док су спољне могућности (количина органске и друге хране) ограничени. Зато и има у исто време растења и сушења, разарања и грађења.

ПЕРИОДИЧНОСТ У ГОДИШЊЕМ ЦИКЛУСУ ВОЂАКА

Све животне манифестације воћака у једној години назване су годишњим циклусом.

Годишњи циклус воћака карактерише се смењивањем периода интензивног растења и развића са периодом у току кога су све функције сведене на минимум, односно, периода вегетације са периодом зимишког мироњен.
ПЕРИОД ЗИМСКОГ МИРОВАЊА

У овом периоду воћке нису у апсолутном смислу у мировању, јер се, иако успорено, биохемијски процеси ипак одвијају, па се мировање мора схватити као релативан појам, само као апридуно.

Овај период у годишњем развоју воћака траје релативно дуго, 5–6 и више месеци. То зависи од врсте, сорте, односно генотипа и његове наследне основе стечене у процесу борбе за опстанак.

У нашим крајевима зимско мировање почиње крајем октобра, а завршава се почетком марта.

Период зимског мировања се дели на аперецино, дубоко (конституциона-био-олошко) и апридуно (еколошко) зимско мировање.

Почетно и принудно зимско мировање су углавном условљени чиниоцима средине.

Дубоко – конституциона – биолошко мировање условљено је првенствено наследним карактеристикама генотипа и његово трајање се одвија без обзира на услове средине.

Према стабилности овог периода воћке се деле, према Станковићу, на две групе:

1. Воћке са кратким и нестабилним биолошким мировањем. Ту спадају врсте: бадем, кајсија, шљива, вишња, неке крушке, тремиња и др. Код ових врста дубоко мировање траје од 15–30 дана.

2. Воћке са дугим и стабилним мировањем. Ту спадају врсте: јабука, већина сорти крушка, домаћа шљива, трно-шљива, бресква и др. Код њих дубоко мировање траје 45–60 дана.

У периоду трајања дубоког мировања вегетација се не може изазвати, тј. зимско мировање се не може прекинути. Зато се овај део зимског мировања назива и конституциона мировање.

Познавање услова и трајања дубоког зимског мировања појединих врста и сорти воћака врло је значајно, јер само оне воћке, које су добро биле изложене ниским температурама, могу у пролеће, кад време отопли да нормално ступе у период активног живота – период вегетације.

Постоје различита тумачења, у којем временском интервалу воћке морају бити изложене ниским температурама да би се нормално развијале, цветале и плодосиле. Такође је дискутабилно, које су то нiske temperature.

Неки истраживачи наводе да су то temperature испод 5°C, други, да су то temperature до 7°C, а најчешће се наводи temperature од 5 до 7°C.

Што се тиче броја дана са ниским температурама потребним воћкама за нормално одвијање свих процеса у периоду вегетације, он је условљен генотипом, и према Морозову, за поједине врсте воћака износи:
Иако се за јабуку најчешће наводи да је потребно за успешно плодоношење 45–60 дана излагања ниским температурама, најновија истраживања указују да највећи број стандардних сорти јабуке, које се гаје у умереноконтиненталном климату, за своје успешно гајење траже само 800–1000 часова годишње са температурама испод 7,2°C. У јужним климатима гаје се сорте јабука (у Израелу, Мароку, Тунису и др.) чији су захтеви за ниским температурама још мањи — свега 500 часова, што је само 22 дана. То омогућава ширење гајења јабуке и у ареалима где су просечно високе зимске температуре биле лимитирајући фактор њеног гајења.

Интересантно је и специфично понашање кајсије у дубоком-биолошком мировању. Код ње је много интензивнији метаболизам при релативно ниским температурама него код других врста. Утврђено је да се издуживање цветних пупољака и диференцирање цветних елемената дешава при температури од 0°C. Такође је запажен интензиван развој цветних елемената на температури од 5°C. То је и разлог њеног врло кратког биолошког мировања (15–30 дана).

Уколико би и еколошко мировање у јануару и фебруару било пређено температурним колебањима, долазило би до испровоцираног кретања вегетације, односно кретања сокова, што би као последицу имало смањење отпорности цветних пупољака и њихово измрзавање на релативно вишим температурама.

Са. 29 – Цветање јабуке: а) која је йермио, губоко зимско, мировања, б) која није йермио, кроз зимско, мировања
Ове биолошке карактеристике кајсије су један од лимитирајућих фактора њеног већег гајења у нашој земљи.

Превише благе зиме где вођке нису биле довољно изложене потребним ниским температурама, доводе у пролеће до низа мањих или већих физиолошких поремећаја, праћених осипањем цветних пунољака, превише познам листањем, неуједначеним цветањем, слабом заметањем и јачим опадањем заметнутих плодова. Као последица тога је слаба родност. На топлу зиму, у овом смислу нарочито реагују кајсија и бресак, а затим шљива, а мање јабука и крушка.

Појава слабе родности вођака услед благих зима може се избећи:

- стварањем сорти, које могу добро плодоносити и при вишем зимским температурама,
- применом агротехничких мера (смањењем бујности вођке),
- прскањем емулзијама минералног и другог уља, као и другим средствима (нафтин-сирћетна киселина, алер 85 и др.).

Принучно или еколошки мировање траје нешто дуже од дубоког — биолошког мировања, у нашим условима до марта или априла. Оно је принудно јер га изазивају неповолjni еколошки фактори са ниским температурама, као најјачим фактором, а може се прекинути повећањем температура, тј. испровоцирати кретање вегетације.

То има и практичну примену у производњи неких врста вођака — јагоде, лимуна, фортуна и др., гајених у заштићеном простору (стакленику, пластенику и др.).

ПЕРИОД ВЕГЕТАЦИЈЕ ВОЂАКА

Период вегетације вођака траје од тренутка кретања сокова, преко бубрења првих пунољака у пролеће, па све док не отпадне лишће, у јесен.

У континенталном подручју наше земље овај период најчешће траје од марта до краја октобра. Он има свој почетак, ток и трајање код сваке врсте, односно сорте, које су условљене наследним биолошким особинама и другим факторима.
Трајање и стабилност овог периода зависе од великог броја чинилаца: генотипа (врсте или сорте), начина размножавања воћака, подлоге, услова средине, примењене агротехнике (исхране воћака, резидбе, наводњавања, заштите и др.).

Период вегетације има више потпериода — фаза, од којих су најизраженији:
- раст корена,
- пупљење,
- листање,
- пораст летораста,
- цвећање,
- опрашивање,
- оплођење,
- развитак плода,
- диференцирање цветних пупољака,
- опадање плода,
- опадање лишћа.

РАСТЕЊЕ КОРЕНА

То је биолошко-морфолошко-анатомско активирање кореновог система. Оно се обавља током целе године и има своју сезонску и дневну динамiku.

У зимском периоду корен се налази у спавању мировања, а у пролеће са повећањем температуре, акктивира се раније него надземни органи и расте 2–3 пута брже. Интензивно расте све до краја пролећа, јер у то време највише притичу производи фотосинтезе. Наступањем лета корен уснађује свој пораст, јер се тада хранљиве материје троше на интензивно растење летораста (Chandler, 1957). Почетком јесени поново се повећава његова активност и он интензивно расте и после завршетка вегетације, до краја новембра. То је разлог да се у прaksi у то време (у јесен) врши садње воћака.

Активност корена и његова сезонска динамика, условљене су, према свега еколошким чиниоцима: температуром земљишта, влажношћу и равномерношћу земљишта, режимом исхране и утицајем светлостин, као и међусобном зависности надземног дела стабла — круне и корена.

Топлота, односно температура земљишта имају јак утицај на растење апсорционог система. У земљишту које је директно осветљено сунцем, корен се формира интензивније, него у сенци круне. При температури земљишта нижи од 5°C коренов систем се практично не развија. Код јабуке, он потпуно прекида раст на 0°C. По подацима Бодоа (цитат по Фредриху, 1978), раст корена љиља почиње раније у пролеће, него код јабуке. То показује да различите врсте воћака имају различите захтеве у погледу минималних и максималних температура за нормалан пораст корена, односно, да је потреба корена за топлотом условљена врстом и сортом воћака. Минималне температуре потребне за почетак раста апсорционог корена према Колесникову, (1954) за шљиву и бреску се крећу од 2 до 4°C, за крушуку и јабуку од 7 до 8°C, за смокву од 9 до 10°C, за кестен и јапанску јабуку од око 12°C, за винову лозу од 8 до 12°C, за агруме од 10 до 16°C. Оптималне температуре за највећи број врста воћака се крећу између 15
и 25°C, док при загревању земљишта више од 30 до 35°C корен поново зауставља раст, односно апсорпције жице се не могу формирати.

Значај оптималних температура земљишта се може посматрати као динамична величина, која варира у зависности од концентрације O₂ и CO₂ у земљишту. Недостатак O₂ у земљишту, при високој температуре врло јако кочи раст корена. На тај начин топлота земљишта сама по себи не представља инхибитор раста, већ утиче на промене размене гасова у земљишту, што кочи пораст корена.

Богати реакци земљишта и одговарајућа аерисаност имају велики утицај на развитак кореновог система. При повољним климатским условима и влажности ткива, раст корена има један максимум; но у времену, сушноћи периода, за време жарких летњих месеци, раст корена се задржава и прекида, па крива има два максимума. У суви земљиштима маса корена се смањује, као и у периоду влажним. Влажност земљишта позитивно утиче на активност корена само онда, ако је прати одговарајућа аерисаност, односно, ако је нормална размена гасова у земљишту тј. ако се не акумулира CO₂. Неповољно споредног дејства на развитак корена има и дугацак заливање, при којем се температура земљишта снижава за неколико степени, највише у горњем слоју, где је распрострањена највећа маса корена. То доводи до успоравања раста корена, нарочито због тога, што охлађеност земљишта траје релативно дуго, те се температура земљишта тешко изједначава. Према томе, оптимална земљишта за активност корена су умерено влажна, зрила, добро аерисана, о чему је потребно водити рачун како при избору система обраде земљишта, тако и при одређивању норми и времена заливања.

Режим исхране вођака такође значајно утиче на формирање и активност кореновог система. При уравнотеженом односу хранљивих материја, брже расту и корен и леторasti. Овде се не мисли само на директан утицај на раст корена, већ и на узајамну везу између продуката фотосинтезе и енергетске обезбеђености корена. При недостатку хранљивих материја, значајно велики део асимилате се по правилу користи само за развој кореновог система.

Такође важну, иако посредну улогу у активности корена, има свећности - први извор енергије у процесу фотосинтезе. За апсорпцију воде и минералних материја, и синтезе кореновог система користи се енергија доступна у облику асимилате. Ако енергије, односно асимилата нема достао, корен се не развија и његова продуктивност се ограничава: Асимилати се активирају у процесу дишања. За дишање кореновог система неопходан је кисеоник и растерцива структура земљишта који откључава могућност акумулације CO₂. Активна размена гасова у земљишту је значајан фактор високе продуктивности корена, што је неопходно стално одржавати при обради земљишта. При засењивању круне, тј. када засењено лишће преовлађује над осветљеним, маса корена се смањује не само апсолутно, већ и релативно у поређењу са масом грана. У условима јаке осветљености лишћа, свећности имулу активира развитак резервних ткива у корену и много брже образовање елемената за спровођење воде. Кроз комплексни механизам регулације, осветљено лишће потпомаже стварање повољних предус-
лова за нормално протицање транспирације с једне стране и продуктивности корена, са друге стране.

На крају, активност корена и његово сезонско понашање у непосредној су зависности од надземног дела воћке—круне. То значи, да се било какав утицај на круну, одражава на стање корена. Такав утицај на корен имају и деформације круне и прстеновање грана. Повреда лишића, независно од карактера повреде, такође условају сличне реакције корена. Сваки део корена непосредно је повезан са одређеним скелетном граном, те између одређених делова корена и круне, у делу дрвета постоји јасно изражена аутоомнолност. Постоји, такође, тесна веза у садржају материје раста између грана и корена, те свако ударање вршних пупољака успорава образовање нових коренова. Развитак изолова (принос) значајно се одражава на развитак коренова: у родним годинама корен се развија слабије и обрнuto, тј. развија изолова негативно корелира са растом корена.

Развитак корена има не само сезонски — годишњи, већ и дневни ризам. По резултатима Колесникова, 1954, корен јабуке брже расте ноћу, него дану. То се може тумачити чињеницом да је транспирација ноћу знатно ослабљена, те се јављају повољни услови влажности и појачан доток асимилата у корен, што поступље његов пораст.

ЛИСТАЊЕ

Фенофаза листања се код неких врста воћака поклапа с почетком цветања, а код неких настаје пре листања, па онда цветање и обрнуто. Ова фаза траје до потпуне развијености листа. Циљ је да се лисна површина на време формира, да буде што већа и здрава. Због тога овој фенофази у годишњем циклусу развоја воћака треба посветити пуну пажњу и створену лисну површину што боље одржавати у здравом стању, јер ће само здраво лишће у потпуности извршити своју улогу (пред свега продукцију органских материја).

ОТВАРАЊЕ ПУПОЉАКА

Фенофаза пупљења или отварања пупољака настаје од момента појачане циркулације сокова тј. биохемијског активирања меристемског ткива, односно посећивања запренине пупољака и пуцања заштићених љускатих листића, и траје до почетка листања и цветања.

Ова фаза у периоду вегетације кратко траје, варијабилна је и зависи од врсте воћака, сорте, подлоге, старости, примењене агротехнике, мелиоративних услова и др.

Нарочито је упадљива код репродуктивних (цветних) пупољака.
Сл. 31 – Етапе органогенезе јабуке: I Вегетациона кућа; Ј – јриформије (керосице); II Развијачке вегетације и овоћа; a) у листу, b) у епителијуму, c) у листопаду, d) у розети; III Развијачке факторе у вегетационом саобраћају: a) генетички и јриформије, b) растојање и генетички и овоћа; IV Развијачке факторе у вегетационом саобраћају: a) генетички и јриформије, b) растојање и генетички и овоћа; V Развијачке факторе у вегетационом саобраћају: a) генетички и јриформије, b) растојање и генетички и овоћа; VI Развијачке факторе у вегетационом саобраћају: a) генетички и јриформије, b) растојање и генетички и овоћа; VII Развијачке факторе у вегетационом саобраћају: a) генетички и јриформије, b) растојање и генетички и овоћа; VIII Развијачке факторе у вегетационом саобраћају: a) генетички и јриформије, b) растојање и генетички и овоћа; IX Развијачке факторе у вегетационом саобраћају: a) генетички и јриформије, b) растојање и генетички и овоћа; X–XI Етапе развоја јабука; XII Етапе развоја јабука
ФОРМИРАЊЕ И РАСТЕЊЕ ЛЕТОРАСТА
(МЛАДАРА)

У току вегетационог периода расић воћака протиче у периодичном образовању новог лисића, цветова, летораста, плодова, пупољака и корена.

Нарочито је уочљив расић леторасића. Он може да се одвија у дужину и у дебљину. У првом случају се одликује образовањем гушећих летораста и зрацањем, што је повезано са увећањем обима круне. Раст летораста у дебљину је мање изразјен и постаје уочљив углавном при повећању обима дебла и рамених грана.

Леторасти се развијају из вегетативних пупољака образованих у претходној вегетацији. У току вегетације интензивност пораста летораста у дужину се не одвија истим темпом, те се може разликовати неколико типичних фаза раста.

После кратког периода заштитне, донесеног раста и јарунака (код јабуке често у априлу), наступа дужи период интензивног расића. Та фаза се обично означава као период основног раста или зрно периода раста. У зависности од временских услова, он се завршава у јуну. Међутим, најинтензивнији раст летораста у дужину дешава се најчешће средином маја. Код врло бујних сорти или комбинацији сорта – подлога, та фаза може да се продужи и у јуну; зато је следећи период пораста врло тешко одредити. Друга фаза раста, која може наступити после кратког периода „мировања“ или стагнације у порасту, често се означава као „јунски прираст“. Овај прираст у значајној мери зависи од обезбеђења водом, доступним минералним елементима и количином већ формираних резервних материја. Код слабо бујних сорти и фаза може бити врло кратка, а код бујних сорти – протеже се до јесени.

Понекад, после завршетка „јунског прираста“, крајем јула или касније, наступа зрна, још краћа, фаза расића. Тај „жесењи прираст“ се најчешће јавља после летњих суша које се смењују обилним падавинама.

Пораст летораста у дужину зауставља се појавом зрна и тада почиње период секундарног дебљања, који траје до краја вегетације.

Иако се за растење летораста може рећи да је пре свега генетска особина вода, оно у значајној мери зависи од читавог низа фактора: еколошких услова (температура, влажност, светлост и др.), типа земљишта, примењених агротехничких и помотехничких мера (система узгоја, подлоге, режима исхране и др.), старости засада и других фактора.

Температура је значајан еколошки фактор који на пораст летораста делује индиректно. Дијапазон температуре при којима се одвија раст летораста је различит за различите врсте, односно сорте. За већину врста температурни минимум је између 2 и 4°C. Оптималне температуре се крећу између 15 и 25°C, и при њима је могућа најбоља координација брзине одвијања свих процеса који доводе до пораста летораста. Макси-
маље температуре не пређазе 35°С, јер више температуре повређују ткиво и утичу негативно на развитак вегетационе купе.

Данас се поуздано може тврдити да на пораст летораста подједнако значајно утичу како напред наведене температуре у току вегетације, тако и ниске температуре у току зимског мировања, под чијим утицајем инхибибиро раста који се налазе у пупољцима, те само благодарећи томе, са кретањем вегетације наступа образовање летораста (Glimerot, 1978).

Светлост такође, утиче на процесе растења летораста, индиректно. Она почиње деловати само после њеног апсорбовања од стране одређених система пигмената, пре свега хлорофил хлороплаза у процесу фотосинтезе. Фитохормони и структурне материје, које се при том образују, везују други део светлосног спектра (светлоцрвени и тамноцрвени), који биљка апсорбује делујући фотоморфно на раст летораста. Систем фитохормона се налази углавном у мериестемском ткиву и светлости, коју они апсорбују, задржава јак пораст интернодија летораста и потпомаже пропорционални пораст лицења. Један део светлости апсорбују и пигменти каротинови и флавини, потпомажући фотопроцес летораста.

У засадима воћака састав светлости је немогућ изменити. Зато је неопходно пре заснивања засада добро проанализирати услове осветљености парцеле и према томе прилагодити систем узгоја и помотехнику. Искористљивост светлости ће бити максимална код круна малих размера, нарочито ако су без скелетних грана, какво је нпр. витко вртено. Унутар великих, бујних круна, обично пада знатно мање светлости и као последица тога се развија засењено лицење са незнатном интензивношћу размене материја, при чему се образују слаби леторости, који ретко диференцирају цветне пупољке.

Води режим, односно кружење воде у воћкама, показује како, директан утицај на вегетативни раст. То је везано са асорпцијом значајне количине воде из земљишта путем корена, као и са учењем воде у свим биохемијским реакцијама.

За воћке, главни извор воде су атмосферске падавине. Недостатак падавина у периоду основног раста (мај-јун) изазива инхибицију развитка летораста, а летње суша могу га сасвим прекинути и довести до превременог образовања терминалних пупољака.

За пораст летораста различитих врста воћака потребна је различита количина воде. Тако нпр. за раст летораста вишње и кајсисе неопходно је релативно мало воде, док истовремено леторasti домаче вишње расту само при доброј снабдевености водом.

Добра обезбеђеност хранљивим материјама је важна претпоставка раста летораста. Од макро и микро елемената који се уносе сваке године при ђубрењу, највећи утицај на раст летораста има азот, при чему се његово дејство, као и дејство других хранљивих елемената, налази у одређеним корелативним везама са процесима раста осталих, истовремено образујућих органа (цветова и плодова). Интензивност раста
летораста у првом периоду раста зависи од залиха протеина растворљивих у води. Сувише висока безбедност азотом у периоду основног раста условљава дуготрајан раст летораста, што резултира задржавањем диференцирања, како терминалних, тако и цветних пупољака.

Дефиниција азота доводи до ослабљеног образовања хлорофила (до хлорозе лишћа), чиме се смањује дејство хлороплазма у процесу фотосинтезе, а што се одразава негативно на продукцију структурних материја и хормона који утичу на пораст летораста.

Појава фенофазе пораста летораста тумачи се утицајем ендогенних инхибирајућих материја раста. Ти фитопхормони у многоме одређују почетак, крај, динамику, јачину и корелацију раста. Тако се са сигурношћу може речи да ауксина, премештајући се базипетално од тачке раста летораста, корелативно задржавају отварање бочних пупољака, повећавају угао гранича бочних грана првог реда, задржавају њихово акропетално савијање и слабе издуживање.

Јанкиевич (1970) је на моделу раста летораста јабуке покушао доказати сложеност узајамних веза при регулацији раста. Попао је од претпоставке да отварање пупољака почиње и под дејством цитокинина, при чему се стимулише образовање или активирање ауксина. Један део образованог ауксина иде на стимулисање издуживања нових летораста, а други део се транспортује базипетално. У основи растућих грана стално се образују нове количине фитохормона. Крећући се ка основи летораста, ауксини појачавају активност камбијума и образовање нових елемената ксилема и флоема, који повезују растуће леторасте са кореном. Даље, утичу на доток велике количине хранљивих материја, управљајући их ка месту њиховог образовања. Ауксини такође стимулишу претварање резервног скроба у шећер, који представља доступну хранљиву материју за растуће врхове летораста. Интензивно формирање спроводних елемената под утицајем ауксина, изазива појачан доток фитохормона, из корена, углавном цитокинина и гиберелина. У току тог процеса гиберелини учествују у издуживању интернодија, као и у нормалном диференцирању флоема делујући заједно са ауксинима, кај којима и цитокинини поседују нормално диференцирање ксилема.

Оvim тумачењем Јанкиевича углавном се објашњава могућност регулације периода основног раста летораста.

Зауре (1971) са друге стране, својим моделом покушава објаснити регулационе везе између корена и летораста. Он полази од претпоставке да корен после зимског мирињања образује доволјну количину стимулатора раста, који се премештају у тачке раста летораста и потомажу образовање меристема. При доволјном активирању раста почиње развиће лишћа и летораста. За то време фитохормони и продукти фотосинтезе
померају се надоле и са повећаном концентрацијом, инхибирају раст корена. Формиранjem терминалних пупољака на леторастима они завршавају пораст, а корен поново почиње да расте. Међутим, уколика у њему постоје довољне количине резервних материја и ако су повољни услови средине, обнављање раста корена могло би да индукује и нови раст летораста.

Из напред наведених тумачења се може видети да ритам раста летораста и корена представљају резултат функционисања ендогених система регулације који дејствују само при оптималним условима средине.

Раст летораста зависи од положаја пупољака на грани и од положаја грана у систему гранања. Најдужи леторасти се развијају из скелетних грана или продужетака дебла. Вертикално-растући леторасти у вршном делу круне често су образовани после уклањања дела централне проводнице, развијају се из адвентивних пупољака на месту великих рана и врло често достиже велике дужине. Они се одликују израженом апикалном доминацијом, чиме се објашњава врло мали број или потпуно изостајање формирања цветних пупољака на њима. Сила апикалне доминације одређена је дотоком материја раста у основи летораста и представља специфичност врсте, односно сорте.

FORMIRAJE SPORA I PONIH ĆELIJA
(GAMETA)

У пролеће, истовремено са развитком и достизањем одређених размера органа цвета у цветном пупољку, дешавају се значајне квалитативне промене у мужским и женским генеративним органима.

Процен образовања полних ћелија воћака је сложен и пролази кроз две етапе:
- етапу спорогенезе или образовања спора и
- етапу гаметоиденезе или образовања гамета.

Споре и гамети, које имају изузетан значај као носници наследних особина, образују се у спорогеним ткивима воћака.

У процесу редукције дебе (мейозе) образују се хаплодидне споре, различите крупоноће (ситне микроспоре и крупне макроспоре).

Унутрашњем делу младих вранчика образује се од ћелија субепидермиса спороидено шкиво — архесторијум. Од њега постаје материнске ћелије полена. Свака нормална материнска ћелија полена редукцијом деобом ће дати четири младе хаплодидне микроспоре (тетраде). Образовањем ћелијских опни, тетраде се одвајају једна од друге, преобрађају у Јолова рзни и испуштају вранчике. Овај процес образовања нових поленових зрна или микроспора назива се микроспорогенеза.

Слични процеси се дешавају у образовању женског полног апарата — макро-
споре у плоднику цвета.
Како код вођака плодник може настати од једног или више међусобно сраслих оплодних листића — карпија, у сваком од њих се образују по два или више семених заметака (ovula-макроспоранија). Од тела semenog заметка (nuclusa) настаје круна ћелија — материнска ћелија ембрионове (заметкове) кесица која представља аналогну ћелију материнској ћелији полена. У току редукционе деобе од ње ће настати четири хайлобрне макроспоре (тетраде), које су распоређене у низу. На тај начин је завршен процес који се назива макрогамијологенеза.

После образовања мушке и женске споре, односно после спорогенизе, процес образовања полних ћелија се наставља у другој етапи, гамијологенези.

Образовање мушких гамета се одвија у хаплоидној микроспори, где се хромозоми деле митотички, а цитоплазма неједнако. Као резултат образују се две мушке гамете — сперматичне ћелије, са хаплоидним броjem хромозома. Тиме је завршена микрогамијологенеза.

Аналогно томе, процес образовања женских гамета или макрогамијологенеза (мегагаметогениза) одвија се у најдовој макроспори, која представља иницијалу женског гаметофита (embrionове кесице), док се остали три макроспоре ресорбују.

У току три узастопне митотичке деобе образује се осмоједарна ембрионова кесица. Свако једро ове кесице садржи хаплоидан броj хромозома. Спремањем по једног једра са оба пола кесице, формира се централно једро ембрионове кесице, са диплоидним бројем хромозома. Формирањем седмоједарне ембрионове кесице, завршени је процес макрогамијологенезе. На тај начин настају: јажна ћелија (женски заметак) и две ћелије помоћнице (синергице) са једне стране ембрионове кесице, три ћелије антицидне са друге стране и у средини централно једро ембрионове кесице.

Код вођака се на тај начин мушки полни апарат андрецеум формира нешто раније од женског гинецеума.

Међутим, без обзира на то, код јабуке и крушке жиг тучка је спреман за опращивање пре отварања антера—прашника. Код бреске, кајсије и већине сивош вођа функционална спремност жига за опращивање се дешава истовремено са спремности прашника. Код језграстих вођака (ораха, лешника и кестена) пак, имамо ситуацију да опращивање почну знатно раније него што је жиг тучка спреман да прими полен (Шмадак, 1978).

ЦВЕТАЊЕ ВОЂАКА

Цветање је фенофаза која представља прогресивно разрастање анатомских елемената цвета и отварање цветних пупољака.

Оно по правилу претходи опращивању и оплођењу. Од његовог Јоћчека, редоследа, јека, Јарада и облиности зависи рођеств вођака, те се с правом сматра јединим од најважнијих чиниоца рођености.
БИОЛОГИЈА ВОЂАКА

То је најкритичнија фенофаза воћака с обзиром на осетљивост цвећа и цветних елемената према ниским температурама тј. према позним пролећним мразевима, као и према нападу штеточина и бодеци, нарочито гљивичних.

Време цвећања (почетак, ток, трајање) зависи од генотипских особина врсте и сорте, као и од деловања еколошког цинилаца (температура, релативна влажност ваздуха, ветар, падавина итд.).

Цветање траје краће кад су температуре ваздуха високе, количина падавина мала, релативна вLAGА ваздуха ниска, а време ветровито. Цветање се продужава при супротним временским условима.

Поред наведених фактора на цветање утичу и други чинилац, као што су:
- надморска висина, (на свака 33 m надморске висине цветање закашњава за по један дан);
- географска ширина, (за сваки степен северне ширине цветање закашњава за 4-6 дана);
- старост воћака – (старије воћке раније цветају него млађе);
- бујност воћака – (бујније воћке касније цветају од манге бујних);
- једногодишње (шљиве касније цветају на данарици, него на вегетативним подлогама; јабука касније цвета на генеративним подлогама, него на вегетативним М и ММ подлогама слабије бујности итд.);
- резидуа (цветање је доциније код јачег орезивања);
- експозиција (дерена) – (на северним положајима цветање је касније него на јужним и источним);
- карактер зими – (уколико је зима била блаха – топлија, утолико цветање може да буде касније и неуједначен) и др.

![Слика 32 - Фенофазе цветања код шремења: Е - јачијак цветања; Ф - јуно цветање; Г - пречветање](image-url)

Од воћака које се гаје у Југославији најразније цвета лешник (јануар – фебруар). После њега поступно цветају: дрен, бање (фебруар – март), јапанска шљива, данарица, кајсија, црни трн, рибизла, бресква, трешња, вишња, домаћа шљива, крушка,
jabuka, citrusi (mart – april), jagoda, orah, maliina, ogrozd, oskoruska, duža, kupina, mushmula, borovnica (april – maj), mazlina (kraj maja – poчетak јунa), pitomi kresten (jun – половина јула), smokva (средина јуна-август) и најкасније јапанска mushmula – нешпула (октобар – новембар).

Цветање је различито и унутар једне врсте воћака, те се сорте групишу према овим критеријумима на:
- рано цветне,
- средње рано цветне,
- средње позно цветне и
- позно цветне сорте.

Ова подела је од посебног практичног значаја код jabучастих врста воћака, где се разлика у времену цветања између рано цветних и позно цветних сорти код jabuke може да креће од 8 до 10 дана, а код крушка од 9 до 14 дана. Сорте, које се по времену почетка цветања налазе у истој или суседној групи, могу да послуже као међусобни опрашивајачи ако су обезбеђени и остали услови за нормално опрашивање и оплодње; док сорте из удалених група не би требало да се комбинују.

Код коштичавих врста воћака овај проблем комбиновања сорти из група различитог времена цветања при опрашивању није присутан, јер код већине врста ова фенофаза релативно кратко траје (експлозивно цветају), од свега неколико часова код шљиве Јожегаче, до 2-4-6 дана код кајсије.

Трајање цветања различних сорти коштичавих врста воћака је знатно краће и креће се: код шљиве од 2 до 8 дана, бреске од 8 до 10 дана, кајсије од 4 до 8 дана, шрине од 8 до 12 дана и вишње од 4 до 8 дана. Ово је разумљиво, пошто су цветови jabучастих и jagодастих врста воћака претежно појединачни или у мањим групама.

Цваста jabuke и крушка је гроња, која се састоји од 5 до 9 цветова. Прво се отвара централни цвет, а за њим више мање равномерно, периферни. Отварање централног цвета у цвасти обично дуже траје него периферних. Ово се објашњава, по правилу нижом температуром у тренутку отварања централних цветова.

Трајање цветања одређене сорти је знатно краће и код jabuke се креће 7-14 дана, код крушка 7-12 дана, код вишње керешке 1-2 дана, шљиве Јожегаче неколико часова итд.

У фенофази цветања се према Флорини (1922), могу разликовати три потфазе:
- почетак цветања – када се отворе први цветови,
- јуно цветање – када се отвори 75% цветова и траје све док са воћке не отпадне 75% круничних листића,
– крај цветања или ћрепцевања – када са свих цветова отпадну крunicини листићи (95%).

Код воћака са једнополним цветовима (ораха, лешника и кестена) мушки и женски цветови најчешће цветају у различито време. Та појава је позната под именом дихогамија.

За успешну производњу, односно принос ових воћака, пожељно је да размак у цветању мушких и женских цветова не буде већи од 9 дана.

Дихогамија се јавља у два облика, као: прпстаганија – где најпре цветају и функционално су способни за оплодњу мушки цветови (Andraeaceae – мушки гамет) и прпстаганија, где прво цветају женски цветови (Gymnacaceae – женски гамет).

Код сорти ораха доминире протандррија.

Протаганија се ређе јавља и код стандардних сорти, и селекција ораха је присутна код селекције газенхјам 139, драјновски, сибишел 41, 44 и др.

Са производног аспекта није пожељна рана прпстаганија (јер се поклапа са појавом пролећних мразева од којих страдају ресе), као ни касна прпстаганија (због појаве високих температура у време цветања које такође негативно утичу на успешну оплодњу јер се исушује жић тучка, а и смањује се клијавост полена).

Код сорти ораха генотип условљава тип дихогамије, док еколошки услови средине гајења утичу на размак (број дана) цветања мушких и женских цветова.

Код сорти лешника, тип дихогамије је условљен еколошким факторима, пре свега температуром. Ако је температура у време цветања нижа од +9°C, биће прпстаганија, а ако је виша од +9°C, биће прпстаганија (Балдини, Писати, 1976). То практично значи да ће код неке сорте да се јављају оба типа дихогамије у зависности од метеоролошких услова у време цветања.

Хомоѓамија (истовремено цветање мушких и женских цветова) се код ораха и лешника ређе јавља.

Трајање цветања представља сортну специфичност, иако и временски услови имају врло важан утицај.

Према дужини трајања цветања, разликују се сорте воћака:
1. сорте са краткограјним цветањем или са брзим протицањем цветања, код којих се сви цветови отварају и прецветавају истовремено (jabuka – беличник, мекинштош, вишња-керешка, шљива-пожегача итд.).
2. сорте са дугограјним цветањем, код којих се цветање и прецветавање постепено дешифравају (делишес, боскоп, јонатан и др.).

Сорте са дугим периодом цветања и споријим развитком цветова имају већу могућност опашивања, оплођења и заметања плодова и при лошим временским условима. Осим тога, оне боље подносе позне пролећне мразе у време цветања, јер им се велики број цветова налази на врло раним етапама развитка, те избегавају повреде од мраза и постижу и тада добру родност.
Насупрот њима, код сорти где је цветање истовремено, мразеви уништавају практично све цветове, а самим тим и комплетан род у тај години.
Зато је воћар дужан да уводи у производњу сорте са дуготрајним цветањем, јер је то, између осталих и ефикасна мера заштите од позних пролећних мразева.
Обимност цветања је генетска особина врсте, односно сорте, од које у значајној мери зависи обилност заметања плодова и висина приноса. Међутим, преобилно цветање може понекад исцрпести воћку до те мере да она на крају донесе врло мало плодова. Другим речима, обилност цветања представља само потенцијалну способност рађања одређене сорте, а величина приноса ће зависити још од читавог низа других фактора.
На крају, познавање регоследа цветања врста и сорти веома је важно због правилног избора сорти опрашивања у плантажним засадима, као и због одређивања календара заштитног прскава воћака.
Поред цветања које се нормално јавља код већине врста воћака у пролеће, у мају–априлу–мају, може наступити и такозвано нередовно цветање: йролећно (неколико недеља по завршетку нормалног цветања), лејене (честа појава код летњих сорти јабука, после бербе), и јесене (као последица дугог сушног периода и влажне, топле јесени).
Цветни пуопољци из којих се развијају закаснели цветови у пролеће и лето почињу у прелазним вегетацијама, док је јесен цветови настају из пуопољака који се образују у истој вегетацији кад се и појављују.
Нередовно цветање је непожељна појава јер се резервне хранљиве материје воћака троше на ван сезонско цветање, које не ствара економске приносе у години цветања, а умањује родност у наредној години. То цветање је неповољно и са аспекта отпорности јер исцрпљује воћку и повећава њену осетљивост према мразевима, болестима и штетоцинама.

ОПРАШИВАЊЕ (ПОЛИНАЦИЈА) ВОЋАКА

Под опрашивањем (политацијом) се подразумева наношење поленових зрна на жиг тучка.
Полинација је чинилац родности воћака, јер код највећег броја врста и сорти, оплођење зависи од опрашивања.
Према пореклу поленових зрна која се у опрашивању користе, може се разликовати:
- Самоопрашивање (аутоополинација) – које представља опрашивање у оквиру исте сорте. Ова појава је карактеристика: дуње, неких сорти кајсија, бреске, вишње, свих сорти јаболка и малина, неких сорти шљива (пожегача) итд.
– Спирено (унакрсно) обрашивање (аллополиплација) – које представља опрашивање између сорти, тј. када полен једне сорте падне на жиг тучка друге сорте. Ова појава је карактеристика: свих сорти јабука и крушка, неких сорти бресака, кајсаја, шљиве, вишана итд.

Код воћака постоје различити механизми који спречавају самоопрашивање, а подстичу страноопрашивање. Благодарећи тој чињеници у природи се повећава варијабилност (полиморфизм) воћака, што је необично значајно за стварање бољих сорти, хибридизацијом.

Да би дошло до опрашивања, потребно је да дође до пуцања антера и испадања поленових зрна.

Жиг тучка способан је да прими полен у току 4–6, па и више дана после отварања цвета, што зависи од врсте, сорте и временских прилика.

Полинација воћака је могућа без Јосредника – непосредно, стресањем полена из антера на жиг тучка истог или суседних цветова, са Јосредником – инсектима (ентомофилија) и ветром (анемофилија).

Код највећег броја врста, сорти воћака, ентомофилија је одлучујући чинилац опрашивања. Она је омогућена и грађом цвета, који је код воћака прилагођен за такав процес, а цветне жлезде и обојена круница, привлачни за инсекте који наносе скупљени полен на жиг тучка.

У посредовању при полинацији учествује велики број инсеката: дивља пчела, осе, бумбари, неке врсте мува и др. Међу њима, као најважнији инсект опрашиваč је
медоносна џељка (Apis mellifera), која у посредовању при полинацији вођака учествuje 80–85%, а остали инсекти 15–20%.

На телу пчеле радилице, обилно напрашеном поленом, може да се нађе до 10.000 поленових зрна.

Познато је да једна пчела у једној минути посети 10 цветова, а како једно излетање траје око 10 минута, то ће једна пчела у току једног излетања посетити око 100 цветова.

При повољним временским приликама пчела у току дана може да излети 40 пута и да укупно дневно посети 4000 цветова.

Пчеле посећују цвет вођака по тихом, сунчаном, ведром и топлом времену, при температури најмање 8–9°C. Оне су активне и при облачном и тихом времену, при температури 12–14°C. У најповољнијим временским приликама пчеле могу да се удаљују од кошница и до 4 km, док при хладном, ветровитом и кишовитом времену, радијус кретања им је много краћи, свега 100–200m.

Сматра се да је за постизање високих и стабилних приносова вођака, односно за обезбеђење обилатог опрашивања јабуке потребно 2–3 пчелених друштава по хектару, више 7–8 кошница, ширем 6–8 кошница по хектару, које би у зависности од врсте биле удаљене од вођака око 200 m, односно не више од 500–800 m. (Таб. 24).

Таб. 24 – Утицај удаљености кошница на принос јабуке (Сахаров, 1951)

<table>
<thead>
<tr>
<th>удаљеност кошница (m)</th>
<th>принос</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
</tr>
<tr>
<td>50–200</td>
<td>100,7</td>
</tr>
<tr>
<td>200–300</td>
<td>65,3</td>
</tr>
<tr>
<td>300–400</td>
<td>44,8</td>
</tr>
<tr>
<td>400–500</td>
<td>16,4</td>
</tr>
<tr>
<td>500–600</td>
<td>13,2</td>
</tr>
</tbody>
</table>

Сл. 34 – Присуство пчелених друштава дозвољено био је обрашивању вођака
Код смокве преносилац полена је оса Blastophaga grossorum, која живи у цвету дивље смокве (Ficus capriformis) и опрашћује тучкосте (женске) цветове сорти (каліфицираја).

Преношење полена ветром (анемофилија) код воћака је мало заступљено. Анемофилне биљке имају специфичну грађу жига који може да прими велику количину полена. Мушки цветови ресе, неугледне форме, продукују велику количину поленових зрна (реса лешника има око четири милиона поленових зрна). На овај начин се опрашњују орах, ленин и дивоци кестен. Оваквом начину опрашњавања прилагођен је и полен ових воћака, који је ситан, лак и сув.

И човек се јавља као чинилац опрашњавања воћака, али у знатно мањој мери и то у специјалним случајевима, као што су:
- вештачко опрашњавање при планском укрштању (хибридинизација),
- допунско опрашњавање при пошем времену и
- кад на одговарајућој удаљености нема сорти опрашника.

ОПЛОЂЕЊЕ VOЋАКА

Опложење воћака је цитогенетско-физиолошки процес, веома значајан за биоеволуцију и воћарску праќсу. У ужем смислу речи опложење представља спајање мушке и женске гамете у зигози.

Да би дошло до опложења неопходно је да се успешно обави опрашивање, као и да буду испуњени одговарајући биоолошки и еколошки услови.

Од биоолошких чинилаца значајни су: добра клијавост полена, као и подударност (компатибилност) са тучком сорте која се опрашњује, функционална способност жига у моменту полинације и функционална способност ембрионове кесице у тренутку кад до ње дође поленова цевчица.

Објашњење:
1. Површина жига
2. Поленова цевчица
3. Генеративно једро
4. Цевчица нуклеуса (једро)
5. Зиг антипод
6. Ракче халазе
7. Антиподе
8. Ембрионова кесица
9. Поларна једра
10. Нуклеус
11. Јајна ћелија
12. Сиперици
13. Индексумени
14. Микролима
15. Фундилус

Сл. 35 — Реєролуктивни органи: Јолен са цевчићом (лево) и семени замешак (десно)
Сл. 36 – Дијаграм сексуалног циклуса у ангиосперми
A. МЕЈОЗА

1. Сивешен развој мајеринске ћелије Јолена (микроскопија)
2. Мејоза — мешафаза I
3. Мејоза — фаза шетира,
4. Микроспоре,
5. Цевеши Југољак,
6. Сивешен развој мајеринске ћелије Ембрионове кесице (микроскопија)
7. Мејоза — мешафаза II
8. Микроспоре-шетира које аптрофирају,
9. Функционално способна микроспора,

Б. ОПЛОЂЕЊЕ

10. Јоленово зрно,
11. Вегетативно зрно
12. Генерацивно јеро,
13. Јоленова цевчица
14. Хелије сфернице,
15. Јоларно јеро,
16. А-антиморфе,
17. Јарна хелија,
18. А-серијца,
19. Ембрионове кесице,
20. Четворородарна ембрионова кесица,
21. Осимородарна ембрионова кесица,
22. Јарна хелија,
23. Ембрион,
24. Семе

Све то мора да буде праћено и повољним еколошким приликама: пре свега температуром изнад 15°C (оптимална за већину врста је између 20°–25°C) и релативном влажношћу преко 50% (оптимална за већину врста је између 60–80%).

Код већине врста воћака, када је јарна хелија (женски гамет) потпуно развијена и способна за оплођење, жит тучка при повољним условима лучи нектар.

Полен, павши на жит тучка при повољним условима температуре почиње да клија, уз претходно апсорбовање воде. Поленова цевчица (сифон) прорасте у току неколико часова, развија се на житу хемотрофно и клија, левкастро ширићи проводно ткиво стубића које се налази испод жита. Тај процес клијања поленовог зрах кроз пору егзине (спољашње опне) и издуживања цевчице кроз ткиво тучка, назива се сифошамија.

Истовремено са клијањем полена у цевцичи се врши митотичка делба генеративног јерда на два мушка гамета (сипертативне хелије). Код већине врста то се дешава око 24 часа после опрашивања. Овим чином поленова цевчица је спремна за оплођење.

Вегетативно јеро у процесу раста поленове цевчице налази се увек у њеном врху и стимулише њен пораст.

У почетку клијања, поленова цевчица за раст користи сопствене резервне материје, али врло брзо она почиње да апсорбује из ткива стубића, не само воду већ и органске материје — шећере, аминокиселине и др.

На свом путу ка ембрионовој кесици, поленова цевчица пролази кроз стубић, функцију и микропили. Прскањем опне хелије помоћнице у ембрионовој кесици и зида поленове цевчице омогућено је да сперматичне хелије из поленове цевчице продире у ембрионову кесицу. Вегетативно једро је већ рангије ресорбовано од стране околног ткива, испуштило улогу у расту поленове цевчице. Једна сперматична хелија се спаја
(оплођава) с јајном ћелијом и образују зигоїд са диплоидним бројем хромозома. Од зигота настеже заметак – клица (ембрион), који садржи два пара хромозома – један од „оца“ и један од „мајке“, и диплоидан је као и све соматичне ћелије.

Друга сперматична ћелија (n) се спаја са централним једром ембрионове кесице (2n), стварајући jeegro секундарног ендосперма са триплоидним бројем хромозома. Од њега ће се касније развити хранљиво ткиво семена (секундарни ендосперм), који у првим етапама развитка снабдева клицу (ембрион) хранљивим материјама.

На тај начин у ембрионовoj кесици настажу два спајања и тај процес се назива двојно оплођење. Ова појава је типична за све врсте воћака, односно за све скривеносеменице. Откривена је крајем пролећног века од стране Навашина и Fockla.

Остале ћелије ембрионове кесице – синергиде и антиподе ресорбују се пре или после оплођења.

Од омотача (intigumena)семеног заметка и остатака неразвијеног нуцелуса, настање семеначка која штити клицу (ембрион) од механичкних повреда.

Двојно оплођење воћака наступа у периоду од 1 до 5 дана, а изузетно и више дана после опрашиванja.

Код лешника, опрашивање се дешава у јануару–фебруару, а двојно оплођење се обавља тек у мају и јуну, пошто је претходно образована седмоједарна ембрионова кесица.

Иако на жит тучка падне и клиja велики броj поленових зрна, у ембрионову кесицу најчешће пролије само једна поленова цевчица.

Међутим, може се десити да у ембрионову кесицу проду две или више поленових цевчица са већим бројем сперматичних ћелија. То може довести до спајања јајне ћелије са две сперматичне ћелије, што резултира образовањем зигота и клице са триплоидним бројем хромозома.

Таква појава позната је под називом пироспермиja.

Плодови воћака се могу развити и без оплођења, путем айомиксиса и пара-ћенокарије.

Под айомиксисом (назив потиче од грчке речи: аро – без и mixis – сјединавање) се подразумева образовање плода са семеном без оплођење.

У овом случају клица (ембрион) потиче од неоплођених ћелија ембрионове кесице, као и других ткива семеног заметка. Ово је један облик вегетативног размножавања из којег су потомци, добијени из апомиктичког семена, идентични материнскоj биљци.

Код врста и сорти воћака, које на овај начин формирају плод, ова особина се у воћарскоj пракси користи за производњу садног материјала, из семена, што је јефтиниji начин умножавања, а истовремено и здравствено безбедниji јер је ослобођен вируса.
Апомиксис је честа појава код ораха, малине, купине, агрума, неких врста јабуке (M. hupehensis, M. sikkimensis, M. toringoides).

Под јаринокарпијом или „девичанским развићем плода” подразумева се образовање плодова без оплођења и без семена.

Разликују се два типа партенокарије: вегетативна и стимулативна.

Вегетативна јаринокарија настаје не само без оплодње већ и без било каквог подстицаја (стимулуса), па чак и без опрашича. Често се јавља код неких сорти крушка, код којих се плодови, настали на овај начин, морфолошки не разликују од плодова насталих нормалном оплодњом.

За образовање плодова путем стимулативне јаринокарије, потребан је подстицај изазван опрашицањем под утицајем биљних хормона (нарочито ауксина), мраза, уобода инсеката и др., при чему не долази до оплођења.

Склоност ка партенокарији је највише изражена код сорти крушка (калцефере, вилијамовке, гелертове и др.) и јабука (канадска ренета, мелба, бобовец и др.).

Склоност сорти ка формирању партенокарпних плодова је од великог значаја и за производну праксу, јер су се оне показале отпорнијим према одређеним штеточинама и лошијим метеоролошким условима (мразевима) у време цветања – оплодње.

Посебан је случај тзв. лажена партенокарија, код које после нормалног двојног оплодњења, семени замечи рано пропадају, те се не развијају нормалне семенке.

ФОРМИРАЊЕ ЦВЕТНИХ ПУПОЉАКА

Диференцирање цветних пупољака код вођака је феномен морфогене природе од кога зависи родност воћа.

Процес диференцирања цветних зачетака је дуготрајан и веома сложен, а може бити јединокрајан (код већине листопадних воћа) и вишекрајан (код великих броја реманантних воћа – јагоде, малине и агрума).

Дељење пупољака на цветне и вегетативне код воћа се дешава средином претходне године тј. у другој половини вегетације и продужава се током јесени и зиме, све до почетка пупљења.

Већина аутора је мишљења да цветни пупољци почињу да се формирају најчешће непосредно после престанка интензивног растења летораста, и у умереноконтиненталним климатским условима, то је углавном од краја јуна или првих дана јула месеца, па до краја вегетације.

Почињак формирања цветних зачетака је генетска карактеристика врсте, односно сорте. Према овом критеријуму извршена је и подела листопадних воћака у три групе:
1. Вођке са раним Јочешком формирања цветних зачетака (од треће декаде јуна до предмет краја августе).
У ову групу спадају: јабука, крушка, шљива, трешња, вишња, марела, бресква, рибизла, ограц, орах, мушки цветови лешника.
2. Вођке са средње Јочешком формирања цветних зачетака (од половине августа до половине септембра).
У ову групу спадају: карсија, бадем, женски цветови лешника.
3. Вођке са Јочешком формирања цветних зачетака (од половине септембра до почетка октобра).
У ову групу спадају: једногодишње сорте баштенске јагоде, малина, купина, дуња, мушмула и др.

Време Јочешка диференцирања пунољака код одређених врста и сорти вођка знатно варира и условљено је утицајем спољашњих фактора: метеоролошких и едафских услова средине, примењене агр. фито и помотехники, као и утицајем подлоге, старости вођка, положајем грана унутар круне и њихове старости и др. факторима.

Процес диференцирања код већине врста вођка, траје од 8–10 месеци. Међутим, период у току кога је пунољак морфолошки формиран, као типично цветни је знатно краћи и код појединих врста вођка траје од 3–5 недеља код јабуке и крушка, 4–6 недеља код вишње, 8–9 недеља код брескве и од 3–4 месеци код дуње (Шмадак, 1978).

Из овога се може закључити да је већ у јесенним и зимским месецима могуће одредити на основу спољашњих карактеристика, који су се пунољци диференцирали у цветне.

Колици ће број пунољака бити претворен у цветне, условљено је многобројним чиниоцима: наследне, биохемијске, еколошке и агротехничке природе, који делују комплексно.

Да би вођка могла да образује цветне пунољке, потребно је да се налази у стадијуму зрелости и периоду родности.

У стаблу мора да постоји физиолошка равновеђа тј. повољан однос између количина угљених хидрата и минералног азота. Ако у липшу преовлађује азот, онда стабла остају без рода, јер азот појачава вегетативни пораст. Ако пак, преовлађују угљени хидацки, слаба је родност и вегетативни пораст. Постизање физиолошке равновеђе између ове две компоненте у ткивима вођка, неопходан је предуслов за диференцирање цветних пунољака. Ово тумачење је данас прихваћено од највећег броја биљних физиолоха и помолоха.

Уз то, у стаблима вођка мора да буде обезбеђена и доволна количина биљних хормона, као и да еколошки чиниоци буду повољни за протицање фотосинтезе, пре свих освећење, температуре и власти.
На образовање цветних пунољака код воћака, делују и разне агро-техничке мере: прстеновање, парање коре, стављање металних појасева, орезивање стабла и корена, савијање грана, проређивање цветова и плодова, дефолијација, ђубрење, избор подлоге, наводњавање и друго.

Све ове мере имају за циљ успостављање физиолошке равнотеже. Међутим, све се оне морају проводити специфично, према генетским захтевима врсте, односно сорте.

Тако на пример, разне врсте воћака имају различите потребе за водом, те и различито реагују на додавање воде у време диференцирања цветних пунољака. Док агруми траже ограничен доток воде у том периоду (Aldrich, 1949), кајсија, уз такво ограничено наводњавање, формира знатно мање цветних пунољака (Glimerot, 1978).

Процес диференцирања цветних пунољака пролази кроз три велике етапе и има одређен ток.

Прва етапа која настupa са почетком диференцијације, одликује се брзам развојем пунољака.

Сл. 37 - Диференцирање цветних Јуђољака јабуке: 1) развијак везнешађиве куће; 2) образовање арних и бочних зачеляка цвета; 3) зачеляк чашних листића; 4) зачеляк кречних листића; 5) зачеляк јрашика; 6 и 7) расти листића и зачеляк јучка; 8) формирање семених Јуђољака; 9) цветни Јуђољак; 10) цвет.
У повољним условима, на вегетативној купи летораста образује се проширено куасто шеорно уквио, од кога најпре настаје зачетак чашице. Унутрашњости —, затим, поступно зачину круница, брашица и на крају шучак, који се уочава као цилиндрично испуцање у централном делу пуопака.

Сматра се да су код већине листопадних врста воћака сви органи цвета зачети већ крајем октобра, односно, крајем вегетације.

Друга етапа наступа уласком воћака у зимско мировање и карактерише се споријим развитком или прекидом у развитку пуопака под утицајем ниских температура. Изузетак представља морфогенеза већине сорти дуња, где се цветни пуопаци развијају непрекидно (Шмаулак, 1978).

Трећа етапа, која се одликује убрзаним развитком пуопака, наступа крајем зиме — почетком пролећа, када се обнавља активност размене материја, што доводи до формирања конечних димензија органа цвета и завршава се цветањем.

РАЗВИТАК ПЛОДА И СЕМЕНА

После двојног оплођења ембриона (клица) и Џерикари (плодов омогваћ) почињу да се развијају и у току свог развитка до потпуног формирања, пролазе кроз одређене, различите етапе.

За развој ембриона карактеристичне су две етапе: Џерва — успореног и друга — интензивног, брзог развијака.

У току свог раста плодов омогваћ пролази кроз три етапе: Прва етапа се карактерише брзим порастом, друга споријим и трећа — поново брзим развојем.

Развитак плода (семена и плодовог омогвача) зависи од већег броја чинилаца, међу којима су најважнији: снабдевеност хранљивим супстанцама и биохемијалним једицима, као и хромозомна конституција гамета и ембриона.

Развитак ембриона протиче у почетку врло лагано. Јајна ћелија се дели и обрасује Џерсамет, који је састављен од већег броја ћелија, распоређених у два нивоа. Спољни нижо ћелија — према халази, даћек регион котиледона, а унутрашњи — према микрополи, даћек хипокотил и зачетак корена.

Тело ембриона у овој етапи је лоптасте форме и радијалне симетрије. Код већине воћака ова етапа траје 4—5 недеља.

У другој етапи, ембрион се развија брзо, увећавајући волумен и постепено обрасујући котиледоне, пуоплич у епикотилом и хипокотилом и коренак. Тело ембриона у овој фази је сливене форме и билатералне симетрије.

Упоредно са развојем ембриона развијају се и остали делови семена (ендосперм и семенача). На крају ове етапе семенача лигнифицира, добија карактеристичну боју и семе је способно за репродукцију.
Меснати део плода -

Прва етапа се одликује делом ћелија, интензивним порастом и незнатном увећањем обима плода. Почиње одмах после оплодњења и завршава се када нуцелус достигне максималне размере. У том периоду је успорен пораст клипе.

Ткиво плода се у овој етапи одликује интензивним дисањем које поступено слаби и на крају периода делења ћелија, се значајно смањује. За овај период су карактеристични процеси синтезе високомолекуларних материја, неопходних за изграђивање ткива. Врло брзо акумулирање одређених компонената доводи до тога да неке од њих већ на крају ове етапе достиже у плоду највећу концентрацију, која се даљим порастом плода само смањује (као на пример органске киселине).

Субепидемални слојеви перикарпа у којима се налази хлорофил врше одређене фотосинтетске активности, иако је сопствени ниво фотосинтезе плода у овој етапи мали и недовољан за потпуну обезбеђеност асимилативима. Потребе за угленим хидратима се задовољавају из резервних материја дрвета и листова цвасти.

На овој етапи развитка плод је, како по свом саставу, тако и по својим функцијама у целини, аналоган листу биљке у развоју.

Друга етапа развоја перикарпа се карактерише издуживањем постојећих ћелија и општим успоренијим растом. Издухивање и увећање волумена ћелија праћено је увећањем међућелијских простора.

Ова етапа се одликује интензивним стварањем органских материја. Скроб се напротив, у хлорофилним зрицама у облику асимилационог скроба у релативно кратком времену (код јабуке се то обично дешава од почетка јула, а достиже максимум већ средином августа). Крајем ове етапе скроб дифундије у виду францизацарног скроба у средишње делове плода. Такође се нагомилавају шећери, целулоза, пектин, киселине, витамины, као и азотна једињења, неопходна за изграђивање белачивина у семену.

Пораст плода у фази издуживања ћелија зависи у већој мери од расположивих количина воде, као и од температуре. Ако би у том периоду наступила суша, пораст плода већине врста воћака би се успорио или сасвим прекинуо, што остварило да се надокнади ни накнадним заливањем.

Дужина трајања ове етапе, пре свега зависи од времена сазривања плодова и представља сорбину специфичност. Према Вилину (1966), код вишње и трешње може да траје од 5–8 дана (код касинове), и до 4–5 недеља (код шатенморело).

Ова етапа издуживања ћелија перикарпа код већине јабукастих и коштанчавих врста се поклапа са интензивним, брзим развитком клипе.
Међутим, Кример (1956) је констатовао да у воћарским регионима Немачке за пуно развиће клице брескве је неопходно око 40 дана. Све сорте код којих је друга етапа краћа од 40 дана, формирају се са недовољно развијеном клицом. Слична појава констатована је и код раних сорти трешње, чији се емброн (клица) развија спорије од плодовог омотача, те зрели плодови чешће садрже се се које нема функционално способну клицу. Такво се се клија и обично има отворену коштицу.

На крају ове етапе раст плода се привидно завршава, али се тиме не прекида развитак плода.

Трета етапа развоја плода карактерише се многобројним биолошко-физиолошким променама, као и убрзаним увећањем масе плода, које се уочава и органолептички.

Плод омекшава услед претварања протопротектина у пектину. Мена се основна зелена боја у жуту и интензивно се појављује допунска црвена боја. Скроб се трансформише у дисахарид сахарозу и моносахариде фруктозу и глукозу. Јављају се ароматичне материје, а смањују се киселине. Интензитет дисана се појачава и достиже максимум – климактеријум.

Плод ступа у физиолошку зрелост и постаје све погоднији за употребу у свежем стању. Може да почине и береба.

Ова етапа је различите дужине у зависности од врсте, односно сорте. Код рано сазревајућих сорти брескве, траје свега неколико дана, док код позних може да траје и неколико недеља. Код сорти вишње трета етапа траје у границима од 14 до 33 дана (Шматак, 1981).

ОПАДАЊЕ ПЛОДОВА

Иако воћке обилато цветају, само се мањи број цветова развија у плод. Код јабуке је то око 5–15%; код крушке 5–20%; код брескве 30–90%; код шљиве 5–10%; трешње 20–30%; код вишње 15–30%; код кајсије 5–30%; ораха 50–70%; лешника 60–85%

Међутим, у току пораста и развитка плодова, ни сви заметнути плодови не остају до беребе. Током године долази до појединачног или масовног опадања плодова.

Код већине воћака, уочена су три таласа опадања плодова: први, који почиње убрзо после пречетавања и траје 2–3 недеље; други талас познат као јунско опадање, почиње крајем маја и завршава се у јуну; и трећи талас опадања који се дешава пре беребе и знатно је слабијег интензитета од првог два.

Прво опадање плодова је условљено слабом и ненормалном оплодњом.

Јунско опадање плодова је нарочито изражено код јабучастих и коштичавих врста воћака. То је критичан период у коме степен оплодње, исхрана и временске
прилике опредељују родност воћке. Јавља се као последица недовољне исхранености плода азотом и угљеним хидратима.

Јунско опадање плода се поклапа са интензивним порастом летораста, који се јављају као конкуренти плодовима у потрошњи воде, азота и калијума. Појачава се при кишном и облачном времену (услед слабијег интензитета фотосинтезе), а смањује се при топлом и сунчаном времену. Опадање је интензивније са слабијих него са јачих грана, као и синтетичних плода или плода са мањим бројем семенки.

Применом одговарајућих агротехничких мера (пре света правилном исхраном и наводњавањем), потребно је обезбедити нормално снабдевање воћака органским и минералним матерijама, чиме се могу отклонити штетне последице јунског опадања плода.

ОПАДАЊЕ ЛИШЋА

Фенофазом, опадањем лишћа завршава се активни живот воћака у току године, тј. период вегетације.

Припрема воћке за улазак у стање мировања почина пре завршетка раста биљке и праћена је физиолошко-биохемијским процесима сазревања ткива и акумулирањем резервних материја.

При сазревању ткива и нагомилавању резервних материја процеси хидролизе преовладавају над процесима синтезе. Део асимилаата добијених од продуката синтезе, биљке су већ користиле за обављање животних функција и вегетативни пораст. Остатак се акумулира у секундарном дрвету, сржним зрацима и у ћелијама коре, у облику шећера, скробава, хемицелулозе, масти и органских једињења азота. Скроб, чија се количина на крају вегетационог периода знатно повећава, делимично се хидролизује, поступено образујући шећере у првом реду глукозу и малтозу. Истовремено расте и садржај растворљивих једињења азота, масти, танина и других материја. Биљка губи много воде и концентрација растворљивих материја у ћелијама расте.

Сазревање ткива се и визуелно уочава по промени боје најмлађих делова летораста, од светлозелене у сиво-жуту, жуто-мрку, црвено-мрку до тамномрке, у зависности од врсте и сорте.

Млада тквица таложе у ћелијским зидовима лићин у мицелијама целулозе, те се на тај начин меки млади органи одрвењавају.

У ткима која служе за акумулирање резервних материја стварају се шећери и делимично масти.

Вегетативни раст надземних делова и органа све се више успорава.

Раст корена, који је у другој половини вегетације имао успорен пораст, поново се активира и достиже максимум пораста пре опадања лишћа. Активни делови корена
у то време продужавају апсорбовање хранљивих материја и превођење асимилационог азота у органски облик.

У лици су смањује садржај хлорофила. Биљка одвлачи из њих велики део шећера, фосфорних и азотних једињења. Калијум силицијум и калијум остају у лици и при њиховом опадању скоро потпуно се губе. Као резултат разарања хлорофила и каротиноида, лици пред опадање мена боју од зелене у жуту, жуто-црвену, црвену, при чему је карактер боје листа својство врсте, односно сорте.

Одемирући лист опада са биљке формирањем слоја за оганјење (тзв. апсисног слоја) у основи лисне дршка. После опадања листва, то место брзо зараста, непропустљивим слојем плуте. Спавајући пуполци се такође покривају трајним плутастим ткивом.

Размена гасова кроз кору је јако ограничена, због чега дисанање и транспирација воде у надземним деловима слабе и врше се само кроз кутикулу.

Сазревање ткива и образовање резервних материја се завршава опадањем лишеља.

Сазревање ткива и почетак опадања лишеља представља важну особину врсте и сорте.

Она показује у којој мери наследна својства одређене врсте воћака одговарају одређеним климатским условима.

Код младих стабала воћака опадање лишеља почива на касније него код старијих стабала исте сорте. Лишеље опада рано, а са грана унутрашњег дела крета нега са периферних, при чему пре са основне гране, а касније са врха. Значајан утицај на време опадања лишеља има и подлога, а такође и еколошки услови, водни баланс земљишта, обезбеђеност хранљивим материјама и др.

После опадања лишеља, биохемијски процеси се не заустављају, већ се неки и активирају. Хидролиза скроба се интензивира, количина растворљивих азотних материја се повећава и са испаравањем воде њихова концентрација у ћелијама се повећава. Колоидна својства плазме у вези са тим се мењају, повећава се лепљивост, а активност размене материја се смањује.

На овај начин воћка спрема улази у период зимског мировања.

ХОРМОНИ И ЊИХОВ ЗНАЧАЈ У ВОЂАРСТВУ

Шта су то хормони? Хормони су супстанције које настају у једном делу биљке, а разносе се у друге делове где обављају одређене физиолошке функције. Они се стварају у врло малим количинама и имају одређени утицај на многе физиолошке процесе. Сматра се да је хормоналаси систем универзалан и независан, и да је настао још у процесу еволуције. У садашње време мало је података о самом механизму деловања хормонал-
них материја. Једна од хипотеза је да хормони представљају активну форму ензима и да контролишу реакцију појединих процеса.

У природи је значајно више група хормона – фитохормона: ауксини, гиберелини, цитокинини, аптицинска киселина, ретардант. Поред наведених група физиолошких активних материја, постоје хемијске супстанције које се синтетизују и вештачким путем. Оне не припадају наведеним групама. Велики број органских киселина и њихових деривата представљају физиолошки активне материје, чија се активност креће од незнатне стимулације неког процеса до упиштања биљке, односно воћке. Многи алкалоиди и глукозиди могу да зауставе растење, али, и да у одређеним концентрацијама видно стимулишу растење и друге физиолошке процессе. Неки гасови су физиолошки активне материје које убрзавају сазревање плодова, појачано дисање и сл., а могу имати и практичну примену (етилен, пропилен, ацетилен, угљенимоноксид).

Ауксии. — До сада су констатовани у природи следећи ауксини: индоловиретне киселине, индолилацеталдехид, индолилацетамид и др. Најзначајнија је индоловиретна киселина. Највећа концентрација ауксина је нађена у врховима раста (пупољака, листа, корена) па се зато још зове и хормоном растења. Физиолошки утицај ауксина односно се на издуживање ћелија, раст корена, партенокарпски развој плодова, формирање калуса и дисање. Какав је ефект ауксина на физиолошке процесе, зависи од тога у којој је концентрацији ауксин заступљен.

Гиберелини. — Гиберелини су истовремено откривени кад и ауксини. Гиберелини утичу на пораст биљака издуживањем њихових ћелија. Осим тога, они утичу на повећану камбијалну активност као и на морфологију листова. Постоји подаци да они утичу и на фазу цветања посвећујући је. Гиберелини утичу на период биолошког мировања, стимулишу партенокарпску — развој плодова из оштећених цветова. Сматра се да досадашњи резултат примене гиберелина у воћарској производњи дају основу за њихову практичну примену.

Цитокинини. — То су хормонске материје откривене 1940. године, назване цитокинини, фитокинини или цитамини, чија је активност разноврсна, нарочито са другим хормоналним материјама. Цитокинини учествују у регулацији деоља ћелија и њихов је велики утицај на њихово диференцирање. Они повећавају синтезу белачевина и утичу на повећање садржаја хлорофила.

Аптицинска киселина. — Овај хормон је откривен 1965. године. Према досадашњим сазнањима његова је улога да одржава равнотежу у деловању других хормона.

Ретардант. — То су материје које успоравају растење и друге физиолошке процесе. Они су специфичне природе, као и ефекти које изазивају. Познати су цикоцел (cicocel), паклоубразол, Б-девест и др. Углавном се добијају синтетичким путем.

Cicocel (CCC) може да се користи за смањење вегетативне масе воћака и тиме се утиче на мање орезивање воћака.
ПРИМЕНА СИНТЕТИЧКИХ ФИТОХОРМОНА
У ВОЂАРСТВУ

Синтетички фитохормони су супстанције, чија је активност идентична као и природних хормона које ствара биљка, односно вођа. Познавање хемијског састава и структуре природних биљних хормона, омогућило је да се ове материје синтетизују. Значајнији синтетички хормони су: индолсирћетна и индолбутерна киселина, нафтилсирићетна, индолпропионска и нафтоксипропионска киселина, 2,4-D и 2,4,5-T; 2,4,5-ТР хлорофенисирићетна киселина и њихове соли. Широка је примена ових синтетичких фитохормона у воћарској прaksi. Они се користе у спречавању раног и позног отпадања плодова, као и за проређивање плодова; убрзано сазревање плодова и побољшање њиховог квалитета преко повећања крупноће, количине суве материје, појачане боје покожице. Применом 2,4,5-T у концентрацији 0,0025% – 0,005%, повећана је крупноћа плодова кајсије, шљиве, бреске, ягоде, и неких суптропских вођака. Алар у концентрацији 1,000–2,000 ppm примењен 2–4 недеље после цветања или 500–1,000 ppm око 60 дана пред борбу плодова, повољно је деловао на обојеност плодова јабуке и њихову чврстоћу, као и трајност за време чувања.

Синтетички фитохормони (2,4,5-T и 2,4,5-ТР) спречавају опадање плодова пред борбу и убрзају њихово сазревање. Применом ових и других фитохормона убрзано је сазревање плодова бреске, тренеће, шљиве и кајсије.

Хормоналне материје се користе и у проређивању цветова и плодова. Њихова примена није узела шире размере, јер је успех везан за утицаје метеоролошких чинилаца, који владају у фази цветања. Није спорна могућност проређивања цветова вођака. Далеко је значајније колико цветова ће после проређивања да се опладе. Ако се по обављеном проређивању оплоди мало цветова, тада се принос доводи у питање. Због те неизвесности пракса није сасвим прихватила хемијско проређивање цветова и плодова вођака.

Синтетички хормони су успешно користе за изазвање вештачке партенокарије. Користе се фитохормони 2,4-T; 2,4,5-ТР бензотиазол-2 0,01%. Још се користи и бета-индол-бутерна киселина, алфа-нафтил сирићетна киселина, 2,4-D и друге у концентрацији 10-100 ppm (делова на милион).

Са синтетичким фитохормонима су постигнути добри резултати у оживљавању резница. Резнице су третирани 0,01% индол-бутерном (IBA) и алфанафтилсирићетном киселином (NAA). Третирање се обавља, тако што се доњи крај резница држи 6–12 сати у благом раствору 0,01% или 20–30 минута у јачем раствору 0,02% индол бутерне киселине (IBA).

Препоручује се примена синтетичких фитохормона за премазивање пресека грana, затим код капељења и у случајевима механичких повреда грana. Фитохормони потпомажу стварање калуса.
ТЕХНОЛОГИЈА ПРОИЗВОДЊЕ ПОДЛОГА И САДНИЦА

РАЗМНОЖАВАЊЕ ВОЋАКА

Размножавање воћака у биолошком смислу је могуће на два начина: генеративно, када се биљка — воћка произведе из семена, и вегетативно, када се за производњу воћака користи неки од бројних вегетативних начина размножавања — издацима, нагртањем, резницама, положеницама и столомама.

ГЕНЕРАТИВНО РАЗМНОЖАВАЊЕ
(РАЗМНОЖАВАЊЕ СЕМЕНОМ)

Воћке се ретко директно размножавају семеном. Семеном се још негде размножавају орах, леска, неке воћке с коштичавим плодовима. Међутим, на овај начин размножене воћке врло често не преносе на потомство своја типична својства, па се не препоручује за подизање воћних засада. Оно је од значаја у производњи подлога и нових сорти.

ВЕГЕТАТИВНО РАЗМНОЖАВАЊЕ

Вегетативно размножавање представља оживање вегетативних делова воћака (изданака, гранчица, делова корена, столона, листа и др.). Ово размножавање воћака заснива се на њиховој способности да се активирају пунољаци на доњем делу и да се развијају у коренов систем, односно на горњем делу у будућу круну. Ова способност није подједнака код свих врста воћака. Воћке се могу вегетативно размножавати на следеће важније начине: издацима, нагртањем, положеницама, резницама и лозицама.
ВОЋНИ РАСАДНИК

Површина која служи за умножавање одабраних сорти и подлога воћака у циљу њиховог даљег гајења у одговарајућим подручјима, ради производње плодова, зове се воћни расадник. Одувек су воћни расадници били носници развоја и унапређења воћарске производње, а то су добрим делом и данас. Производећи квалитетне саднице од одабраних врста и сорти воћака, они најлепшередније утичу на воћарску производњу. Због тога, воћни расадници имају одговоран задатак. Пре свега, морају да прате достигнућа у обогаћивању сортимента како би и сами били у току са најновијим достигнућима у воћарској привреди.

 Воћни расадник може да буде самостояна специјализована ради организацija. То значи да се искључиво бави умножавањем сорти и подлога, или да буде у оквиру друге сложене ради организације, са статусом самостояне ради организације. За- кон о семену и садном материјалу је прецизирао ко може да се бави овом производњом.

 Приликом заснивања воћног расадника морају да се обезбеде одређени услови: ваља оценити погодност места, земљиште са орографијом, саобраћајне прилике (пуста мрежа), климатске прилике, избор и обезбеђење радне снаге, воде, опреме, а посебно је зна- чајно да се сагледа намена производње, односно шта се и за кога се производи.

 Приликом избора локације за расадник треба водити рачуна о томе: да је у воћарском подручју, како би се производило без већег ризика у погледу реализације, да је ближе извора радне снаге и на земљишту умерено влажном, плодном и растреситом, које треба да садржи око 3,0% хумуса и 8–10 mg P2O5 и 15–20 mg K2O на 100 грама суве земље. Ако се заснива расадник у рејону где је развијено воћарство самим тим су задовољени захтеви у погледу климатских услова.

 У погледу орографије (надморска висина, положај и рељеф), врло је важно да расадник буде на благој падини (не већем паду од 3°). Врло стрме површине, као и оне са депресијама (увалама), нису погодне за расадничку производњу. Положај према странама
света треба бирати у зависности од рејона надморске висине и величине нагиба. Најбоље су оне површине где су температурна колебања најмања и где се у зимском периоду не задржава хладна ваздухна маса. Велике надморске висине не одговарају расадничкој производњи.

За постижење бољег успеха у производњи подлога и садница значајно је да расадник буде повезан добром саобраћајницима. Ово је важан чинилац ако се ради о великој производњи подлога и садница.

Обезбеђење воде, такође треба да се реши пре заснивања расадника. Вода је потребна за боље оживљавање вегетативних подлога и пораст сејаница у семеништу и пикиришту. Поред тога, вода доприноси да се у суши периоду, десетак дана пре калемљења, на спавајући пупољак изазове боље одвајање коре од дрвета што омогућава успешније калемљење.

Воћни расадник у нашим друштвено-економским условима нема онај значај који је некад имао. Раније је постојала широка мрежа малих расадника, данас их је све више са великим производњом, па се с тим у вези постављају и други задаци и друга организација расадника. У великим расадницима успешније се решавају многобројни проблеми - кадар, стручна радна снага, опрема, сопствена производња свих подлога, постојање сопственог сортимента и др. Само такви расадници могу да организују производњу гарантовано здравих садница и сл.

Мали расадници имају своје место само ако се баве производњом мањег броја врста подлога или садница. Они могу да произведе само подлоге и то за поједине врсте воћака.

Од величине расадника зависи и његова организација. При сваком расаднику постоје два основна дела:
- економско двориште и
- површина за производњу садница и другог садног материјала.

ЕКОНОМСКО ДВОРИШТЕ

Економско двориште чине грађевински објекти: управна зграда са лабораторијама за испитивање земљишта, зграде за смештај машина и другог материјала, хладњача, стаклара, пакерница, трапови за трапљење извађених садница, коморе за сијанзацију и термотерапију и др. Поред тога, специјални магацини за смештај хемијских средстава за заштиту и гориво, зграде за друштвени стандард и др.

Локација економског дворишта, по правилу треба да је у средини расадника, при чему се води рачуна о путној мрежи у расаднику и изван њега. То значи да је економско двориште приступачно и повезано са јавним путем.
ПОВРШИНА ЗА ПРОИЗВОЂУ
САДНОГ МАТЕРИЈАЛА

Површина за производњу садног материјала – подлога и садница, у великом расадницима треба да има ове делове:
- семениште,
- пикириште,
- сортиментске засаде за узимање вијока – калем-границица,
- матичњак за производњу подлога вегетативним путем,
- матични засад за производњу семена и
- поље за одгајивање садница.

Величина појединих делова воћног расадника намењеног за технику расадничке производње подлога и сејанца зависи од обима производње.

Семениште

Део расадника на коме се производе подлоге из семена (генеративно) назива се семеништем. Обично се оно налази на плодном земљишту и у близини воде потребне за заливање.

Семениште по површини није велико. На 1 м² може да се засади око:
40 садница јабуке, крушка и дуње;
30 садница трешње, вишње и магриве;
25 садница шљиве, бреске, кајсије и бадема, и
15 сејаница ораха и кестена.

У савременој производњи садница, врло често није потребно семениште. Семе се сеје непосредно у растило – поље одгајивања. На овај начин смањују се трошкови производње садница. То је могуће код оних врста воћака чија сејанци брзо и бујно расти (џанарика, брескова, лешник). Према плану производње одређује се величина површине за семениште.

Пикириште

Да би се боље развио корен код сејанаца, они се исте године, чим се развију 3-4 листа, преносе из семеништа у пикириште. Том приликом се главни коренак скрати (пикира). Ова операцija је нужна код неких врста воћака – крушка, бадем, орах, кестен, док код других воћака није неопходна. На овој површини врши се ожилавање резица неких вегетативних подлога јабуке, дуње, затим рибизле, огровца и др.

Површина пикиришта такође није велика. Њу треба одредити према броју сејанаца који се пикирају и резица које треба да се оживе.
Растило (поље одграјивања)

Растило или поље одграјивања је део површине расадника на коју се сади подлога, ради калемљења са одабраним сортама. У њему се одграјају и оне саднице које нису калемљене (орех, леска из семена, шљива, вишња из изданака, и др.).

Растило је по површини највеће у расаднику. Његова величина зависи од плана производње садница, и одређује се тако, што се у обрачун узима производња садница по хектару, која се подели на планираним бројем садница које треба произвести те се добије број ња за растило. На једном хектару може да се произведе просечно око 50,000 садница, а планом је предвиђено да се произведе милион садница. За милион садница потребна је површина од 20 ha. У обрачун се узима око 10% више површина ради веће сигурности. То је само једна петина или шестина од чега зависи после колико година ће растило поново доћи на исту површину, после пет или шест година.

Матичник зајених сорти
(сортичненски засај)

Саставни део расадника су и сортиментски засади са којих се узимају калем-границице. Њихова је вредност велика, нарочито због загарантованог идентитета сорте и смањења трошкова производње садница. Смањују се трошкови око набавке калем-границица. Од ових воћака се не тражи да доносе плодове, па се посебно орезују да дају што више гранчица.

Обезбеђење калем-граница

Калем-границице морају одговарати сорти. То је врло важно да се доцинире не би стварале проблеми. У вођарству постоји „златно” правило које гласи: „за калемљење немој узимати гранчицу са воћке чије плодове ниси видео и окусио". Употребљавају се само једногодишње гранчице.

Време кад се гранчице одсецају зависи од начина калемљења. За окупирање на спавајући пупољак гранчице се одсецају непосредно пред калемљење. Приликом одсецања ових гранчица уклањају се лиске, а петеље остају. Краткотрајно се чувају у влажној крпи и у хладовини. За остале начине калемљења гранчице се одсецају у периоду биолошког мировања. То је календарски најкасније до половине јануара.

Калем-границице се до употребе чувају како би одржали свежину. Оне морају бити у свежем стању, али треба пазити да им се пупољци не развију. Због тога они треба да се утре у влажан песак и чувају при температури од око 3°C.

Калем-границице могу да се транспортују и на већи удаљеност. У овом случају гранчице се зароне у растопљени технички парафин затим се убију у филтер папир, мало навлажен, и ставе у кесу од полиетиленса. На овај начин спремљене гранчице могу у путу да издрже 8–10 дана и да сачувају свежину.
За калемљење ораха калем-границице треба да буду добро развијене. То се постиже посебном припремом матичних стабала. Матична стабла се редовно орезују и то кратко да се добије велики број избојака који се употребљавају за калем-границице. Развијени лоторасти који ће се употребити за калем-границице немају зачетке мушких цветова, а у томе је значајан успех калемљења.

Матичњак вегетативних подлога

Врло је корисно да расадници имају овакве матичњаке. Матичњак вегетативних подлога је онај део у расаднику у коме се производе вегетативне подлоге на неки од вегетативних начина. Земљиште за вегетативне подлоге треба да је плодно и умерено влажно. Поред тога, пожелно је да је поред воде како би се изводило наводњавање. Величина матичњака зависи од величине плана производње. За оријентацију, наводи се да је могуће са декагар, уз рационалније захвата, произвести после 5–6 година, просечно око 200 хиљада оживљених подлога.

Матичњак за производњу генеративних подлога

Под матичњаком за производњу генеративних подлога подразумева се засад, који може да буде у дрвореду или комплексу, у неком издвојеном делу расадника, од дивљих врста воћа, ради прикупљања семена за производњу сејанаца. Број воћка се одређује за сваку врсту, а самим тим одређује се и величина површине у расаднику. При томе се има у виду максималан план производње садница.

Било је говора о величини појединих делова расадника с обзиром на њихову намену. У савременој пракси води се рачуна да растило (поље одграјивања) долази на исто место тек после шест година. То значи, мора да се заведе плодоред и да у расаднику постоји пет или шест поља за растило, тако да се сваке шесте или седме године површина растила засађује подлогама. Овоме се мора такође додати и једно резервно поље.

Парцелација расадника (организација територије)

План расадника предвиђа његову организацију територије. У план треба назначити путну мрежу и поделу на табле. Путна мрежа треба да омогући најбољу комуникативност, путеви треба да су довољно пространи. У расадницима табле су обично 200х200 м. Између њих су путеви 4–5 м. Свака табла се дели на по 8 парцела величине 50х50 м које су раздвојене стазама по 2 м. Ово је само пример како се врши парцелисање што не искључује и друге могућности.

Ограђивање расадника

У грађевинске објекте спада и ограда око расадника. Расадник мора да буде ограђен. Ограда треба да спречи улас не само дивљих него и домаћих животиња. Због
тога ограда има ванредан значај. Оштећења од дивљачи и стоке могу да буду врло велика и саднице оштећене од дивљачи или стоке не могу да се употребе за садњу на сталном месту. Најчешће се поставља ограда од стубова и плетене жице. Плетена жица не сме да има отворе веће од 5 cm, ни висину мању од 120 cm. Стубови се постављају на 2 до 2,5 m, један од другога. Они могу да буду од бетона, дрвета или метала. Изнад плетене жице се поставља још по 2-3 реда бодљикаве жице. Може се поставити и по један ред бодљикаве жице испод плетене.

ВРСТЕ ПОДЛОГА И СОРТЕ ВОЂАКА ЗА УМНОЖАВАЊЕ

Код нас се данас у расадницима производе саднице одабраних сорти од појединих врста вођака. Многи фактори одређују коју врсту воћних садница производити. При томе се треба руководити могућностима лаког уновчавања. Избор сорти је тежи него избор врста вођака.

- Неку сорту треба пре свега ценити према: афінитету за одговарајућу подлогу, према родности, квалитету плодова, трајности и транспортабилности плодова, навицама потрошача, отпорности на сушу, болести, штеточине, дуговечности и друго.

Од најранијих дана, када је почео да користи плодове вођака, човек је употребљавао у исхрани оне, који су били бољи и лепши. И он и природа су били први селекционари. Тако је много дочини почео систематски рад у стварању нових сорти вођака. Данаас их има на хиљаде. Само јабука има евидентираних преко десет хиљада сорти.

Сортимент вођака је многобројан, и тај се број стално повећава. Нове сорте су боље од постојећих. У интензивној производњи вођака, врло је значајан систем подлога—сорта. Добром комбинацијом подлога—сорта омогућена је висока производња по јединици површине.

У другом делу ове књиге дата су шира објашњења о сортама.

Сорти јабуке

- клоз (Close)
- старкова најранија (Stark earliest)
- виста бела (Vista bella)
- мантет (Mantet)
- мелба (Melba)
- акане — примруж (Akane Primrouge)
- дисковери (Discovery)
- версъмек (Versываем—NJ—28)
- ред грив нојман (Red grive neuman)
- ричаред (Richared Delicious)
- велспор (Wellspur)
- стакинг (Starking Delicious)
- ред чиф (Red chief)
- стаккрисмо (Starkcrimson)
- мусу (Mutsu)
- златни делишес (Golden delicious)
- јелоупор (Yellowspur)
- овил спор (Ouvi spur golden)
прима (Prima)
присила (Prisilla)
јоната (Jonatan)
јонаголд (Jonagold)
лелип (Belle de boscoop)
чачанска позна
грени смит (Granny Smith)
будимка
колачара
шуматовка
менелоз (Melrose)
ајдаред (Idared)
роze делишес (Red delicious)
гластер (Glover 69)

Сориће крушки

јунска лепотица (Bella di Guigno)
јулска шарена (Colorre de Julien)
кошнира рана (Coscia precoce)
тренушка (Precoce de trevoux)
клапова љубимица (Clapp’s favorite)
старкримсон (Starkkrimson)
рана моретинијева (Butirra precoce Morettini)
свeta марија (Santa Maria)
вилијамовка (Williams Christbirne Bartlett)

црвена вилијамовка (Red Bartlett)
боскова бочица (Beurre Bosc.)
хајланд (Highland)
клерко (Beurre Clairgean)
гренд шампион (Grand Champion)
генерал леклер (General le Clerc)
пакхамс триумф (Packham’s triumph)
друардова (Beurre Droward)
калуђерка (Cure)
шампионка
красанка (Passe Crassane)

Сориће дуње

1. лесковачка
2. вранска
3. морава

Сориће иљеве

руг герштегер (Rut gerštätter)
чачанска рана
калифорнијска плава (California Blue)
цимерова рана (Zimmers frühzwetche)
чачанска лепотица
чачанска најбоља

аженка (Prune d’Agen)
стели (Stanley)
чачанска родна
јелица
ваљевка
пожегача (мацарка)
Сорбе бреске
мајски цвет (Mayflower) маја
спрингтајм (Springtime) весна
армголд (Armgold) дора
спринголд (Springgold) рецина (Regina)
спрингкрест (Springerest) ред топ (Red top)
колинс (Collins) глухевен (Gloheven)
 рані ред хвєн (Early redhaven) халсова позна (I.H.Hale)
 диксирєд (Dixired) фаяєт (Fayette)
 редхвєн (Red haven) самерсет (Summerset)

Сорбе нектарине
армкинг (Armking) индипенденс (Indipendence)
меј гранд (May grand) старк сангла (Stark sunglo)
кримсонголд (Crimson gold) флетвортоп (Flejwortop)

Сорбе кајсие
крупна рацна старт ерл оранж (Stark Early orange)
мађарска најбоља цегледи бибор (Cegledi bibor)
кечкеметска ружа роксана

Сорбе триење
примавера (Primavera) стела (Stella)
бурлатова рацна (Bigarreau sativ de bur-lat) наполеонова (Royal Ann)
лионска рацна (докторка) (Rose de Lyons) ламберт (Lambert)
ван (Van) дроганова жута (Drogans gelbe)
cju (Sue) (Knorpelkirsche)
гермердорфска (Grosse Germerzdorfer)
Сорте вишење

облачинска	келерис 14 (Kelleris 14)
рексел (Rexelle)	шумадинка
хајманова конзервна (Heimanns konservenweichel)	ричморенди (Richmorendsy)
лара	

Сорте и селекције ораха

шампион	новосадски родни
срем	ибер
тиса	вујан
бачка	трбушане
мири	шећново
новосадски касни	гајенхајм 139 (Geisenheim 139)

Сорте лесника

тонда ди ђифони (Tonda di Gifoni)	римски (Romische zellernuss)
халски цин (Hall’s giant)	негред (Negret)
мортарела (Mortarella)	косфоед (Cosford)
тонда ђентиле романа (Tonda Gentile Romana)	трапезонски (Imieriale di Trebisonda)
пијемонски (Tonda Gentile delle Langhe)	барцелона (Barcelona)

Сорте бацема

нонпареј (Nonpareil)	ферадил (Ferraduel)
супернова (Pascionello K)	феране (Ferragnez)
ароматични (Ароматичен)	туоно (Tuono)
никитски позноцветајући (Никитски позноцветајуши)	кримски (Кримски)
приморски (Приморски)	тексас (Texas)
филип чео (Filipo ceo)	фра ђулно (Fra Giulio)
Сорте јагоде

зенга прекоса (Senga precosa) тардива ди ромања (Tardiva di Romagna)
чачанска рана хуми генто (Humi Gento)
lокаконтас (Pokahontas) хуми трискана (Humi Triscana)
зенга гигана (Senga gigana) озарк бјути (Ozark beauty)
горела (Gorella) елиста (Elista)
ред чиф (Red chief) ред рич (Red rich)
редгонтлет (Redgauntlet) хуми бојмхен (Humini Bünmchen)
зенга зенгана (Senga sengana) фрапендула хуми (Frapendula Hummi)
веленсофил 8 (Wadenswil 8) монт еверест (Mount Everest)

Сорте малине

вилимет (Willamette) малинг експлоит (Malling exploit)
малинг промис (Malling promise) градина
подгорина

tорн фри (Thorn free) јанг (Young)
смутстем (Smoothsthem) ебони кинг (Eboni King)
хималаја (Himalays) дароу (Darrow)

Сорте куине

боскорски јун (Boscoop Giant) данијелова септембарска (Daniels September)
росентал (Roshental schwarze) голиат (Goliath)
силвергитер (Silvergiter’s Schwarte) рудкоп (Roodkop)
велингтон XXX (Wellington XXX) јонкер ван тес (Joncher van tets)
балдвин (Baldwin) ред лејк (Red Lake)

Сорте рибизле

бруно (Bruno) абот (Abbott)
монти (Monty) алисон (Alison)
хајвард (Hayward) тамури (Tamori)
Подлоге за јабуку

Постоје две врсте подлога по начину постанка: генеративне и вегетативне.

Генеративне Јоунди

За наше прилике најприкладније су локалне, шумске дивље јабуке. Али ваља знати да међу њима постоји велики број типова који се међусобно врло много разликују, како по растењу и родности, тако и по крупноћи и укусу плодова, по отпорности према болестима и штеточинама и временским непогодама. Због тога треба обратити пажњу избору матичних стабала са којих ће се скупљати плодови ради вађења семена за производњу подлога.

Вегетативне Јоунди

Ист Молинг (East Malling) Јоунди

Када су подлоге „Парацис“ јабуке биле описане 1917. године (Hatton), биле су означене римским бројевима као тип I, тип II итд. Затим је установлено да те подлоге нису типови „парициса“, али су генетски били блиски клонови па су означени као ЕМ I, ЕМ II, ЕМ III итд.

У Ист Молингу (East Malling) после подлоге ЕМ XXV почели су подлоге да обележавају арапским, уместо, до тада римским бројевима (М 26, М 27).

У интересу уједначености, Истраживачка станица у Ист Молингу променила је од 1973. године номенклатуру коришћену са римским бројевима и означила је само са М и арапским бројевима. Тако све вегетативне подлоге селекционисане у Ист Молингу су означене са М 1, М 2, М 3 и даље до М 27.

Постоје вегетативне подлоге за јабуку, које се пре свега одликују потпуно уједначеном морфолошких и физиолошких особина, па су и воћке које се на њима гаје у одговарајућој мери уједначене у погледу растења, почетка родности, квалитета плодова и дуговечности, што је од велике важности за успешну савремену производњу. На овим подлогама воћке знатно брже пророде (неке сорте још у другој години по сађењу), обилно рађају и имају плодове много бољег квалитета.

Највише су раширене вегетативне подлоге селекционисане у Ист Молингу и означене симболом М и арапским бројевима. Од ових подлога селекционисано је 27.

С обзиром на бујност класирање су у четири групе:
1. кржљаве – број М 8 и М 9, М 26 и М 27;
2. полукржљаве – број М 2, М 3, М 4, М 5 и М 7;
3. средње бујне – број М 1 и М 6 и
4. бујне – број М 10, М 11, М 12, М 13, М 14, М 15 и М 16.

За нашу воћарску производњу од М подлога најзначајније су М 1, М 2, М 4, М 5, М 7, М 9, М 26 и М 27.
На темељу резултата постигнутих у другим земљама у којима су ове подлоге добро испитане, дајемо податке на основу којих се донекле може стећи представа о њиховој вредности.

Подлога M 9 препоручује се за патуљасте облике на баштенским земљиштима;
M 2 за сорте слабије бујности на баштенским земљиштима;
M 1 за сорте слабе бујности на плодним земљиштима или за буђе сорте на слабом земљишту или за буђе сорте с полиуским деблом;

БУЈНОСТ ПОДЛОГА ЈАБУКЕ (Oberhofer, 1972)

![Diagram of vine height and variety]

Сл. 39 – Бујност Јабука: слабобујне, средњебујне и буђе

M 16 приближава се подлогама произведеним из семена;
M 4 и M 6 су у неким земљама, па и у нашој, дале добре резултате.

У серији вегетативних подлога молинг типова истичемо M 26. Она је произвођена укрштањем M 16 и M 9. По развијености слична је подлози M 9, али је с бољим укоренавањем, те се врло везује са земљиштем. M 26 је и код нас одредавано почела да се уводи у производњу и врло је тражена подлога, што значи да је показала добре резултате и у наше вођарске праксе. Ова подлога је од посебног значаја у подизању густих засада.

M 27 је најновија вегетативна подлога произведена укрштањем M 9 и M 13. Према подацима то је најмање буђна вегетативна подлога. По неким особинама, као што су боље укоренавање, већа отпорност на нека вирусна обољења и ниске температуре, она има предности над M 9. Убраја се у најбоље кржљаве вегетативне подлоге, нарочито за густе засаде.
Сл. 40 - Вегеташивна йоглода јабуке - M 9
Молинг-мертон (Malling-Merton) подлоге

Из серије подлога за воћарску праќсу су значајне MM 104, MM 106, MM 109 и MM 111. То су хибриди између сејанца сорте нортен спай (Northern Spy) и неких молинг типова.

MM 104 (M 2 x Northern spy). — Доста је слична подлози M 4 и нема велике разлике између њих, боље се укорењава од M 4, редовније је родности и даје добар квалитет плодова, те заслужује пажњу.

MM 106 (N. spy x M 1). — То је средње бујна вегетативна подлога, слабије је бујности од M 7 и M 4, док је бујнија од M 26. Важније одлике ове подлоге су што се боље везује за земљиште па је мање изваљивање стабла. Врло је погодна за ниске облике и густу садњу. Сорте калемљене на њу рано пророде, редовно и обилно рађају и имају плодове доброг квалитета. Није осетљива на мраз и сушу. Треба је више користити у производњи.

MM 111 је производ Northern spy x Merton 793. По бујности слична подлози M 2 — мање је бујна од M 109, а бујнија од M 2. То је бујна вегетативна подлога, отпорна на сушу и може да успева и на тешком земљишту. На њој сорте рано пророде, редовно рађају и дају добар квалитет плодова. Као бујнију вегетативну подлогу и за одређене услове треба је уводити у производњу.

У многим другим земљама раде на стварању националних вегетативних подлога.

A 2 (Anlarp). — Ово је шведска средње бујна подлога позната као и M 4. Ова подлога се добро укорењава, отпорна је на ниске температуре и на сушу, а сорте калемљене на њу рано пророде и редовно рађају.

На 35 је подлога која (створена у Хрватској) је бујна и на њој су сорте врло родне.

У САД су створене МАК (MAC) вегетативне подлоге, које су неједнаке бујности, и са њима немао искуства.

У Пољској су такође познате П — подлоге које се одликују слабом бујношћу, као и M 9.

У СССР-у су такође, за њихове услове произведене вегетативне подлоге.

Поставља се питање, које подлоге узимати за подизање плантажа јабуке. Напоменули смо да су генеративне подлоге погодније за слабија земљишта, што се у сваком конкретном случају мора установити. Сем тога, за мање површине и за плантаже на плодним земљиштима треба што више користити вегетативне подлоге.

Приликом избора подлога за јабуху треба да се узму у обзир и економски чиниоци.
Сл. 41 - Вегетациона подлога јабуке - М 2
Подлоге за крушку

Као и код јабуке, тако и код крушке у пракси се користе генеративне и вегетативне подлоге.

Генеративне подлоге

Препоручују се одабрани типови Pyrus communis Mill. Сејанци ове врсте крушке су бољи од других, као подлога за многе сорте крушке.

Вегетативне подлоге

Још није пронађена прикладна вегетативна подлога из рода Pyrus. Због тога се користи као вегетативна подлога дуња. Предлаже се селекционисана дуња MA и провансанска (Provençance) дуња, која је селекција отпорна на већи садржај креча у земљишту.

Треба имати на уму да све сорте нису компатибилне са дуњом. Као добри посредници су калуђерка, хардијева, лубеничарка, караманка и др. Због тога се преко посредника калеме: жифардова, тревушка, клапова, виљамовка, друардова, клерко, зимска декантиња и др.

Подлоге за дуњу

Подлоге за дуњу су генеративне и вегетативне. Предлажу се следеће подлоге: а) генеративне подлоге сејанац дуње, и б) вегетативне подлоге дуња MA.

Подлоге за мушмулу

Мушмула се калеми на генеративне и вегетативне подлоге. Од генеративних подлога се препоручује сејанац мушмула, крушке и глога. Од вегетативних подлога дуња MA.

Подлоге за шљиву

За шљиву се користи сејанац јанарике и то одабраних типова P. cerasifera. Од вегетативних подлога може да се користи свака шљива која се вегетативно размножава, а препоручује се изданак пожегаче.

Подлоге за бреску

Препоручује се сејанац виноградарске бреске – P. persica L., затим француска селекција GF 305 (INRA), италијанска селекција “Susina di Castellnaldo”. То су у
ствари две издвојене селекције које се по бујности разликују. Све ове селекције су добре за влажнија земљишта.

Подлоге за кајсију

Кајсија се калеми на разне подлоге. Међутим, за сада је међу најбољим подлогама белошљива крупног плода, чији плодови сазревају крајем јула месеца. Досадашња искуства убеђују да се апоплексија јавља знатно мање на овој него на другим подлогама.

Препоручује се калемљење на око 50 cm од површине.

Подлоге за трешњу

Од подлога се препоручују следеће:
- сејанац дивље трешње, P. avium и вегетативна подлога: F12/1 и "Colt".
- F 12/1 је бујнија подлога, слична је по бујности генеративним подлогама.
- "Colt" је слабо бујна, створена је у East Malling-u. Ова подлога је у односу на F 12/1 50-70% бујности, али нема изгледа да ће се брзо ширити.

Подлоге за вишњу

За сорте вишње препоручују се подлоге:
а) генеративне,
- сејанац вишње — P. cerasus и P. mahaleb,
- сејанац дивље трешње — P. avium,
б) вегетативне
- изданих вишње
- трешња F 12/1 и "Colt".

Подлоге за орах

За сорте ораха у пракси се претежно примењују две подлоге и то.
Домаћи орах (Juglans regia L.) и
Црни орах (Juglans nigra L.).
Домаћи орах је знатно бујнији. Међутим, у оквиру домаћег ораха се налазе многобројни типови неједнаких особина.
Као подлога, има ту предност што даје развијеније стабло. Уколико се гаји орах ради дрвета, корисније је да се сорте калеме на домаћи орах.
Црни орах — J. nigra као подлога је мање бујности, сорте на њему раније пророде, препоручује се за боље земљиште.
Подлоге за лешник

Corylus colurna – мечји лешник, користи се као подлога за гајење сорти као стаблашица. Ова подлога расте, и развија велику пирамидалну круну.

Corylus avellana. То је обичан шумски лешник, којих има много типова, распространених у свим крајевима. Ова подлога даје жбуни.

Иако се саднице производе оживљавањем избојака – вегетативно, постоји потреба да се производе и калемљењем садница. Најчешће се калеми енглеским спајањем. Калусирање се обавља при температури просторије око 25°C и 80–90% влажности. При овим условима калемови остају 2–3 недеље, чувају се при нижим температурама (око 4°C) до садње у растилу.

* * *

Данас се у свету ради много на проблему подлога, нарочито за коштичаве врсте воћака. У западно-европским земљама, пре свега у Великој Британији, Француској, Немачкој и др. створен је велики број вегетативних подлога различитих својстава и бујности. Међу њима су посебно интересантне:

- Подлоге за шљиву: бромптон, маријана, ИНРА маријана, дамасценка из тулуса, сант жилијен АБЦД и алба, пикси и др.
- Подлоге за брескву: рубира, Nemaqard, Siberien S, Missur, хибрид бадем х брсква GF 677 и др.
- Подлоге за багем: хибрид бадем х брсква GF 677, селекције јулијанке GF 655.2 и др.

ПРОГРАМ ПРИПРЕМА ЗА ПРОИЗВОДЊУ ПОДЛОГА И САДНИЦА ВОЂАКА

ПРОИЗВОДЊА ГЕНЕРАТИВНИХ ПОДЛОГА

Подлоге произведене из семена (генеративно) називају се сејанци. Њихова производња обухвата: скупљање и вађење семена, чување, стратификовање, сету, негу сејанаца и вађење сејанаца.

Скупљање семена

Сваки већи расадник треба да има матичњак одабраних дивљих и племениних вођака за производњу семена. Ако такав матичњак не постоји, расадник је принуђен да селме набавља са стране или да организује прикупљање плодова, ради обезбеђења одговарајућег семена за производњу сејанаца. Сопствена производња семена има многа
преимућства. Пре свега, тиме је омогућен бољи увид у морфолошке и биолошке особине семена, као и његово здравствено стање. Сигурнија је производња садница.

Матична стабла треба да су добро развита, да редовно рађају, да су им плодови уједначен и да имају изражену отпорност на мраз, болести и штеточине. То значи, још при подизању матичног засада за производњу семена, треба да се води рачун да се користе одобрани типови појединих воћака који су пре тога праћени вишег година. Заснивање ових матичних засада семена исто је као и заснивање воћака за производњу плодова. То значи, земљиште се припрема довољно дубоко, а садња се обавља на мањем растојању. Ова стабла на одговарајући начин треба неговати.

Добро се, које је крупно, једно уједначено и неоштећено има све услове да добре клије и да се развие сејанци, који ће омогућити правилан развој воћних садница. Показало се да је боље се, код воћака са јабучастим плодовима, кад је из плодова који раније сазревају него воћака с коштничавим плодовима, чији плодови касније сазревају. Најбоље је се, дивљих диплоидних воћака, прилагођених дотичним агроколошким условима. Препоручује се да се за издавање семена узимају плодови: који се налазе на периферији круне, са стабала млађих од 50 година; са здравих стабала која нису заражена вирусима и стабала која имају здраво лишће. Није за препоруку да се се узима из плодова који нису сасвим сазрели, као и плодова који су ферментисали, односно оних плодова који су превирале.

Семе се издава ручно, кад се ради о плодовима бреске, кајсије, шљиве и ораха. Док се код трешње, вишње, магрине, цанарике и сличних, се издавају испиранем. Плодови морају бити потпуно сазрели. Семе јабуке, крушке, дуње и др. издавају
се теже, па је поступак сложенији јер се прво плодови измуљају, а затим се семе од меснатог дела испира уз коришћење прикладних сита. Семе смањује кличавост, ако се ови плодови држе дуже на гомили. Из обраних плодова, семе се одмах ослобађа меснатог дела.

Да би издвојено семе сачувало кличавост, не сме се држати дуже у води, посебно не у топлой води. Оно се ставља да се просуши, али се не излага високој температури.

Производност плодова

Од 100 kg плодова добија се неједнака количина семена. Исто тако се знатно разликује број семенки у једном килограму семена.

На бази ових подataka могуће је да се приближно тачно планирају потребне количине семена.

Таб. 25 -- Преглед количина семена у 100 kg плодова

<table>
<thead>
<tr>
<th>врста воћака</th>
<th>kg семена</th>
<th>број семенки у 1 kg семена</th>
</tr>
</thead>
<tbody>
<tr>
<td>дикља јабука</td>
<td>1.1–1.4</td>
<td>29.000–38.000</td>
</tr>
<tr>
<td>дивља крушка</td>
<td>1.2–1.5</td>
<td>27.000–33.500</td>
</tr>
<tr>
<td>дикља трешња</td>
<td>1.2–1.4</td>
<td>8.500–9.000</td>
</tr>
<tr>
<td>матрица</td>
<td>13.5</td>
<td>15.500</td>
</tr>
<tr>
<td>цинанрика (ситна)</td>
<td>8.5</td>
<td>2.100</td>
</tr>
<tr>
<td>цинанрика (кургани)</td>
<td>6.0</td>
<td>1.500</td>
</tr>
<tr>
<td>белоплова</td>
<td>7.0</td>
<td>1.200</td>
</tr>
<tr>
<td>виноградска бресква</td>
<td>11,0</td>
<td>400</td>
</tr>
<tr>
<td>кайсија</td>
<td>10.4</td>
<td>500</td>
</tr>
<tr>
<td>бадем</td>
<td></td>
<td>око 200</td>
</tr>
</tbody>
</table>

Сушење семена

Даљи поступак са семеном је врло важан. Семе не треба да садржи више од 15–17% воде. Са више влаге оно губи своју виталност. При температури већој од 45°C оно сасвим изгуби клијавост. Пресушивање је штетно, јер снижавање влажности испод 15% утиче на његову клијавост. Семе јабучастих воћака треба просушивати пажљивије пошто је са више воде од семена коштичавог воћа.

Издвојено семе суши се на промајном месту у танким слојевима које треба често мешати. Сушење семена може да се обавља и у сушарама, где је процес знатно бржи. Мора се обратити посебна пажња на температуру при коjoj се семе суши, да не пређe 35°C.
Клијање семена

Пракса је потврдила да семе различите крупноће има и разлику енергију и проценат клијавости. Најкрупније семе има најбољу енергију клијања и највећи проценат клијавости. Семе се помоћу одговарајућих сита класира на три класе: ситно, средње и крупно. Прва класа је најкрупније семе које се одвојено сеје, средње крупно семе припада другој класи и оно се користи за производњу сејанаца, док се трећа класа – ситно семе, не користи за сетву.

Класирано и очишћено семе се чува у сувим и прохладним просторијама које се проветравају.

Одређивање квалитета семена

Од семена за производњу сејанаца тражи се одређени квалитет. Квалитет се оцењује преко: чистоће, клијавости и енергије клијања семена. Чистоћа се одређује тако што се у одређеној маси семена утврди процент нечистоћа – примеса. То је однос између семена и страних примеса. Бољи је квалитет семена ако има мање страних примеса. Клијавост се одређује стављањем семена у одговарајуће посуде. Стави се одређен број семенки у две кутије са навлаченим филтер папиром и из односа клијавих и неклијавих одређује се процент клијавости. На овај начин истовремено одређује и енергија клијања – тј. време за које семе клија. Још је могуће да се утврди виталност семена уз примену благог раствора индигокармина – 0,2%. Ако после 24 часа, потопљени котиледони у овај раствор, добију плаву боју, то значи да су изгубили клијавост. Из односа једних и других котиледона (плавих и непромењених) израчунава се процент виталности семена.

Стратификовање воћног семена

Под стратификовањем се подразумева држање воћног семена у погодном супстрату за одређено време при константној температуре од око 5°C и умереној влажности, уз довољно кисеоника. Трајање стратификовања варира од врсте семена и креће се од 20 до 200 дана. У нашим условима дужина овог периода износи код:

- јабуке 90 до 100 дана
- крушка око 90 дана
- брескве 60 до 100 дана
- данарике 100–120 дана
- кајсије 30–50 дана,
- трешње око 100 дана,
- домаће вишње 150–180 дана,
- магриве 90 до 100 дана,
- ораху 60 до 70 дана,
- бадема око 70 дана,
- црног ораха 80–110 дана.

Стратификовање се врши у сандучима са песком или у траповима. Песак обезбеђује довољно ваздуха. Као супстрат се користи јопш и испран тресет са око pH–6.
Два су углавном начини стратификовања: по слојевима и мешањем семена са супстратом 3:1 по запремини. Гомила (семе са супстратом) не треба да буде већа од 50 cm.

Стратификовање у слојевима обавља се тако, што се семе слаже у песак по слојевима. Прво се ставља слој песка, а затим слој семена и тако редом. Дебљина слоја износи 5–8 cm (орах, бресква и шљива), 3–5 cm (тренша, магрива и цанарика), и 1–2 cm (jabuka, крушка). Дебљина слојева песка је око 6–8 cm. Обично се ставља око 4–5 слојева.

![Слика 43 - Стратификација воћног семена: у сандучима (лево), у брашу (десно)](image)

На сличан се начин врши стратификовање у травовима, рововима или на отвореном пољу. Место где је семе стратификовано треба заштитити од мишева.

Изгледа да је стратификовање семена дало најбоље резултате у плитком сандучићима, где се обавља редовна контрола влажности и температуре, уз проветравање ваздуха.

Треба настојати да семе не развија даље клипу, док је у супстрату за стратификовање. То изазива потешкоће око сетве, а и штете су велике, јер долази до ломљења клица.

Кад се ради о семену за производњу хибридних сејанаца, оно се стратификује у раствору 0,3%, ставља у пластичне кесе и држи у фриджидеру на 0°–5°C.

Сетва семена различних воћака

У северним подручјима пролећа сетва има извесних предности. Пре свега, то се боље одражава на клијавост семена, јер се у току зимског периода, док траје стратификовање, процеси одвијају у семену под повољним условима; нема штета од мишева, земљиште се боље припреми, што условљава добијање више сејанаца. Сетва се обавља на одређеној површини која се претходно добро припреми. Земљиште се дубоко пооре — око 45 cm. Препоручује се и уношење стајњака и минералних ђубрива, приликом орања. Колико ће се ђубрива унети зависи од плодности земљишта. Земљишта, која су обезбеђена важним хранивима, не треба да се ђубре.

Сетва семена појединих врста воћака изводи се на различитој дубини, што зависи од величине семена, времена сетве и физичких особина земљишта. Семе jabuke,
курушке и дуње сеје се на дубини око 2 cm, док се само трешња, магрива, цванарика, шљиве и вишње сеју на дубини 4—5 cm; семе бреске, кајсије и бадема на 5—6 cm и ораха на 6—8 cm.

Семе неких врста воћака: ораха, бреске, кајсије, бадема и цванарке, може директно да се сеје у растило. Тада се то обавља на сличном растојању, као да су сејанци пренети из семеништа.

Густина сетеве зависи и од тога да ли се врши пикирање на зелено или зрело. Растојање између биљчица крече се око 2—4 cm, док су редови један од другог удаљени око 40 cm. Показало се врло практично да се сеива семена обавља у леје и то по 5—6 редова у свакој леји. У том случају је размах редова око 25 cm, а између леја око 50 cm.

Неговање сејанаца

Да се сејанци правилно развијају треба редовно окопавање, плењење копровских биљака и уклањање сејанаца који су сувиши, ако су густи, морају се проредити. Пожељно је да се сејанци уједначено развијају, а оне који заостају у порасту треба уклонити. Већ у току вегетације преко лишћа се врши фолиарно прихранивање са одговарајућим ђубривима (фолифертил, фертинал и сл.). Такође је важно да се благовремено спроведе третирања против болести и штетника.

Сејанци у растило се негују на исти начин, с тим што се они још припремају за калемљење на спавајући пупољак. Они се калеме предвиђеним сортама.

Из семеништа се сејанци ваде ручно или путером. После вађења треба их класирати по развијености. Само добро развијене и уједначене сејанце преносимо у растило. Садња се обавља у јесен или у пролеће. Боље је да се они засаде у јесен. Извлаћени сејанци, ако се не засаде, пакују се у снопове по 100 комада и трапе у песак или ситну земљу напољу или у специјалне трапове и чувају до пролећа, па се у пролеће саде.

Развијенији сејанци 8 до 10 mm и више, могу да се калеме из рuke — собно зимско калемљење, чувају се до пролећа и кад време дозволи износе се напоље и саде.

Пикирање сејанаца

Већ је речено шта је пикирање. Оно може бити на „зелено” и на „зрело”. Пикирање на „зелено” може да се обавља код свих врста воћака и даје резултате, ако се на време изведе, док су сејанци мали, ако је умерено влажно земљиште и ако може да се обави заливање. Пикирање се врши помоћу мале садила за растојању око 5 cm између биљака и око 30—40 cm између редова. Скраћује се сржна жија за 1/3 и, ако имају више од три листа треба их скратити.

Производња сејанаца за пикирање може да се организује у стажленицима — пластеницима, топлим лејама, малим сандучићима, кесама од фолије, саксијама од
тресета. У саксијама се сеје крупније семе и то само по једна семенка, па се заједно са саксијом преноси у растило.

Пикирање на „зрело“ обавља се после вађења сејанца, а пре садње у растилу. Нега пикираних сејанца на „зелено“, састоји се у редовном узбијању корова, прихранивању, заштити и заливању. Пикирани сејанци се у јесен ваде и са њима се поступа као и са сејанцима из семеништа.

![Слика 44 - Утицај пикирања на развијеност корена сејанца](image)

ПРОИЗВОДЊА ВЕГЕТАТИВНИХ ПОДЛОГА

Производња подлога нагртањем

Вегетативне подлоге се производе у посебном делу расадника, који се зове матичњак вегетативних подлога. Велики расадници се ослањају на сопствену произвођу ових подлога. Због тога све чешће сами расадници подижу ове матичне засаде. За подизање матичних засада бирају се најбоља земљишта – плодна, песковита и са могућношћу наводњавања. Припрема земљишта се састоји у риголовању целе површине на око 60–70 cm дубине. Земљиште се доводи до средње обезбеђености у хранљивим материјама. Посебно се обрађа пажња на садржај хумуса. После ових радова врши се равнање машинама за површинску обраду. Затим се обавља размеравање са обележавањем места за саднице. Растојање на којем се саднице саде креће се, између редова око 2,0, а у реду око 0,5. После сваког петог реда оставља се веће растојање
изиљавање (3–3,5 m) које би трактор могао да про-
лази. Растојање зависи од земљишта,
нагиба, могућности навођивања и на-
чина производње подлога. Растојање
може да буде и веће, али не мање од
назначеног. Сађење садница одређене
подлоге обавља се на исти начин као и
садница племенитих сорти. Посађене
сађнице се у пролеће скраћују на 5–10
cm, изnad земље. Прве године се не кор-
исте леторасти за ожилавање. Орези-
вање матичних стабала врши се у јесен
на 3–5 cm, у циљу формирања „главе”.
Друге године не треба да се дозволи
развој већег броја леторасти. Значајно
је да се стабло ојача.

На овај начин се производе
подлоге нагртањем. У трећој години се
добија око 30 оживљених леторасти. У пуном развоју може на овај начин да се добија и
do 100 подлога (оживљених леторасти).

Нега жбунова у матичњаку се састоји из редовног загртања, окопавања,
оравања, ђућрења, заливавања и заштите од болести и шtetочина. По завршеноj вегетацији
жбун се одграје и оживљени леторасти се у основи отсецају. Пошто је оживљавање
неједнако, а и развијеност леторасти различита, потребно је да се обави класирање.
Оживљени и искласирани леторасти служе као подлога. Они могу у току зиме да се
калеме или да се саде некалемљени у растило, где вегетирају до наредне сезоне ка-
лемљења очењем на спавајући пупољак.

Пошто су скинути оживљени леторасти, препоручује се загртање „главе”, а у
пролеће се одграје. Ако се скидање леторасти у јесен не обави, онда се то ради у току
зиме, кад нема мраза или у рано пролеће. Ово је најбољи и најчешћи начин за произ-
водњу вегетативних подлога јабуке и дуње.

Производња подлога издацима

Издаци су нове биљке које су избиле из жила воћке. Оне у себи носе све
особине које има стабло из чијег корена су настале. Због тога се однеговани издаци,
као саднице, могу употребљавати за садњу на сталном месту. На овај начин могу да се
производе и подлоге.

Садницама однегованим од изданака, подижу се засади неких сорти шљиве
(најчешће пожегаче), затим домаћа вишња, већина сорти лешника, малине, рибизле,
огрозда и др.
Производња подлога положеницама

 Као и за производњу подлога нагртањем, подиже се и матични засад за оживљавање летораста развијених из положеница. Положеница је савијени летораст из прошле вегетације који се не одваја од матичне воћке. Летораст се положи у плитак јарак и покрије плодном земљом. Из пупољака положеног летораста развију се ле-
торасти који се до краја вегетације у основи ожиле. У јесен се ожилени леторасти одвајају од матичне вођке. На овај начин ожилени леторасти се саде у растило ради производње садница, или се калеме са одређеном сортом.

Сл. 48 – Лучним совињањем размножава се арен и ар. (1), совињањем лејораста у јарок, успевно се размножава лешник (2) и виласасва бооженица успевно доврши се оживљавању Јовијуша (3)

Производња подлога резницама

Резнице су једногодишњи и двогодишњи део граничне неједнаке дужине (5–30 cm). Ради оживљавања оне се прпоре у добро припремљено плодно земљиште.
Приорење се обавља у пролеће, а оживљени прпорци се ваде у јесен, затим се саде у растило ради производње садница. На тај начин могу се производити саднице од црне и црвене рибизле, дуње и неких шљива за подлоге, такође и од јабуке, дуње, магриве, неких трешана и вишана, које се преносе у растило за калемљење наредне године.

Размножавање лозицама

Лозицама се размножавају јагоде. Лозице — столоне су вегетативни делови који се пружају по површини земљишта. На њиховим чланцима образује се розета с лишћем и кореном, који се хвата за земљиште. Успостављањем контакта са земљиштем образује се самостална биљка — живић. Живићи се одвајају од матичне биљке.
Сл. 51 – Производња садница живићима код јагоде: (А) мајична биљка, (Б) нова биљка формирана од живића, (Ц) живићи и (Д) столови

Мање значајни начини вегетативног размножавања

Постоје и други, у пракси мање заступљени начини вегетативног размножавања, као: размножавање ожилавањем врха неодвојеног летораста, лишићем, кореновим резницама, неодвојеним зеленим резницама, ровањем и др. Последњих година се усавршава нов поступак у вегетативном размножавању назван култура жића. Њиме су постигнути добри резултати у производњи живића јагоде.

За неке врсте воћа које се вегетативно тешко размножавају, нарочито резницама, примењује се посебна „мист“ метода. Овде се посебним уређајима аутомат-

Сл. 52 – Одсецање листа с пийолком у циљу размножавања кућине
Сл. 53 – Производња садница кућине
ожилањем врха лепораса-
ђа; (а) савијени лепорасаши и
(б) почетак новог лепорасаши
(бела йачака).

ски регулишу влажност ваздуха – релативна влага и температура и одржавају се на
одговарајућим нивоима.

Све подлоге које се произведу, на било који начин вегетативним путем, саде
се у јесен у растило у циљу калемљења. У растило се саде и оне подлоге, кад се ради о

Сл. 54 – Уређај који аутиоматски регулише влажносц и шемигературу за оживљавање резица:
1–тактир (услужује се по поједици – аутиоматски); 2–тактир с усључивањем сваких 13 минути
3–голов електричне енергије; 4–случај (посади) за воду; 5–аутиоматски магнетни зајеварач;
6–китови за измазивање; 7–голов воде; 8–фильтер; 9–термометар; 10–кабал за електричну енергију
којим се загрева суспенз; 11–шљунак и аренажне вези; 12–суспенза за оживљавање резица.
производњи саднице без калемљења, са изузетком малине, рибизле, огроца купине и јагоде, јер се одмах могу употребити за сађење на сталном месту.

Редослед радова у растилу

Сађење подлога у растилу

Растило по површини заузима највећи део расадника. Земљиште по правилу треба да је дубоко и довољно шидно, растресито и умерено влажно. Припрема земљишта се састоји у његовом подмirenу важнијим храниливим материјама. Воћне саднице на земљишту намењеном за растило остају две вегетације, прве вегетације се развијају подлоге, а друге, једногодишње саднице. Пошто се развија велика вегетативна маса, производи се и до 80.000 садница по ха, потребно је да се земљиште подмири органском материјом и важнијим минералним састојцима — фосфором и калијумом. Због тога је врло важно да се у земљишту утврди заступљеност ових супстанција. Ако земљиште нема 3% хумуса и око 10 mg P₂O₅ и 20 mg K₂O у 100 грама ваздухно суве земље, до тих количина треба изравнati биланс ових елемената. Агромелиоративно ђубрене се изводи на начин како се ради приликом подизања воћњака.

Основна припрема земљишта се састоји у дубоком орању, односно риголовању око 60 cm. После риголовања обавља се површинска обрада, равнање са тањирачом. Припрему земљишта за растило ваља обавити у летњим месецима, како би се сађење подлога извели у јесен. Јесен сађење је боље од пролећног. Сађење подлога може да се спроводи и у току зиме, само ако нису мразеви. Изузетно се подлогеenade у пролеће.

Најбоље су подлоге старе само једну годину, са добро развијеним кореном. Сувише развијене подлоге, дебље од 8 mm, не треба да се саде у растило. У наредној вегетацији оне ће се сувише ојачати тако да ће бити неподесне за производњу садница. Подлоге за садњу треба непосредно пре сађења да се припреме. Припрема се састоји у издавању прве од друге класе, које се одвојено саде, на посебним парцелама. Са подлога се уклањају превремене граничне, а корен им се скраћује. Уклањају се повређене и поломљене жиле. Уколико се на подлогама примете макар и сумњиви симптоми оболења, нарочито од рака (Bacterium tumefaciens) такву подлогу обавезно одстранити. Корен подлога се зарони у припремљени раствор, најчешће ортоцида, ради дезинфекције. Надземни део треба скратити на око 20–25 cm. Код неких генеративних подлога може и ниже, да се калемљење врши на новом леторасту.

Начини сађења подлога

Претходно се сачини план сађења подлога. Свака подлога треба да се сади на посебним парцелама. Сађење подлога у растило најчешће је у редове, што је и
најпогодније. Калемљење се лакше изводи, ове подлоге имају исти хранљиви простор и многи други поступци брже и лакше се обављају (пицирање, везивање и др.). Најчешће се подлоге саде на растојању 90–120 cm између редова 10–20 cm у реду. После сваког шестог реда оставља се веће растојање за пролаз трактора којим се врши потребна обрада против болести и штеточина.

Постоје и други начини сађења подлога — у пантљике с два и три реда али се ретко примењују. Растојање при овом начину сађења је мање него кад се подлоге саде у појединачне редове.

Техника сађења јошлода

Прво се одреди правац будућих редова. Најбоље је да се редови пружају по дужини парцеле, односно табле. Редови треба да се подударaju између парцела. Треба водити рачун и о правцу ветра, како би имао мање штетан утицај на саднице.

Подлоге се саде уз жицу која обележава где подлога треба да се посади. Жицу треба затегнути добро. Могу се користити више жица које означавају редове. Сама садња се обавља копањем јаркова. Једна група радника отвара јарак — шанац, друга група сади подлоге и трећа група отвара наредни јарак и са том земљом затрпава претходни јарак у којем су засађене подлоге. Мање развијене подлоге могу да се саде и помоћу садиљке. Направи се садиљком место за подлогу, затим се поставља подлога и са стране се са садиљком земља притисне уз подлогу.

После обављеног сађења, ако није надземни део скраћен раније, сад се скраћује на 20–25 cm од кореновог врата. Вегетативно размножавање подлоге на 30–40 cm од лажног кореновог врата. Приликом сађења земљиште је угажено па се препоручује да се обави култивирање.
Нега јошога до калемљења

У пролеће се врши прихрањивање са око 50 kg чистог азота по ha. У току вегетације се обавља прашење – култивирање и по потреби још једно прихрањивање са око 50 kg чистог азота. Прихрањивање може да се обави и преко лишћа–фолијарно. Препоручује се заграће подлога у основи 10 cm. Из загрунутог дела подлоге неразвијају се леторази, кора остаје нежна, па је и калемљење успешније. Све бочне издланке треба благовремено одстрањивати, само се оставља један и то вршини. Остале нега се састоји у заштити од болести и штеточина. У изузетно сушним годинама ваља обавити и наводњавање којим се изазива кретање сокова непосредно пре извођења калемљења. Уколико се то не уради, није могуће да се успешно калемљење обави, јер се кора не одваја од дрвета.

КАЛЕМЉЕЊЕ ВОЂАКА

Размножавањем вођака – генеративним или вегетативним начином – није увек могуће да се задовоље практичне потребе. Због тога је пракса наметнута, а наука о воћарству усавршила поступак за производњу садница, којим се могу комбиновати не само мањи или већи делови једне врсте, већ исто тако и делови различитих врста вођака. Сем тога, подлога – корен може бити произведена генеративно (из семена) или на један од вегетативних начина. Према њоме, калемљење је само у широм смислу вегетативно размножавање вођака. То је, ипак, важан посебан врска производње садноће материјала вођака ради унапредања неке сорте ове рода особина.

Калемљење је операцija којом се подлога и племка вођке сједињују и на тај начин се ствара нова вођка, чији је доњи део (од места калемљења) подлога, а горњи део племка – племенитата вођка, (сорта).

Калемљење је познато од давнина и има огроман значај за воћарство. Састоји се у сједињавању подлоге и питењу племке исте вођне врсте или две сличне вођне врсте.

Да би калемљење успешно потребно је да између подлоге и племке постоји модуларност (сродност или афинитет). Подударност је готово потпуна између великог броја дивљих и питењих јабука, крушка и других врста вођака. Међутим, подударност између различитих врста је непотпуна и ређа (на пример: између дуње и крушка, браске и бадема, шливе и кајсије). Постоје сорте које су с подлогом модуларне и које су неподударне, о чему се води рачуна приликом калемљења. За калемљење, калемљење треба да се нормално развијене, сазреве, односно зрењене. Доњи и вршини део границе као и пупољке са тих делова, не треба употребљавати за калемљење. Такође за калемљење, по правилу, не узимати границе старе од једне године. Њихова деблина је највеће деблина оловке. Бројни су чиници од којих зависи успех калемљења. Важнији су: време калемљења и техника извођења самог калемљења, квалитет калем-граничца, погодност подлога за калемљење и др.
НАЈВАЖНИЈИ НАЧИНИ КАЛЕМЉЕЊА

Калемљење воћака је међу најстаријим вештинама у воћарској прaksi. Због тога је описано преко 200 начина калемљења. Но, и поред тако великог броја начина калемљења, само неколико њих има ширу примену у воћарској техници. Ево важнијих начина које приказујемо и цртежима.

Окулирање (очење)

Окулирање се најчешће примењује, и то у производњи садница. То је најпогоднији начин калемљења воћака. По времену извођења окулирање може бити у мају и

Сл. 56 – Калемљење очење: 1) припрема калем-граниче, 2) скирање губољака са калем-граниче, 3) очење (окулирање), припрема подлоге и завршни део калемљења – убављање губољака и везивање.
јуну, на терајући пупољак, и у августу и септембру, на спавајући пупољак. Окулирани пупољак у мају–јуну по правилу се развити у младар, који до јесени сазри, док окулирани пупољак у августу–септембру креће у пролеће.

Кад ће се и којим редом поједине врсте воћака калемити окулирањем зависи од низа чинилаца, те се треба руководити искуством стеченим у дотичном крају, избегавајући свако шаблонизирање, одређивање редоследа времена за поједине врсте воћака. Раније треба окулирати подлоге код којих раније престаје растење, затим старије, слабо бујне као и оне које се калеме у крупи. Окулирање иде овим редом: прво воћке с коштичавим, а затим с јабучастим плодовима, шљива и кајсија на сејанце или клонове домаће шљиве; крушка на сејанце крушка, трешња и вишња на сејанце трешње; крушка на дуњу; јабука на младице и дивљачице јабуке; бресква на брескуву; дуња на дуњу и шљива на цанарику. Окулирање ореха врши се најчешће крајем јула и почетком августа.

Окулирање се изводи по следећем поступку (види слику). На припремљеној подлози изабереше место с глатком кором са северне или западне стране и на том месту направи попречни рез дужине 1 см. Са средине тога реза направи се уздужни рез од 3 см, тако да сада оба реза праве слово Т. Затим се на месту где се спајају попречни и уздужни пресек, обичним калемарским ножем или делом на специјалном ножу, кора мало одвоји од дрвета, па се брзо постави пупољак сорте. После тога пупољак се веже рафијом и тиме је окулирање обављено. Техника окулирања на терајући пупољак је иста као и на спавајући.

Просјео сфајање

Овај начин калемљења се одликује тиме што је подлога са калем-границиштем приближне дебљине (види слику). На подлози и калем-границици направи се кос пресек па се затим та два пресека споје, чврсто увежу рафијом и премажу калемарским воском. Ово калемљење се обавља у пролеће у фази кретања вегетације. Границе за ово калемљење треба оставити у јануару. Калемљење из руке или „собно” калемљење обавља се у току зиме, а калемови се чувају до пролећа у одговарајућој просторији, у којој се образује капус и прими калем.

Калемљење „енглеским” сфајањем

Овај начин калемљења се мање користи у производњи садница при калемљењу из руке, односно „зимском” или „собном” калемљењу. Ово калемљење разликује се од калемљења пропсним сфајањем по томе, што се на горњој трећини пресека и подлоге и калем-границице направи нарез — „језичак”, по дубини паралелно са сржим (4–6 mm). Ова два зареза се увукну један у други и затим се евентуално веже и премаже калем-воском. Овим се калемљењем праве веће повреде.
Практикује се за готово све врсте воћака. Овај начин калемљења је дао задовољавајуће резултате у производњи садница ораха.

Сл. 57 - Начини калемљења: 1) енглеско спајање, 2) просечно спајање, 3) спајање са стране, 4) калемљење Још кору
Овом калемљењу је најближе калемљење машином. Машине за калемљење воћака су све више у примени. Ово калемљење се изводи у зимском периоду и замењује собно односно калемљење из руке. На слици се види како се припрема подлога, а како калем-гранчица. Подлога и калем-гранчица треба да су исте дебљине. По извршеном спајању није потребно везивање. Ипак се смањује процент непримлjenih калемова, ако је обављено њихово везивање. Довољно је да се спојно место обавије лепљивом траком — изолирбандом.

Калемови се пре него што се засаде у поље одгајивања (растило), држе у стратифилани, ради калусирања при температури 25–30°C, око две недеље и релативној влажности ваздуха 75–85%. Ако у то време не може да се обави садња калемова, они се чувају у влажном песку при ниској температури 3–4°C. Кад настану повољни услови за сађење, они се износе из просторије и у растилу — пољу одгајивања саде.

Спајање са страни

Спајање са стране примењује се, када је калем-гранчица тања од подлоге. Калем-гранчица се припреми на исти начин као и за калемљење простим спајањем. Подлога се скрати на потребну висину, пресек заглади воћарским ножем, а затим се на подлози направи пресек сличан пресеку код простог спајања. Потом се пресек калем-гранчице приљуби уз пресек подлоге, чврсто увеже рафијом и добро премаже калем-воском.

Калемљење йод кору

Калемљење под кору је слично калемљењу са стране, само се на подлози не прави засек, већ се заклишена калем-гранчица завлачи под кору. После тога се веже рафијом и премаже калем-воском.

Наведени начин калемљења се примењује у производњи садница, а могу да се примене и при калемљењу старих воћака, наравно уз претходну припрему.

Калемљење на исечак

Калемљење на исечак представља такав начин калемљења који се примењује довољно успешно на подлогама неједнаке дебљине, и да се изводи од завршетка вегетације до касно у пролеће на подлогама извађеним и на сталном месту.

Техника извођења калемљења на исечак заметнија је него многи други начини. Постоји и специјалан нож којим се она изводи, али она може да се обавља и обичним калемарским ножем. На подлози се извади део у облику тростране призме. Према дебљини подлоге зависи и величина исечка. Обично је око 2,5–3,5 cm дугачак и 2–3 mm су мје стрене на дели пресека подлоге. На калем-граничци пресек се прави као за просто спајање, па се положај граничнице окрене за 90°, при чему се окреће први пресек
упоље. Према исечку на подлози прави се пресек калем-граничца. Постави се калем-граничца у исечак, водећи рачуна да се подударају слој камбијума, подлоге и калем-граничце. Затим се обави везивање и премазивање калем-воском.

Калемљење на мосту

У воћарској прaksi понекад се намеће потреба да се калемарском техником отклони неко оштећење. Оштећена дебла – потпуно оштећена са свих страна, мразом, гладарима, или механички, машинама и сл. – успешно се могу отклонити калемљењем.
"на мост". Техника овог калемљења није заметна. Калем-гранчица се са обе стране заклини као за калемљење спајањем, а на подлози, испод и изнад оштећења направи се зарез коре у облику слова "T" за увлечење калем-гранчице. Број калем-гранчица је различит и зависи од дебљине оштећене воћке. Ово калемљење се изводи у фази почетка вегетације. У случају да је корен исувише ослабио због оштећења или неког другог разлога примењује се његово ојачавање. Засади се неколико сејаница око дебла и аблякацијом – калемљење приљубљивањем – ојача се корен и повећа бујност надземног дела.

Калемљење са стране

Прикладним калемљењем се могу попуњити оголеле гране у круни. У ову сврху користи се калемљење "на куле", односно калемљење са стране, у пролеће кад кора почиње лако да се одваја.

На подесном месту скелетне гране направи се уздужан пресек коре, прав или мало кос, до самог дрвета, око 3 см дужине. На горњем делу пресека одсеће се делић коре да би се калем-гранчица увукла под кору. На калем-гранчици се направе два коса засека под углом од око 60°. Шири, раван пресек належе на дрво, а мањи се поклони одвојено језичком коре. Калем-гранчица се уваје прекрајем и премаже калем-воском.
Окупиране на ипии (двођубо калемљење)

Двођубо калемљење се примењује код неподударних комбинација – најчешће код крушке. Најпре се у доњем делу испод коре подлоге, расечена у облику слова „Г”, стави мали штитић без пупољка, од посредника, затим преко њега пупољак жељене сорте, тако да доњим делом прикрива раније стављени штитић посредника. Калем се веже и премаже калемарским воском. Овај начин калемљења изводи се у јесен или у рано пролеће са кретањем вегетације.

Калемљење ораха

Орах се може калемити на више начина: очењем, на прорез или закрпу, очењем на прстен, очењем у облику положеног слова „Н”, калемљењем на зелено обичним спајањем, калемљењем на зрело енглеским спајањем и у процеп, калемљењем у просек врха подлоге (без прекраћивања), калемљењем у саксијама које се држе у топлим лејама или стакларама. Најбоље резултате даје калемљење „енглеским” спајањем.

Често се примењује калемљење на зелено, обичним спајањем. Изводи се у мају, у време најинтензивнијег пораста ораха. Обавља се на исти начин као и зелено калемљење винове лозе. Калем-гранчице се скидају непосредно пред калемљење. Са њих се одсече лиска тако да остане лисна дршка дужине 2 cm. До употребе припремљена калем-гранчица држи се у влажној крпи или у полиетиленској кеси.

Приликом припреме подлоге за калемљење треба оставити неодсечену лисну дршку, као и код калем-гранчице. Спојена места се чврсто привежу рафијом, ако се
калемљење изврши правилно, успех у примању је најчешће потпуно. У току вегетације подлогу треба редовно чистити од избојака.

Сл. 62 – Разни начини калемљења ораха: Ј) Јод кору, Њ) енглеско снајање, III) клинасто, IV) окулирање на "арозорче" и V) калемљење на Јершем
ПРИБОР И МАТЕРИЈАЛ ЗА КАЛЕМЉЕЊЕ

За калемљење су потребни: воћарска тестерица, воћарске маказе, нож кресач и калемарски нож. Овај алат мора бити увек оштар и чист. Осим алате потребан је и следећи материјал за калемљење.

1) Материјал за везивање (рафија, гумене траке, пластичне траке, фул, канап и слично).
2) Калемарски восак. Восак за калемљење саставља се на следећи начин:
 - 730 g калафонијума,
 - 75 g пчелињег воска,
 - 75 g лоја,
 - 120 g шпиритуса.

Калафонијум, пчелињи восак и лој се заједно растопе у неком суду, а затим се посуда скине с ватре и уз стално мешање пажљиво додаје шпиритус. Ово је тзв. хладан калемарски восак, јер се приликом употребе не загрева (пошто је механика конзистенције).

За премазивање пресека дебљих грана, успешно се користи и битумен, чисто, или уз додавање говеђег лоја. На 1 kg битумена додаје се 200 грама лоја.

Сл. 63 – Алати за калемљење: тестерице, ножеви кресачи, маказе и ножеви за калемљење

Калем-восак (састав и припрема)

Хладни калем-восак. – У један суд ставити 750 g калафонијума и 75 g пчелињег воска или 75 g говеђег лоја, па на тихој ватри загревати и мешати док се не истопи. Кад се маса охлади, уз стално мешање додати 120 g шпиритуса, 15 g катрана, а затим сипати у кутије и чувати до употребе.
Катран се додаје да би одбио пчеле. Ако се дуже чува, очврсне, те га пре коришћења треба растопити уз додавање мало уља и шпиритуса.

Топли калем-восак. — Растопити 1 kg смоле од четинара, процедити је а затим јој додати 100 g пчелињег воска и 400 g топљеног лоја. Све то растопити у једном суду и пре употребе масу загрејати.

Бијуменски калем-восак. — Кувати 1 kg битумена и 300 g говеђег лоја уз стално мешање, док се не добије житка маса. У ту масу сипати кашику (30 g) машинског уља и добро измешати.

Тврдоћа се регулише додавањем мање или веће количине лоја и уља. Погодан је за прекалемљивање.

Врсти везивне мастирјала

Рафија. — Веома квалитетно везиво (чврсто, јако, еластично). Користи се за све начине калемљења. Слаба страна је једино то, што се мора попуштати и скидати да се не би ускала у дрво.

Полищиленске тркае. — Све више се користе, посебно када нема рафије, а погодне су за све начине калемљења. Морају бити танке (0,08 mm), мекане, јаке и еластичне. Нешто дебље трке, или ако се густо наслажу, неповољно делују на срашићивање. И оне се морају сасезати после примања калема.

Гумени траке. — Нарочито су добре при очењу, јер су јаке, чврсто стежу калем и еластичне су. Гумену траку не треба попуштати и сенити при калемљењу на спавајући пупољак, а код будног се мора сенити. Гумени трак са проширенем на средини треба скинути са калема 20 дана после очења.

Неговање садница у растилу

Нећа садница добијених очењем на „спавајући” пупољак

Програм неговања садница у растилу састоји се од: попуштавања и скидања веза са калемова, скараћивања подлога до окалемљеног пупољка, уклањања избојака са подлоге, одржавања земљишта, пинирања летораста, заштите земљишта од болести и штеточина. Поред тога, може да се подигне и наслон ради заштите од града.

Попуштавање и скидање везива са калемова

После десетак дана контролише се колико се калемова примило. Примљени калем препознаје се по томе што му је пупољак свеж, а зелени део петељке при латаном додиру отпада. После овог прегледа треба, по потреби, обавити допунско калемљење, истовремено се оцењује и срастање пупољака са подлогом. На неколико калемова се оштрим ножем пресече везиво да се утврди степен калусирања — срастања калема, ако
је оно потпуно, може се попустити везиво на калему. Попуштање везива се изводи тако, што се са супротне стране калема, на доњем делу, пресече везиво, а после руком окреће намотај везива лево и десно ради лабављења и тако се остави. Ако је калем везан гуменом траком, нема потребе за попуштањем везива.

Врло је значајно да се ова операција на време изведе, како не би дошло до урастања везива на делу где је калем везан. Везиво се скида при крају вегетације или у рано пролеће.

Може се десити да се окалењени пупољак развије у летораст. Ова појава није пожељна, пошто тај летораст улази у зимски период недовољно припремљен па најчешће измрзе. Због тога се препоручује његова заштита омотавањем хартијом. Защита од измрзавања може да буде успешна и заграњењем пупољака. Најчешће се тако штите калемови ораха, прво се око калема нанесе песак и после ситна земља.

Јесен јубрење

Пре него што наступи зимски период, земљиште у растилу треба поорати. Пре ораха ђубриво се растури у количини око 300–500 kg по хектару. Норма ђубрива мора да одговара стварним потребама, а одређује се према плодности земљишта. Од минералних ђубрива се узима неко фосфорно и калијумово у сразмери (фосфор:калијум) 1:3.

Скраћивање јублоге до окалењених пупољака

Подлоге се скраћују до изнад окалењених пупољака. Врло је значајно како се ово скраћује. Потребно је да косица пресека буде са супротне стране пупољака, при чему доња ивица пресека треба да је мало изнад средине окалењених пупољака, изузев код ораха и коштичавих воћака. Пресек се прави обично под углом око 45°. Код ораха, пресек се прави за 5 mm изнад пупољака, а код брекске и других коштичавих воћака око 2 mm.

Скраћивање подлоге треба обавити рано пре кретања вегетације, а изводи се оштрим маказама, пажљиво, да се пупољак не повреди.

У случајевима кад су се леторасти у јесен развити, треба, ако су заштићени, уклонити. Ако има оштећења од мраза, оштећени део се уклања и орезује на један пупољак који се налази у основи.

Непримљене калемове, ако их је мало, треба уклонити или окаливати очењем на будни пупољак или спајањем на исечак и др. Такве подлоге не треба скраћивати приликом извођења скраћивања подлога до калемљеног пупољака.

Скидање (ухицање) избојака са јублоге

У току вегетације, поред тога што се из окалењених пупољака развија летораст – окупант, из подлоге се јавља много избојака, који успоравају растење
окуланта, па чак могу да га сасвим угуше. Због тога је нужно да се ухлањају на време, и спречи да се јачи развију. Ова радња се изводи више пута, макака му или ножем кресачем, се скидају, као и руком, ако су мали и у примарној грађи - зељасти.

Уколико је обављено допунско калемљење подлога, код примљених калемова поступак је исти. Ако се калем није примио, такве се подлоге крче, не треба их оставити, јер они ометају развој калемова.

Одражавање земљишта у распилилу

Прва обрада земљишта у распилилу обавља се рано. Многи послови који се обављају током зими и раног пролећа најчешће се изводе ручно. Тиме се растило угази, па је потребно да се култивира култиватором између редова, а у реду, моти ком. У вегетацији се пет–шест пута врши међуредна обрада на дубини око 5–8 cm. Ово се изводи найзменчиво култиватором и ротофрезером. Исто тако, у самом реду са садницама коров треба уништавати копањем.

Пицирање превремених граничика

На окулантима, у току лета, се развијају превремене граничне, што није пожељно. Превремене граничне успоравају пораст садница. Саднице свих воћака не дају превремене граничне, чак ни све сорте исте врсте. Највише се ових граничика развија код брескве, кајсије, вишње, бадема и неких сорти јабука (старкова најраније, Јонатан), шљива, крушке и др. У циљу спречавања развоја превремених границица, обавља се гушћа садња подлога. Пицирају се граничнице, до висине око 60 cm код брескве, бадема и вишње, док се код јабука, шљиве, кајсије и крушке оне сасвим уклањају.

Остала мере јри нези садница у распилилу

Сузбијање болести и штеточина обавља се редовно. То је посао заштитара. Уз заштиту може да се врши и прихрањивање преко лића, уколико је то потребно. Користе се средства као што је фертигал, фолифертил или вуксал (Wuxal). Ова ћуприва садрже и микроелементе.

Није потребно да се саднице наводњавају, то може да буде чак и штетно. Међутим, уколико због дуготрајне суше оне у порасту заостају, наводњавање је тада корисно.

У ветровитим рејонима, где су на садницама могуће штете од ветра, долази до очуњивања окулантата. То се дешава у почетку вегетације, при порасту летораста око 40 cm. У том периоду могу се поставити ради заштите од ветра две траке од пластичне материје, с једне и друге стране реда, које се причвршћују за мање притке постављене на 20–30 метара. На сваких десетак метара ове се траке новијају, при томе се оставља растојање између њих, око десетак сантиметара.
Технологија производње подлога и садница

Као посебна мера против града поставља се наслон са мрежом. Ова конструкција може бити од гвожђа или дрвета. То је сигурна заштита од града, а не одржава се неповољно на пораст садница.

Програм мера који смо приказали за негу садница произведених калемљењем на спавајући пупољак, може да се примени и у случајевима када је калемљење обављено и неким другим начином. Углавном се ради о сличним или идентичним поступцима.

Продукуон садница
Јагодастих врста воћака

Малина

Производња садница малине је претежно вегетативна – издацима и резинцима. Постоје две варијанте производње садница издацима: у делу малињака на-менебног производњ шподова оставља се део за производњу садница и друга варијанта, када се из целог засада који је у роду, ваде саднице. Друга варијанта је непогоднија због тога, што се међу оживљеним издацима кратко могу наћи и сејаци од семена прошлогодишње бере.

Пошто се издаци развију око 20–30 cm, врши се њихово проређивање, остављајући онолико нових издака колико се може развити према виталности матичног стабла, у стандардне саднице. У јесен се оживљени издаци ваде и стављају у промет као саднице. Знатно мањи број издака се користи из стабала — жбунова који доносе род.

Производња садница малине није компликована, али постоји велика опасност од ширења вирусних обољења. Малина нападнута вирусима може да смањи принос и до 90%. Због тога се пре садње на стално место врши ослобађање од вируса подривањем термотерапије. Саднице се излажу температури од око 32°C у трајању 6–10 дана или се потопљају у топлу воду, чија је температура 45°C у трајању 1–3 сата.

Производња садница малине оживљавањем, примењује се у ретким случајевима јер за то нема практичне потребе.

Рибизла и огрозд

Саднице рибизле и огрозда се за практичне потребе не производе калемљењем. Само изузетно се врши калемљење, ако се гаје у декоративне сврхе као стаблашите. У том случају се као подлога користи жута рибизла (златна рибизла). Ова рибизла је буњица (око 2 m) и у томе је њена предност као подлоге. Осим тога, јавља се мало издака. Стабло јој расте право и довољно је чврсто. Калеми се на око 100 cm од површине земље.
Саднице рибиле и огрозда углавном се производе на један од вегетативних начина: резницима, издацима, положеницама и делењем матичног стабла.

Резнице се скидају у јесен. Припремање резници за ожиљавање се састоји у прекраћивању најмање на два пупољка. Број пупољака, који се остављају на резници зависи од тога да ли ће се саднице наводњавати. Ако постоје услови за наводњавање, тада и резнице могу бити сасвим кратке, у противном се остављају на око 25 cm. За време вегетације нужно је сузбијати корове, као и предузимати остале мере заштите. У јесен се ожељене резнице износе на тржиште као саднице.

Матична стабла служе искућиво размножавању, она не доносе род.
Саднице рибиле и огрозда производе се на потпуно исти начин.

Јагода

Јагода има способност да развија позицију - столоне из којих се на одређеним местима формира розета, а испод се развија корен. Овако настала биљница зове се живот, односно вегетативна садница јагоде. На власнијем земљишту може се формирати више живота. И производила садница јагоде може да се организује слично као код малине: искућиво да се производе саднице или комбиновано – и плодови и саднице, мада треба увек настојати да се производња садница не комбинује с производњом плодова. Постоји могућност добијања садница и на генеративан начин.

Јагода је домаћин великог броја вируса. Заражене биљке се познају по променама на спису (мозаик, увијеност, жут лист и сл.). Оболеле биљке постепено угину. У циљу добијања здравих садница јагода, примењује се термографија: биљке се подртавају температури од 38°C у трајању од 15 дана. Приликом ове терапије један број биљака угине (око 40%). Од преосталих биљака се подиже засади ради производње живота.

Купина

У производњи садница купине нема великих разлика од онога што је речено за малину, с тим што је могућа производња купине и стрмоглавим оживљавањем, односно оживљавањем врхова летораста. Једна матична биљка, уз разумну интервенцију стружњака, на овај начин може дати око 500 садница. При овом је посебно значајно да се у примарној грађи врхови покривају земљом. За купине без бодљи је ово од посебног значаја. У њих се јавља реверзивнолност бодљи ако се врхови загрћу у фази кад су леторасти одрвенели.

Боровница

Саднице боровнице производе се на два начина: калемљењем на један од уобичајених начина и вегетативним путем. За ово се користе резнице (зелене и зреле).
Може се обављати и ожилавање неодвојених делова. Резнице за ожилавање, дужине око 10-15 cm, стављају се у леје са припремљеним супстратом од смеше тресета и песка. Дебљина супстрата у леји треба да је за неколико cm већа од дужине резнице. Резнице се саде на 2-3 cm једна од друге у реду, a на 10 cm ред од реда. Супстрат обавезно мора да буде стерилизован и довољно влажан. У леје се може уграђити и уређак за загревање супстрата и одржавање температуре на 20-22°C. При оваквим условима се повећава проценат оживљених резнице. Чим се резнице оживе преносе се у растило ради даље неге, где остају још једну вегетацију.

Зелене резнице се одсецају у вегетацији и то најчешће у августу. Користе се леторасти из текуће вегетације. Зелене резнице морају бити исте дужине као и зреле. С њих се уклања лишће. Ожилавају се у сличним лејама као и зреле резнице. Супстрат треба да је стално влажан.

Активиција

Саднице активиције се произведе калемљењем и ожилавањем резница. Калемљење се изводи као и код других воћака, најчешће окулирањем. Ожилавање резница

![Diagram](image-url)
може се вршити на два начина: одсецањем у летњем периоду (јуни – јули) – зелених резица, и одсецањем гранчица за резици, у јесен – зрелих резица.

У летњем периоду резици се припремају скраћивањем на 15–20 cm дужине, са 2–3 листа. Доњи делови резици се третирају са 2.000 mg раствора индол-бутерине киселине, или алфа-нафтил сирћетном киселином у праху, у трајању 4–5 сати. Резици се стављају у супстрат перлита и тресета (1:1) са влажности од око 85% и температуром око 22°C. Резици се саде на растојању око 5 cm у реду и око 10 cm између редова.

Резици скинуте у јесен, после отпадања лишћа, чувају се у влажном супстрату до пролећа, када се прпоре у леје, у просторијама где не мрзне, на растојању од 10x5 cm. Леје се састоје од тресета и перлита у односу 1:1. Супстрат се најпре дезинфикује погодним фунгицидом. Треба, такође, да се супстрат загреје на око 20–25°C при влажности до 85%.

Ожиљене резици се из леје преносе у пластичне кесе од црне фолије (20 x 20 cm) које су испуњене 2/3 смешом песка и тресета у односу 3:1. Из ових кеса садња се обавља директно на стално место.

На слици 64 је приказан начин ожилавања актинидије. Грана која се ожилава није одвојена од матичне биљке. Овај начин има значаја за мању производњу садница.

ПОСТУПАК СА САДНИЦАМА ДО САДЊЕ НА СТАЛНОМ МЕСТУ

У пракси се могу јавити потребе за употребом садница воћака различитог узрasta, али се задовољавајући резултати могу постићи само са садницима високог квалитета. У процесу производње садници, могу се примењивати такви поступци, при којима се остварује максималан квалитет. И поред тако произведенних садници воћака, оне понекад не могу да се препоруче за садњу на сталном месту. То се дешава уколико се са садницима од њиховог вађења из растила до садње, не поступа како треба. Због тога, макар врло кратко, ево упутства како се са садницима поступа од вађења из растила до момента садње.

Вађење садница

Квалитет садница је одређен у великој мери и њиховим вађењем. Вађење садница, угледном је механизовано, али се обавља и ручно. При одвајању корена саднице од земље, дешава се, и то редовно, да се покидају ситне жиле, па и нека скелетна. Због тога се настоји да се ово обавља врло пажљиво и без осетнијих повреда корена. Уколико су већа штетења корена, утолнито је садница лошијег квалитета, па није ни за употребу. Старије саднице треба, по правилу, да су с дужим жилама.
Паковање садница

Закон о садном материјалу предвиђа паковање садница у снопове до 200 комада. Живићни јагоде се пакују у сандуке, или кутије по 500 живића. Квалитет садница је условљен паковањем, преношењем и чувањем.

Паковањем, саднице воћака се заштитују, не само од исушивања већ и од ниских температура. Жиле садница су врло осетљиве према јаким колебањима температуре. Ако се саднице дуже изложе спољашњим утицајима, може доћи до исушивања и смерулога жила. Тако се саднице у врло малом проценту примају. Зато, одмах по вађењу, саднице треба заштитити и не излагати их дужем утицају ваздуха. Ако се о томе не веди рачуна, корен садница смањује способност регенерације и прираштаја и до 50%, у односу на саднице које су биле заштитене непосредно после вађења.

Корен садница може да страда и од мразева. Оштећења од мраза настају у случајевима кад се саднице ваде при негативним температурама, ако се оставе на отвореном пољу незаштићене, или, пак, у транспорту, а нису од измрзнувања заштићене. Поред тога и утрапљене саднице, ако трапљење није стручно изведено, могу да буду оштећене од мраза.

Припрема садница за транспорт зависи од удаљености места у које се оне транспортују, односно, од времена колико ће да проведу на путу. Уколико постоји бојазан од оштећења, паковање садница воћака мора да је такво да онемогући оштећења од мраза. За ово се користе разни заштитни материјали – плева, слама, шаша, сено и
слично. Сноп садница се омота неким од пластичних материјала, затим у саргију или нешто слично, увеже и начини бала. Руковање балом није тешко, а саднице су добро заграђене. Транспортирање се врши што бржим превозним средствима.

Трапљење – чување садница воћака

Смештај садница воћака, у циљу њихове заштите од сушења и измрзавања, врши се у посебним траповима. Уколико ових нема, оне могу да се утрапе и на отвореном пољу. Место за трапљење садница мора да је оцедено, са сразмерно ниским нивоом подземне воде. Да би се избегло штетно дејство мишеву, или јаче квашиње кишом, око простора у коме су саднице утрапљене, треба ископати канале. Приликом трапљења, видно се обележавају снопове сорти, па се то затим пренесе у план садница у трапу. Треба обратити пажњу да су жиле добро заштићене од измрзавања, па се

![Diagram of fruit tree plantation and storage]

Сл. 66 – Вођење садница и Јосиуљак до садње: 1) ручно вођење, 2) Јосиуљак косо Јосиуљањених садница, 3) Јосиуљак уставно Јосиуљањених садница, 4) Јосиуљак за вођење садница са уређајем за отресање земље са жиле садница
покривају синтом земљом или песком. Доњи део садница 30–50 cm, такође се затрпава земљом. Утрпљене саднице треба заштитити и од зечева, мишева, волухарица и др.

Прописи који регулишу производњу и промет садног материјала

Најзначајнији документ којим се уређује производња, стручна контрола над производњом, коришћење и промет садног материјала је Закон о семену и садном материјалу. Садним материјалом у смислу овог закона сматрају се: калем-гранчице, резнице, оживљене резнице, младице, издаци, сејанци, живићи, окулант и воћне саднице.

Саднице се могу производити само од одабраних и признатих матичних стабала и треба да одговарају прописаним нормама квалитета. Производњом садног материјала може се бавити, у смислу овог Закона, основна организација удруженог рада, земљорадничка задруга, основна задружна организација и основна организација коопераната. Услов да се једна организација може бавити овом производњом је да има обезбеђен репродукциони материјал или да га обезбеђује од организација са којима је закључен споразум о удруживању рада и средстава, затим, да има опрему за обраду земљишта, негу, заштиту, рециду, паковање садног материјала, просторије за калемљење, стратификовање, смештај, сортирање, дезинфекцију и да је обезбедила стручну контролу. Удружене кооперанти производе садни материјал од репродукционог материјала који обезбеди организација.

Организација која се бави производњом садног материјала мора да води евиденцију о произведеном, продајом и о употребљеном материјалу, као и пореклу репродукционог материјала.

Стручном контролом се утврђује: порекло, биолошке особине, истинитост врсте и сорте, односно врста репродукционог материјала, као и количина произведеног садног материјала. На крају вегетације, организација која је вршила стручну контролу над производњом садног материјала, издаје уверење о квалитету и истинитости сорте. Стручну контролу врше организације које се баве научно-истраживачким радом или организације које врше услуге пољопривредне стручне службе у области воћарства. Стручну контролу може да врши и сама организација која се бави овом производњом, уколико има инжењера пољопривреде, воћарско-виноградарске струке, који има најмање три године радног искуства на пословима стручне контроле садног материјала. Организација која врши стручну контролу води евиденцију о производњи садног материјала и о томе доставља извештај општинском и републичком органу управе задуженом за послове пољопривреде.

За подизање плантажа може се користити садни материјал који одговара прописаном квалитету. У промет се ставља садни материјал који има издато уверење о
истинитости сорте и др. Паковање, пломбирање, декларисање и утврђивање квалитета врши организација која је произведла садни матерijал.

Пољопривредни инспектор може да забрани предмет, односе промет садним матерijалом, уколико утврди да не одговара прописаном квалитету. Он може да забрани промет и ако репродукција матерijал не потиче од одабраних и признатих матичних стабала.

Закон је предвиdeo и оштре казне уколико се његове одредбе не извршавају.

Поред Закона о семену и садном материјалу на снази је још неколико правилника и то:

- Правилник о утврђивању биљака и делова биљака који се сматрају пољопривредним садним материјалом, регистрацији произвођача и призивању садног материјала (Службени гласник СР Србије) и Правилник о нормама квалитета, паковања, пломбирању и декларисању садног материјала пољопривредног биљак.

Из наведених правилника наводимо неколико важних дефиниција. Пре свега, како је дефинисан квалитет садног материјала.

Калем-граниче. — Треба да су од одабраних и уматичених стабала и да су довољно развијене са развијеним пупољцима.

Ожиљене резнице. — Од неких врста воћака (најчешће малина, рибилица, смокава, маслина и др.), као саднице на сталном месту, могу се употребити ожиљене резнице пречника 5–12 мм, с надземним делом од најмање 20 см. Корен треба да има најмање 5 жила по 5 см дужине.

Младиће — ожилене избојци. — Ожилени избојци као саднице, најчешће су код леске, па је то такође, саднице добијена вегетативним путем. Корен ове саднице је с најмање 4 развијене жиле по 5 см дужине. Пречник саднице на око 20 см од површине треба да има 4–14 милиметара.

Ожиљене изданци. — У пракси се стављају у промет и саднице произведене вегетативним путем — ожилени изданци. Изданак је младица — летораст, која се развила из адвентивних пупољака жиле, налази се испод купне матичне воћке. Ове саднице најчешће се срећу код малине, купине, вишње, шљиве, дуње и др. Код малине и купине корен мора да има најмање 5 жила по 8 см дужине. Надземни део купина 30 см, а малине 50 см са пречником 5–12 мм.

Код вишње и шљиве корен мора да има најмање 3 жиле по 5 см. Надземни део најмање је 20 см дужине и 5–12 mm пречника.

Сејанци (као саднице). — Сејанци је биљка произведена из семена. Врло се ретко данас користи за садњу на сталном месту. Ова садница није за садњу, јер не обезбеђује добијање онаших плодова, какви су они од којих је семе узето и она произведена. Још данас, сејанци могу да се користе као сејанци ораха и то све ређе, јер их потискују саднице ораха произведене калемљењем.

Надземни део је с најмање 60 см и пречника 17–25 mm. Корен је с најмање 3 жиле по 20 см.
Таб. 25 – Начин размножавања подлога и неких врста воћака

<table>
<thead>
<tr>
<th>врсте воћака</th>
<th>семеном</th>
<th>резициама</th>
<th>положициама</th>
<th>живићни лознице</th>
<th>подела жбуна</th>
<th>изданци</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>генеративно</td>
<td>вегет. апомик</td>
<td>гранич. корен</td>
<td>врх осно</td>
<td>вом</td>
<td></td>
</tr>
<tr>
<td>јабука</td>
<td>(+)</td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>крушка</td>
<td>(+)</td>
<td></td>
<td>(+)</td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>дуња</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>шљива</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>трешња</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>вишња</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>брескваз</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>кајсија</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>бадем</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>кажи</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>смоква</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>луа</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>јуђуба</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>орах</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>пскан</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>лешник</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>пистација</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>кестен</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>јагода</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>малина</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>купина</td>
<td></td>
<td>(+)</td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>боровница</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>зимзелена</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>боровица</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>огрозд</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>рибиха</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>активација</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>нар</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td></td>
</tr>
</tbody>
</table>

+ = редовно (+) = повремено

Окулани. – Окулани су саднице које од племените сорте имају пунољак. Најчешће се подлога калеми у јесен на спавајући пунољак. Као садница могу да се користе за све врсте воћака. Корен треба да има најмање три жиле по 10 cm дужине. Надземни део, ако је с патрљком, око 10 cm изнад места калемљења и 6 mm пречника.
Саднице проузведене калемљењем. —
Данас се највише стављају у промет саднице произведене калемљењем. Оне се производе од свих врста воћака. По старости могу бити различите. Њихов племенити део (сорта) може да буде стар једну или више година. Више се цене саднице старе једну годину. Корен може бити неједнаке старости. Тако код једногодишњих садница (неких врста воћака), корен саднице је стар једну годину, а толико и племенит део. Чешће је корен стар две године, а надземни — племенити део само годину дана. Старост садница се одређује по старости племенитог дела — сорте, а не по старости корена.

Саднице воћака произведене калемљењем могу да имају прави — генеративан или вегетативан корен. Корен садница представља у ствари подлогу. Данас, у воћарској прaksi имамо врло велики број подлога, готово код свих врста воћака.
ПОДИЗАЊЕ ВОЋЊАКА

ОБЛИЦИ ВОЋАРСКЕ ПРОИЗВОДЊЕ

Пред него што пређемо на припремне радове за подизање воћњака потребно је да се упознајмо са облицима воћаарске производње, затим с типовима воћњака, проценом рејона, избором воћне врсте и сорте итд.

Код нас постоје, углавном, два облика воћаарске производње: производња у мањим и већим индивидуалним газдинствима и производња на плантажним засадима. Постоји и производња на окућници, у мањим варошким вртевима. Док је у прва два облика производња воћа намењена тржишту, ова последња служи за потребе домаћинства.

Према карактеру производње газдинства могу бити:

1) газдинства у којима преовлађује воћаарство у облику монокултуре (једна врста у целом засаду);

2) газдинства с поликултуром у којој воћаарство представља једну од главних грана;

3) газдинства с поликултуром у којој је воћаарство једна од споредних грана. У првом случају газдинства су чисто воћаарска, а у остали два случаја су са мешовитом производњом.

Мали је број газдинстава код нас која се могу бавити само воћаарством, јер је монокултура често ризична, јер принос воћака може осетније да подваје.

У газдинствима с мешовитом производњом нема таквог ризика, јер се две или три пољоприродне гране међусобно допуњују. Осим тога, овде се с неколико култура боље и потпуније искоришћавају различити услови средине.

Типови воћњака могу се овако класификовати:

а) По заситљивим врстама:
 - с једном врстом и једном сортом (хомогени засади),
– с више заступљених врста (мешовити засади).
б) По висини дебла:
– са ниским,
– са средње високим и
– са високим деблом.
в) По начину одржавања и искоришћавања земљишта:
– воћњаци – пашњаци или ливаде,
– воћњаци – њиве или повртњаци,
– воћњаци – виногради,
– воћњаци у којима се земљиште одржава у стању јаловог угара.
г) По уздању раста и средишта:
– екстензивни воћњаци,
– интензивни воћњаци.
д) По намени производње:
– за домаће потребе,
– за робну производњу – за тржиште.
ђ) По јосебним задацима којима јереба да служе:
– колекцијони воћњаци,
– огледни воћњаци,
– демонстрациони воћњаци.
е) По власништву:
– приватни воћњаци,
– задружни – колективни воћњаци,
– друштвени воћњаци.
ж) По величини:
– плантажни воћњаци,
– воћњаци на окућници – вртови,
– појединачне и расуте воћке.
Избор типа воћњака зависиће од сваког конкретног случаја: услова средине, задатка и намене производње, заступљених врста и подлоза, могућности примене машина, располажеће радне снаге – наручито стручне, итд.
Сем производње воћћа у градовима воћке служе и за украшавање дворишта, паће се овде примењивати онај тип, који највише и одговара том циљу.

ВАЖНИЈЕ ОДЛИКЕ НЕКИХ ВОЋЊАКА

За интензивну производњу воћа највећи значај имају велики плантажни засади, јер такви воћњаци имају све услове за пуну примену савремене науке и технике.
С обзиром на услове и потребу за унапређењем воћарства, намеће се и питање хомогености, а затим интензивности воћњака, при чему такође треба разматрати и проблем висине стабла у масовној производњи воћа. Та питања се морају решити што правилније, јер од тога често завије и успех целог подухвата. Питање хомогености воћњака је веoma сложно. Због тога је врло тежак правилан избор између хомогеног и мешовитог воћњака. Оба ова типа имају низ предности и недостатака.

У прилог хомогених воћњака обично се наводе ове предности: добија се велика количина уједначених плодова; лакше се обезбеђују уједначене подлоге, врсте и сорте према условима рекона; могућа је добра организација рада и важна продуктивност. Недостаци хомогених воћњака су у подбацању производње појединих година, у појачаној опасности од болести и штеточина и у неравномерном искоришћавању радне снаге.

И мешовитих воћњака се одликују преимућивима и недостацима. Код њих је умањена опасност од штеточина и болести; добија се разноврсно воће чије доспење обухвата широку сезону искоришћавања. Међутим, недостаци мешовитих засада сматрају се: земљишни и климатски услови, јер не могу бити оптимални за све врсте воћака; затим заштита против штеточина и болести посебно је производњи, јер се према штетним препаратима мора више пута обављати због различитих паразита на разним врстама воћака; механизација и друге радне операције су отежане због агротехничких мера које се такође разликују код различитих врста воћака.

Наша искуства потврђују оцену многих стручњака да на великим, плантаžним засадима треба форсирати хомогене воћњаке.

Мање је сложено питање интензивности воћњака. У том погледу се разликују углавном два основна типа: интензивни и екстензивни воћњаци. Изразито интензивни воћњаци, названи још и индустриско-трговински, састоје се од ниских воћњака на генеративним или вегетативним подлогама којима се мора пружити што пунije не
govaњe, нарочито резидба, а понекад и одбрана од позних пролећних мразева и града. Ови воћњаци обезбеђују највеће приносе и најбољи квалитет плодова. Осим тога, лакше је брање, резидба и одбрана од биљних болести и штеточина.

Интензивност воћарске производње зависи поглавито од примењених агро
tехничких мера, а не од ове или оне подлоге. Према томе, ми можемо интензивирати нашу воћарску производњу не само вегетативним већ и генеративним подлогама.

У воћарству је веома важно и питање висине добла. Иако воћке с ниским деблом отежавају механизацију, која је од највећег значаја за рентабилност воћарске производње, ипак у великим воћњацима треба тежити да се гаје воћке са што нижим стаблом, чак и када је подлога бујна (сеjанац). Самим тим воћарска производња биће успешнија с обзиром на преимућства које пружају воћке с ниским стаблом (мала изложеност ветровима, лакша резидба и заштита, редовнија и обилијија родност).
ПРИПРЕМА ЗА ПОДИЗАЊЕ ВОЂЊАКА

ПРОЦЕНА РЕЈОНА

Да би се правилно извршио избор врста и сорти вођњака треба добро познавати основне услове за интензивну воћарску производњу. С тим у вези, полази се од природних чинилаца дотичног рејона: највиших (минималних) температура у току зиме; раних јесенњих и позних пролећних мразева и њихове учесталости; количине водених талога и њихове расподеле у току године и у времену вегетације; релативне влажности ваздуха и влажности земљишта; главних типова земљишта који преоблађују у дотичном рејону.

Ако је реч о подизању вођњака у једном мање-више изразито воћарском рејону, онда се зна како се њихов избор лакши и једноставнији. Али може се десити да се граниче воћарске производње унеколико померају, захватајући и нове површине. Код нас ће најчешће бити случајева да се користе нове површине или уводе нове врсте и сорте које у дотичном рејону нису раније гајене. Тада треба поступити сасвим определено, а најбоље приступити огледима макар и у најмањем обиму, па тек када се стекне извесно искуство, треба подизати вођњаке на великим површинама. Седиментне температуре овде треба обратити пажњу и на услове који омогућују нормално трајање вегетације. Према досадашњем искуству, у пределима умерене климе на висини 800–1.300 м може се успешно гајити леска, трешња и jagodaste kulture. Ако се на тој висини не јављају јачи температурни екстреми (критична температура у јесен, зиме и у пролеће) онда се могу гајити још и отпорније сорте шљива, нарочито ране, затим летње јабуке и крушка. У том погледу и дивље воћке пружају извесну оријентацију којом се треба користити.

ИЗБОР ПОЛОЖАЈА

При избору положаја неопходно је обратити пажњу на одлике микроклимате, при чему ваља избегавати терене изложене јаким ветровима, ниским зимским
температуром и позним пролећним мразевима. Терен мора да омогући пуну примену механизације и да има добру повезаност са саобраћајним линијама. Треба водити рачуна и о надморској висини, близини већих водених површина, положају терена према странама света итд.

ИЗБОР ТИПА ВОЂЊАКА

Подизању плантажа треба приступити само уколико за то постоје сасвим повољни природни и економски услови, с нарочитим обзиром на располаживу квали-
ИЗБОР ВРСТА ВОЉАКА

При избору врста воћака треба се руководити еколошким условима датог краја и потребама за воћем, затим квалитетом и употребљивошћу воћа. Јасно је да се морају братаје првенствено оне врсте које у датом крају могу најбоље успевати.

Међутим, биће случајева да у истом крају, под истим условима, може добро успевати више воћака. Да би се извршио најправилнији избор, треба тежити да изабрана врста воћака одговара потребама домаћих и страних тржишта; да плодови имају велико преимућство по свом квалитету; да имају добру издржљивост при транспортуванju; да се могу добро користити, како за прераду тако и као стоку воће; да гајење не изискује много радне снаге; да је врста по својој природи што више отпорна према биљним болестима и штеточинама; да рано пророди и да редовно даје добре приносе; да је берба брза и лака. При томе одлучујућу улогу имају повољни саобраћајни услови у близини тржишта (великих потрошачких центара и индустрије конзерви).

ИЗБОР СОРТИ ВОЉАКА

Кад се изаберу врсте, приступа се и избору сорти. С обзиром на знатна колебања чинилаца средине, условљених микроклимом и микрорељефом, а нарочито с обзиром на врло изражену неједнакост привредних и биолошких особености сорти њихове објективне вредности и реаговања на еколошке чиниоце, намеће се потреба да се питање избора врло опрезно решава. У том погледу успех производње у великој мери зависи од тога колико је примене изванредно значајан принцип бирања сорти према условима средине.

При процени сорте воћака полази се од њене прилагођености условима средине. Сорта треба да је што више отпорна према ниским температурама, суши, ветру и болестима. Веoma је важно да се добро оплођава и уредно рађа и да даје велике приносе и квалитетне плодове, који уз то добро подносе транспорт.

Степен прилагођености сорти воћака условима средине може бити врло неједнак и зависи од низа сортних особености. Највише су прилагођене старе локалне сорте, а најмање нове, високородне и висококвалитетне сорте. Међутим, показало се да су домаће сорте јабука, поред одличне прилагођености природним условима, врло осетљиве према чачавој краставости.
На избор сорте утиче и укус потрошача. Плодови појединих сорти приближног квалитета могу имати неједнаке цене на тржишту само зато што не одговарају подједнако укусу потрошача.

При избору сорти не треба се ограничити само на једну једину сорту неке врсте, већ узети неколико сорти најбољег квалитета. На тај начин се обезбеди међусобно опрашивање и оплођење воћака, а самим тим – уз одређену агротехнику и заштиту – и богати приноси и висок квалитет плодова.

Веома је важно да се сорте комбинују према времену сазревања. То је потребно не само због тржишта већ и због беђбе, односно правилног распореда радне снаге. Распоред сорти према времену сазревања посебно је значајан код брсквеха, кајсије и шљиве. При избору сорти не треба заборавити ни њихове подобности за прехрамбену индустрију.

ИЗРАДА ПЛАНА ВОЋЊАКА

Подизање воћњака, нарочито великих плантажних, мора претходити пажљива израда плана, који треба тачно да прикаже изглед воћњака на одређеном месту, с распоредом сорти и поделом на парцеле с комуникацијама. План мора да обухвати и извршење свих припремних и завршних радова повезаних с тим послом. Он треба да има основе смернице перспективног развија вођарства датог рејона или једног мањег подручја, мора се предвидети како ће се и како извршити припремни радови, нарочито припрема земљишта, одакле ће се набавити саднице и колико, на којој подлози и када ће се садити итд.

План воћњака у ужем смислу мора бити израђен што тачније. Најбоље је да се за ту сврху користи детаљна карта или катастарски планови. Овај план се ради у размери 1:2500, односно 1:2880. Педологију карту са ознаком профил и типовима земљишта у размери 1:2500. Поред тога, при изради се треба ослијати на перспективни план развоја вођарства бар најужег вођарског рејона. Израду плана ваља почети од неке сталне тачке (пут, железничка пруга, насеље, нека шумица), и током оној страни на којој ће се воћњак несметано ширити у наредних 5 до 10 година, тако да увек чини складну целину. Он мора имати уцртане главне и услужне стазе, парцеле, редове за воћне саднице, грађевинске објекте итд. Са главног плана треба пренети на паус-папир и поједине детале воћњака, да би се имали детаљи по којима ће се изводити радови. У плану се тачно убедење и размаци воћака, са распоредом сорти (детаљ 1 ha).

Уз план воћњака приложу се и предрачунске калкулације као и предвиђена технологија до ступања воћака на род и у пуну родности, са финансијским резултатом.
ИСТРАЖНИ РАДОВИ ЗА ПОДИЗАЊЕ ВОЋЊАКА

ПРИРОДНИ УСЛОВИ

Пре него што приступимо заснивању воћних засада морамо имати тачне податке о земљишту, клими, техничким могућностима, тржишту, саобраћају и другим условима. Производња воћа биће утолико успешнија уколико сви ови услови буду повољнији.

Сл. 69 – Процена физичких особина земљишта
ЗЕМЉИШТЕ

Земљиште се посматра као место за организоване производње. Због тога треба посветити посебну пажњу упознавању и испитивању земљишта, да би се спровеле потребне мелиорационе мере и правилно обавила припрема земљишта за садње воћа.

Испитивањем земљишта треба да се утврде тип земљишта и његове важније физичке и хемијске особине. Од физичких особина испитују се: гранулометријски састав, процент хигроскопне воде, максимални и ретенциони водни капацитет, мртва вода и погодност земљишта за наводњавање. Од хемијских особина утврђује се: количина хумуса, лако растворљивог фосфора и калијума, количина активног креча и рН вредност.

Испитивање земљишта обављају педагошке лабораторије пољопривредних института и агрокемијсke лабораторије пољопривредних факултета и др.

Поред испитивања земљишта у одговарајућим научним институцијама постоје и свакоме приступачне методе, којима се оријентационо процењују неке особине земљишта. Тако је могуће, да се приближно тачно одреди тип земљишта на основу наочања земље од које треба покушати да се, стезањем у шаши, направи груда. На цртежу 69 је приказано пет случајева који истовремено показују исто толико типова земљишта.

Квалификационо одређивање CaCO₃(креча)

Могуће је уз примену соне киселине квалитативно одредити релативно тачно, количину креча у земљишту. Узима се више узорака за анализу, и то по дубини: од 0 до 20 cm, 20 до 40 cm, 40 до 60 cm, 60 до 80 cm, па и дубље. Узорак земље треба сипати у порцупанску посуду отпорну на киселину. На земљу пажљиво капањем наносити 15%-ну сону киселину. Према интензитету трошења – пенушења киселине, процењује се проценат креча. Снажни и трајни пенушење или стварањем мехурића показује да има преко 5% креча, ако је реаговање сред-

Сл. 70 – Квалификационо одређивање креча и рН вредности земљишта: 1. Одређивање креча – узорак земљишта у коме има креча (лево) и узорак у коме нема креча (десно), пеношење је знак да у земљишту има довољно креча, и обрнуто; 2. Одређивање рН вредности (киселосић земљишта калори- метријски – стављање узорака у калори- метр и његово третирање (лево) и очи- шавање, преглед обојености (десно)
ње, креча има 2–3%, ако је слабо, онда има 1–2% креча, а ако нема реакције, нема ни креча у земљишту.

Одређивање pH вредности – реакције земљишта

Реакција земљишта се изражава pH вредностима. За практичне потребе постоје брзе методе. На основу промене боје лакмус-папира утврђује се да ли је земљиште кисело, алкално или нейтрално. За ово одређивање поступак је следећи: узорак земље од неколико грама ставља се у посуду, а затим се сипа дестилирана вода и направи суспензија у коју се стављају комадићи лакмус-папира, црвени и плави. Ако после 5–7 минута црвени лакмус поплави, ради се о алкалној средини, ако плави поцрвени, реакција је кисела. Уколико се боја не менja, реакција је нейтрална.

Другата метода је мало сложенија, али и тачнија јер се њоме приближно тачно може да утврди која је pH вредност тог земљишта. Ово је колориметријска метода. Као индикатор узима се раствор калијум-роданида – KCNS, којим се изражава промена боје испитиваног узорка земљишта. Боја узорка се упоређује с бојом колориметра на којем су означене вредности:

<table>
<thead>
<tr>
<th>Боја</th>
<th>Реакција</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>тамноцрвена</td>
<td>jako кисела</td>
<td>4-5</td>
</tr>
<tr>
<td>црвена</td>
<td>кисела</td>
<td>5</td>
</tr>
<tr>
<td>светлоцрвена</td>
<td>слабо кисела</td>
<td>5-6</td>
</tr>
<tr>
<td>ружичаста</td>
<td>врло слабо кисела</td>
<td>6-7</td>
</tr>
<tr>
<td>безбојна</td>
<td>нейтрална</td>
<td>7</td>
</tr>
<tr>
<td>плава</td>
<td>алкална</td>
<td>7-8</td>
</tr>
</tbody>
</table>

Испитивања треба обавити по хоризонтима, на дубину предвиђену за регуловање, за сајење појединих врста воћака.

Важније особине земљишта

Земљиште се састоји из два дела: минералног и органског. Органски део сачињавају нераспаднути остаци и хумус. Важно је знати колико земљиште има хумуса. Према количини хумуса разликују се ова земљишта:
- врло слабо хумусна до 1%,
- слабо хумусна 1–3%,
- средње хумусна 3,1–5,0%,
- jako хумусна 5,1–10,0%.

Постоје и земљишта у којима је количина хумуса изнад 20% – то су тресетна земљишта. У прaksi се хумус делити на плати и кисели.
Минерални део земљишта чине фине честица и иситњени одломци минерала и стена. Активни део минералног дела земљишта су минерални глине. Механички састав земљишта је однос појединих фракција заступљених у земљишту. Земљишна маза се дели на скелет и ситну земљу.

1. Скелет чине:
-- честица веће од 2 cm (камен),
-- честица од 0,2 до 2 cm (шљунак).
2. Ситну земљу чине:
-- честица од 2,0 до 0,25 mm (крупан песак),
-- честица од 0,25 до 0,02 mm (ситан песак),
-- честица од 0,02 до 0,002 mm (прашкист глина) и
-- честица мање од 0,002 mm (колоидна глина).

Од хемијских особина значајна је киселост земљишта, која може бити тројака. Једна од њих је активна киселост коју изазивају слободни водоникови јони и мери се концентрацијом водоникових јона (pН). Према величини активне киселости разликујемо земљишта:

-- екстримно кисела ... pН до 4,5,
-- врло јако кисела ... pН 4,5–5,0,
-- јако кисела pН 5,1–5,5,
-- средње кисела pН 5,6–6,0,
-- слабо кисела pН 6,1–6,5,
-- нутрална pН 6,6–7,3,
-- слабо алкална pН 7,4–7,8.

Ако је вредност pН нижа од 5, треба обавити каплификацију (додавање кречка): за лака земљишта до 2 тоне; за средње тешка до 4 тоне и за тешка земљишта до 5 тона, по ња.

Непосредно пред риголовање по површини се растуре фосфорна и калијумова ђубрила, и то најбоље у сложеном, комплексном облику. Овом приликом даје се и део норме кречка, уколико се врши каплификација земљишта. Није за препоруку да се одједанпут у земљиште унесе више од 2,5 тоне по хектару 90%-тног каплијум-карбоната.

Данас је добро проучен утицај pН вредности на усвајање појединих елемената. За највећи број воћака оптимална вредност pН је између 5,5 и 7,0.

За вођарску праксу су од интереса количине азота, фосфора и калијума у земљишту (и то у облику приступачном вођкама). Плодност земљишта треба разликовати од богатоштине. Плодност представља количину расположивих и бици приступачних хранива, а богатство је укупна количина хранливих материја, без обзира на њихову приступачност. Веће богатство земљишта обично омогућује већу плодност, мада постоје и случајеви богатих, али недовољно плодних земљишта.
Уопште узв хемијске особине земљишта могу да се доведу у задовољавајуће стање одговарајућим ђубречем и другим мерама, уколико су физичке особине почвени. Биолошке особине земљишта су врло значајне за све врсте воћака. Животну заједницу разних организама сачињавају: бактерије, гљивице, актиномицете, протозоа, инсекти, глисте и др.

Са особинама земљишта мене се и однос појединих чланова животне заједнице. Под утицајем физичких, хемијских и биолошких сила настају процеси у земљишту који изазвувају читав низ промена.

Прорачун јоштребних количина фосфора и калијума за Јобравку земљишта

Многи аутори сматрају, а то и наше искуство потврђује, да је средње обезбеђено оно земљиште које при pH 6–7 вредности има око 10 mg фосфора и око 20 mg калијума на 100 грама суве земље и 3% хумуса. Попуњавање потреба у хумусу може да траје више година. Прорачуном се утврђује колико је потребно да се унесе поједини хранива ради изравнивања биланса до средње обезбеђеног земљишта.

Ево прорачуна за фосфор. Анализом је утврђено да земљишту недостаје још 2 mg na 100 грама земље. Ово земљиште има специфичну тежину 1,3, а могућност слоја који треба да се обогати фосфором износи 0,5 m. Обрачунато колико је по 1 m² површине потребно да се дода чистог фосфора, односно 18%-тног ђубрива. Слој 1 m² површине моћности 0,5 m биће тежак (1000 x 0,5 m x 1,3 (спец. теж.) = 650 kg.

Ако у 100 грама земље недостаје 2 mg односно 0,002 грама фосфора, у 650 000 грама земље недостајаће

\[(100:0,002 = 650.000 : x)\]

\[x = \frac{\text{650.000 x 0,02}}{100} = 13 \text{ g / m}^2\]

Ову количину треба смањити за 20%, уколико земља није ваздушно суве, јер толико износи њена влажност пошто се врши обрачунавање на суву земљу; према томе ће недостајати чистог фосфора

\[13 \text{ g/m}^2 \times 20\% = 10,4 \text{ g/m}^2\]

или заокружено 10 g/m², односно за 1 ha биће јоштребно (10.000 m² x 10 g) = 100 kg чистог фосфора. Потребна количина фосфорног ђубрива (18%) износи по 1 m² \[\left(\frac{10 \times 100}{18}\right) = 55 g\], односно по 1 ha

\[10.000 m^2 \times 55 g\) = 550 kg]
На исти начин се обрачунава и количина калјума.
За практичне потребе некада је довољно да се количине ових елемената обрачунавају и на следећи начин. До дубине око 35 см на сваки милиграм мањка елемената – фосфора или калијума – обрачунава се и дода по 30 kg чистог елемената. Тако, на пример, ако недостаје 2 паг фосфора, треба додати 60 kg чистог фосфора, што одговара 333 kg 18%-ног фосфорног ђубрива. На овај начин се обрачунава само количина коју треба растурити и заорати пре риголовања. Ваља имати на уму да се овим не израхнувава билансе хранива на одговарајућој дубини. Преостали део хранива се постепено додаје земљишту у складу са развојем воћака.

Извођење агромелиорације

Основно ђубрење земљишта (фертилизација) треба изводити на тај начин што се половина планираних количина ђубрива, пре риголовања, заоре до 20 cm, а друга половина растури у моменту риголовања. Потребна количина хумуса може се на- докнадити у току прве три године уношењем органске масе (компост, стајњак, зе- ленишно ђубриво, разни органски отпади из индустирије) појединачно или комбиновањем више њих заједно.

Риголовање, чишћење терена и нивелисање треба обавити, до краја септем- бра за садњу у јесен, и до краја децембра за садњу у пролеће.

Риголовање за јабуку, крушку, бадем и трешњу врши се на 50 до 100 cm; за бреску, шљиву, кајсију, вишњу и дуњу на 50 до 70 cm; за малину, рибизлу и јагоду на дубину 30 до 50 cm.

Терасирање треба примењивати при нагибу терена преко 15%. Употребом специјалних машинама може се риголовати у пантљикама, при чему се истовремено може изводити и терасирање.

КЛИМА

Да би се сагледала клима одређеног подручја треба узети у обзир податке о температури за дужи временски период: средњу месечну минималну, средњу месечну максималну, средњу годишњу и средњу температуру за вегетациони период, а затим температуру за период октобар-април и за период мај-септембар. Осим тога, треба имати у виду појаву пролећних и јесенских мразева, са датумом јављања и њихову учесталост, као и апсолутне минималне температуре од октобра до краја маја; укупне падавине у периоду вегетације и по месецима и оцену правилности распореда падавина; градобитности и ветрове – њихову јачину и учесталост.

Подаци о клими треба да су прокоментарисани у вези с могућностима гајења појединих врста и сорти воћака и на основу тога треба дати закључак о могућности гајења одговарајуће врсте воћака.
Хидротехничке мелиорације

Ако је за обезбеђење интензивне производње на друштвеној сектору потребно да се упожеже значајнија средства за хидротехничке мелиорације, треба урадити посебан пројект, што је посао хидротехничар. Тај пројекат треба да реши како да се уреди неки водни ток који протиче кроз имање или угрожава подручје; како да се засади воћака заштите од бујица и поплава; да се регулише режим подземне воде; да се извршит одводњавање сувишних површинских вода; како да се за производњу обавља наводњавање или када је потребно спроводити више хидротехничких мера. Треба усагласити потребе појединих воћних врста, за водом, рокове и норме наводњавања са одговарајућим решењима довода и дистрибуције воде.

Одређивање мањка воде

Постоји више начина за утврђивање дефицијета воде, али се предност даје методи која се заснива на утврђивању коефицијента снабдевености земљишта водом. За добијање поменутог коефицијента користи се образац Иванова који гласи:

\[K = \frac{P}{E} \]

где је:
- \(K \) = коефицијент влажности;
- \(P \) = потенцијална годишња евапотранспирација;
- \(E \) = укупне годишње падавине.

Годишње падавине не дају праву представу о снабдевености земљишта водом. Обрасцем Иванова утврђује се однос између падавина и потенцијалне евапотранспирације и на основу тога се одређује коефицијент влажности земљишта. Ако је овај коефицијент већи од 1, значи да је већа количина падавина него што се утроши воде на евапотранспирацију. Према овоме показатељу постоји понекад и вишак влагања земљишта који се не може утрошити евапотранспирацијом у току године. Међутим, такво стање влагања земљишта се не сме узимати у обзир, већ се мора користити распоред средњих месечних падавина и средња месечна потенцијална евапотранспирација, па те вредности употребити за израду биланса падавина, на основу чега се може видети да у појединим месецима има вишкова падавина, а у другим мањка. Овај биланс приказан је у доњој таблици.

Средње годишње недостатак падавина који настаје у вегетационом периоду у таб. 27 износи око 255 mm. То је, у ствари, средња количина воде која је потребна за средње услове евапотранспирације.
Табл. 27 – Средње месечне падавине и средња месечна еванотранспирација за период 1944. до 1963. у Ђаковици и недостатак падавина

<table>
<thead>
<tr>
<th>месец</th>
<th>средња мес. еванотрансп. у mm</th>
<th>средња мес. висина падавина</th>
<th>вишак падавина у mm</th>
<th>Недостатак падавина у mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,00</td>
<td>81,0</td>
<td>81,0</td>
<td>–</td>
</tr>
<tr>
<td>II</td>
<td>6,00</td>
<td>68,0</td>
<td>62,0</td>
<td>–</td>
</tr>
<tr>
<td>III</td>
<td>19,00</td>
<td>64,0</td>
<td>45,0</td>
<td>–</td>
</tr>
<tr>
<td>IV</td>
<td>42,00</td>
<td>54,0</td>
<td>10,0</td>
<td>–</td>
</tr>
<tr>
<td>V</td>
<td>77,00</td>
<td>70,0</td>
<td>–</td>
<td>7,00</td>
</tr>
<tr>
<td>VI</td>
<td>116,00</td>
<td>60,0</td>
<td>–</td>
<td>56,00</td>
</tr>
<tr>
<td>VII</td>
<td>124,00</td>
<td>43,0</td>
<td>–</td>
<td>81,00</td>
</tr>
<tr>
<td>VIII</td>
<td>121,00</td>
<td>34,0</td>
<td>–</td>
<td>87,00</td>
</tr>
<tr>
<td>IX</td>
<td>75,00</td>
<td>51,0</td>
<td>–</td>
<td>24,00</td>
</tr>
<tr>
<td>X</td>
<td>38,00</td>
<td>79,0</td>
<td>41,0</td>
<td>–</td>
</tr>
<tr>
<td>XI</td>
<td>12,00</td>
<td>88,0</td>
<td>76,0</td>
<td>–</td>
</tr>
<tr>
<td>XII</td>
<td>7,00</td>
<td>84,0</td>
<td>77,0</td>
<td>–</td>
</tr>
<tr>
<td>годишње</td>
<td>637,00</td>
<td>776,0</td>
<td>392,0</td>
<td>255,00</td>
</tr>
<tr>
<td>Свега у вег. периоду</td>
<td>555,00</td>
<td>423,0</td>
<td>–</td>
<td>255,00</td>
</tr>
</tbody>
</table>

Еванотранспирација (испаравање) одређује се по Иванову, из следећег израза:

\[EP = 0,0018 (25 + t)^2 \times (100 - u) \]

где је:
EP = еванотранспирација
\(t \) = средња месечна температура;
\(u \) = средња месечна влажност ваздуха и
0,0018; 25 и 100 = су сталне вредности.

Потенцијална еванотранспирација (\(P \)) се израчунава из обрасца:

\[P = EP \times K \]

где је:
P = потенцијална еванотранспирација;
EP = еванотранспирација и еванотранспирација,
K = коефицијент који се добија из односа \(\frac{EP}{P} \) за сваку врсту воћака.

Недостатак падавина при средњим максималним еванотранспирацијама у току године, односно у току вегетационог периода, износи 360 mm, а то је вредност за 105 mm већа од оне која се јавља из средњих услова. Познавање података о недостацима
за средњу евапотранспирацију по месецима и за цео вегетациони период је од великог значаја, јер се на овим подацима заснивају планирања, пројектовање наводњавања и система за наводњавање.

Таб. 28 – Биланс средњих месечних падавина и средњих максималних месечних евапотранспирација за период 1949. до 1963. у Ћаковици

<table>
<thead>
<tr>
<th>Месец</th>
<th>Средња мес. евапотранс. у mm</th>
<th>Средња мес. висина падавина у mm</th>
<th>Вишак падавина у mm</th>
<th>Недостатак падавина у mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,00</td>
<td>81,0</td>
<td>81,0</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>7,00</td>
<td>68,0</td>
<td>61,0</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>23,00</td>
<td>64,0</td>
<td>41,0</td>
<td>-</td>
</tr>
<tr>
<td>IV</td>
<td>50,00</td>
<td>54,0</td>
<td>4,0</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>95,00</td>
<td>70,0</td>
<td>-</td>
<td>25,00</td>
</tr>
<tr>
<td>VI</td>
<td>139,00</td>
<td>60,0</td>
<td>-</td>
<td>79,00</td>
</tr>
<tr>
<td>VII</td>
<td>149,00</td>
<td>43,0</td>
<td>-</td>
<td>106,00</td>
</tr>
<tr>
<td>VIII</td>
<td>145,00</td>
<td>34,0</td>
<td>-</td>
<td>111,00</td>
</tr>
<tr>
<td>IX</td>
<td>90,00</td>
<td>51,0</td>
<td>-</td>
<td>39,00</td>
</tr>
<tr>
<td>X</td>
<td>46,00</td>
<td>79,0</td>
<td>33,0</td>
<td>-</td>
</tr>
<tr>
<td>XI</td>
<td>14,00</td>
<td>88,0</td>
<td>74,0</td>
<td>-</td>
</tr>
<tr>
<td>XII</td>
<td>8,00</td>
<td>84,0</td>
<td>76,0</td>
<td>-</td>
</tr>
<tr>
<td>Годишње</td>
<td>826,00</td>
<td>776,0</td>
<td>370,0</td>
<td>360,00</td>
</tr>
<tr>
<td>Свега у вег. периоду</td>
<td>668,00</td>
<td>423,0</td>
<td>-</td>
<td>360,00</td>
</tr>
</tbody>
</table>

Предвиђени дефицит воде за овај локалитет просечно би се распоредио на 6 наводњавања по месецима:

<table>
<thead>
<tr>
<th>Наводњавање в јуну</th>
<th>Број месеци</th>
<th>Све укупно</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 наводњавање в јуну</td>
<td>50 mm</td>
<td>свега 50 mm</td>
</tr>
<tr>
<td>2 наводњавање в јулу</td>
<td>30 mm</td>
<td>свега 100 mm</td>
</tr>
<tr>
<td>2 наводњавање в августу</td>
<td>50 mm</td>
<td>свега 100 mm</td>
</tr>
<tr>
<td>1 наводњавање в септембру</td>
<td>50 mm</td>
<td>свега 50 mm</td>
</tr>
<tr>
<td>Укупно</td>
<td>300 mm</td>
<td>300 mm</td>
</tr>
</tbody>
</table>

У периоду ван вегетације вишак падавина износи око 363 mm. Од овог вишка падавина један део отекне по површини земљишта у текуће воде, а други део упије земљиште и од тога дела се формира резервна зимска влага.
ЕКОНОМСКИ УСЛОВИ

Пред него што се приступи подизању плантаже воћака неопходно је да се детално проуче и неки економски услови који најнепосредније имају утицаја на заснивање засада. Од њих зависи да ли ће се уопште подићи воћнак, којим врстама воћака и којим сортама у оквиру врсте. Они у знатној мери утичу и на величину засада. Од економских чинилаца треба обратити пажњу на: могућност пламане воћа, саобраћајне прилике, обезбеђеност радном снагом и друго.

При разматрању питања продаје воћа анализирају се саобраћајне прилике и тржиште великих потрошачких центара у земљи и иностранству. Не треба занемарити ни локално тржиште. Од интереса је да се при одређивању величине засада узме у обзир и односе воћарства према осталим гранама на самом газдинству.

Постоје доста изражене разлике у погледу интензивности гајења појединих воћака. Ове разлике долазе до изражаја при заснивању засада, о чему се мора водити рачуна.

Приликом подизања воћака веома је важно питање избора врсте и сорти воћака. Када је реч о приватним, малим, аматерским засадима, онда се сортимент одређује према навикама и наклонностима собственика, тј. према потребама породица за појединим врстама и сортама воћа. Овде су, по правилу, сорте расподељене тако да стижу за борбу у извесним размацима. С тога се у овим малим засадима, сем зимских увече гаје и летње и јесен сорте.

За плантаже засаде и веће воћњаке приватних производача, врсте и сорте воћака одређују се према захтевима и капацитетима тржишта, и то како за стоно воће, тако и за оно намењено преради. Овде је сортимент најчешће оријентисан на масовну производњу стоног воћа за извоз и воћа за прераду.

Интензивно воћарство условљено је научном и стручном службом, која је код нас данас неколико пута већа него што је била пре Другог светског рата.

РАДНА СНАГА

Сагледавање потреба у радној сазни посебно је значајно. То је чинилац рентабилности производње. Повољни еколошки услови једног рејона нису довољни за економски оправдану производњу воћа. Поред остalog, мора се водити рачуна и о обезбеђености радне снаге током целе вегетације. При заснивању воћака извори радне снаге и могућности њеног обезбеђења имају велики утицај не само на величину воћњака већ и на избор врста и сорти воћака за гајење.

С обзиром на значај обезбеђења довољне радне снаге за организовање савремене воћарске производње, дајемо важније норме и потребе у радним данима радника и трактора за најчешће операције приликом подизања, неге и експлоатације воћњака, с напоменом да су то оријентационе норме које треба ускладити с конкретним условима.
<table>
<thead>
<tr>
<th>Показатељи</th>
<th>потребно по ha дана</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>радника</td>
</tr>
<tr>
<td>A. припрема земљишта и садња</td>
<td></td>
</tr>
<tr>
<td>чишћење од билног покривача</td>
<td>2</td>
</tr>
<tr>
<td>равнање депресија</td>
<td>0,6</td>
</tr>
<tr>
<td>растурање стајања и минер. ђубриза</td>
<td>1,0</td>
</tr>
<tr>
<td>риголовање</td>
<td>1,2</td>
</tr>
<tr>
<td>равнање риголованог земљишта</td>
<td>0,2</td>
</tr>
<tr>
<td>растурање стајања пред садњу</td>
<td>1,0</td>
</tr>
<tr>
<td>заоравање стајања на 20 cm</td>
<td>0,3</td>
</tr>
<tr>
<td>државање риголоване површине</td>
<td>0,1</td>
</tr>
<tr>
<td>размеравање</td>
<td>1,0</td>
</tr>
<tr>
<td>отварање брзица за садњу</td>
<td>0,1</td>
</tr>
<tr>
<td>припрема садница</td>
<td>0,5</td>
</tr>
<tr>
<td>разношење садница</td>
<td>0,1</td>
</tr>
<tr>
<td>разношење ђубриза за садњу</td>
<td>0,5</td>
</tr>
<tr>
<td>култивирање после садње</td>
<td>0,4</td>
</tr>
<tr>
<td>Свега по 1 ha:</td>
<td>10,0</td>
</tr>
<tr>
<td>B. нега у I години</td>
<td></td>
</tr>
<tr>
<td>култивирање површине</td>
<td>0,4</td>
</tr>
<tr>
<td>прекање воћака</td>
<td>0,1</td>
</tr>
<tr>
<td>растурање ђубриза</td>
<td>0,2</td>
</tr>
<tr>
<td>копање - бушење јама за стубове наслона</td>
<td>0,7</td>
</tr>
<tr>
<td>побијање пртти и постављање стубова</td>
<td>1,0</td>
</tr>
<tr>
<td>постављање жице</td>
<td>1,0</td>
</tr>
<tr>
<td>зелена резидба</td>
<td>1,0</td>
</tr>
<tr>
<td>јесен обрада</td>
<td>0,5</td>
</tr>
<tr>
<td>сетва биљака за зеленишу ђубриво</td>
<td>0,1</td>
</tr>
<tr>
<td>Свега по 1 ha:</td>
<td>5,0</td>
</tr>
<tr>
<td>B. нега у II години</td>
<td></td>
</tr>
<tr>
<td>орезивање и савијање грана</td>
<td>2,0</td>
</tr>
<tr>
<td>зимско прекање воћака</td>
<td>0,2</td>
</tr>
<tr>
<td>окопавање око воћака</td>
<td>2,0</td>
</tr>
<tr>
<td>зелена резидба</td>
<td>4,0</td>
</tr>
<tr>
<td>растурање ђубриза</td>
<td>0,2</td>
</tr>
<tr>
<td>летња прекања</td>
<td>0,2</td>
</tr>
<tr>
<td>наводњавање б пута</td>
<td>1,0</td>
</tr>
<tr>
<td>заоравање зелениша</td>
<td>0,5</td>
</tr>
<tr>
<td>култивирање</td>
<td>0,4</td>
</tr>
<tr>
<td>припрема земљишта за сетву</td>
<td>0,5</td>
</tr>
<tr>
<td>биљака за зеленишу ђубрење</td>
<td>0,1</td>
</tr>
<tr>
<td>сетва зелениша</td>
<td>0,05</td>
</tr>
<tr>
<td>Свега по 1 ha:</td>
<td>11,15</td>
</tr>
</tbody>
</table>
Година III

<table>
<thead>
<tr>
<th>Действие</th>
<th>6,0</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Орезивање и савица грана</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зимско пркање</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Окопавање око воћака</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>Летња резидба и савица летораста</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>Растурање љубрива</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Наводњавање б пута</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Летња пркања</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Заоравање зеленишта</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Култивирање</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Припрема за сетву биљака</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>За зеленишно љубриво</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сетва биљака за зел. љубриво</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Унутрашњи транспорт</td>
<td>0,05</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Свега по 1 ha: 16,65 2,45

Дивица IV

<table>
<thead>
<tr>
<th>Действие</th>
<th>8,0</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Орезивање и савица грана</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зимско пркање</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Окопавање око воћака</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>Летња резидба</td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td>Растурање љубрива</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Наводњавање</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>Летња пркања</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Заоравање зеленишта</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Култивирање</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Припрема за сетву и сетва</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Биљака за зеленишно љубрење</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Унутрашњи транспорт</td>
<td>0,05</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Свега по 1 ha: 26,65 2,65

Оријентационе норме бербе плодова воћака

<table>
<thead>
<tr>
<th>Вид</th>
<th>Количество</th>
<th>Земљиште</th>
<th>Вишина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Јабуке</td>
<td>50–80 kg/ha</td>
<td>трешње и вишње</td>
<td>4–7 kg/ha</td>
</tr>
<tr>
<td>Крушке</td>
<td>60–100</td>
<td>малинне</td>
<td>3–5</td>
</tr>
<tr>
<td>Шљиве</td>
<td>30–50</td>
<td>јагоде</td>
<td>4–6</td>
</tr>
<tr>
<td>Бреске</td>
<td>30–40</td>
<td>рибизле</td>
<td>3–4</td>
</tr>
<tr>
<td>Кајсије</td>
<td>30–50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Напомена: Из приказанних норматива могу се сачинити класификације и за редовну производњу појединих врста воћака.
ТЕХНИЧКИ И ДРУГИ УСЛОВИ

За интензивно гајење воћака неопходно је имати и неке техничке услове. За мале површине воћака дозвољено је имати само неке справе и уређаје, као што су воћарске прскалице, воћарске тестерице и маказе, култиватори или мотокултиватори, мердевине за орезивање воћака. Осим тога, добро је имати у воћаку бетонски резервоар за справљање раствора од одговарајућих хемијских средстава ради заштите воћака од болести и штеточина. Такође је препоручљиво подићи дрвену шупу или надстрешницу за заштиту радника од непогода. Ова просторија се може употребити и за паковање и чување воћа до транспорта.

САДНИ МАТЕРИЈАЛ

Саднице морају бити прве класе, гарантоване сорте и подлоге и да одговарају стандардним прописима. Ни у једном случају не треба одступати од садница прве класе. Од њих у највећој мери зависи развој воћака. Саднице треба благовремено набавити. Зачињатаже је најбоље ако се обавезе између купца и произвођача садница регулисућу много раније.

У известним случајевима могућа је производња садница на самом газдинству. Овај начин обезбеђења садног материјала треба више користити него што се то досад чинило. Саднице се на тај начин производе јевтиније, што смањује трошкове инвестиција око подизања засада, а још је важније што се производе жељене сорте на подлогама које се предвиђају. За јабуку, крушку, орах, трешњу, вишњу, брекску, кајсију и шљиву најбоље су једногодишње саднице на којима није вршено никакво формирање круна.

О чему је потреба водити рачун јери куповини садница воћака

Произвођачи садница воћака обавезни су да уз упаковане саднице (паковање мора бити пломбирано) дају и декларацију из које се види:

1. Назив и седиште организације која је саднице произведла и ставила у промет;
2. Врста и сорта воћака;
3. Старост саднице;
4. Врста и назив подлоге;
5. Број упакованих комада;
6. Број декларације уз отпремницу, и
7. Датум издавања и број декларације.

На пријем саднице и њихов даљи развој имају велики утицај: узраст и особине воћне саднице и начин на који су саднице одгажене. Приликом куповине садница
треба обратити нарочиту пажњу на следеће: да сорта и подлога одговарају; на старост садница, на здравствено стање садница, њихову развијеност и изглед, с нарочитим обзиром на развијеност корена, на механичке повреде, начин вађења, на паковање и транспортуванје и на особености производње садница.

Идентичност сорте значи да сорта и подлога одговарају ономе што се купује. Свака грешка учињена у том погледу, неповољно се одражава. Идентичност подлоге још је важнија.

Узраст садница воћака је такође значајан чинилац квалитета. У пракси се користе једногодишње садnice, мање су погодне двогодишње и вишегодишње садnice, јер се теже примају. Једногодишње садnice су мање развијене и са мањим су повредама припрема садне, па је код њих већи процент примљених. Поред тога, оне у првој години брже растану, круна може да им се формира на жељену висину и мање се клате под дејством ветра.

Здравствено стање садnice за њихово даље успевање има изузетан значај. Садnice не смеју бити заражене вирусним обољењима, морају бити потпуно здраве, без знакова обољења, нарочито од рака корена који се познаје по израслинама – туморима. Садnice не смеју бити механички озеђене (градом или на неки други начин), већ морају да у свему одговарају нормама прописаног квалитета.

НЕПОСРЕДНО ПОДИЗАЊЕ ВОЂЊАКА

ПРИПРЕМА ЗЕМЉИШТА

ЧИШЋЕЊЕ, РАВНАЊЕ И ТЕРАСИРАЊЕ

У низу мера које сачињавају припрему земљишта за сађење воћних садница, треба, пре свега извршити чишћење: од камења, пањева и жила, шумског дрвећа или старих воћака, трња, жбунастог дрвећа, а нарочито од дотрајалих воћака. То би, уколико се не уради, ометало и саму садњу садница, њихово успевање, као и даљу обраду земљишта.

Вађење пањева и разног дрвећа може се обавити ручно (ако су мање површине), помоћу булдозера (на већим површинама). У ову сврху може се употребити експлозив.

У наведеним случајевима намење се и потреба равнања – нивелисања површине. На површинама оштријег рељефа праве се канали за отицање воде, да би се ублажила ерозија. Уколико је површина много стрмна, најбоље је да се изграде терасе. Њихова израда данас није сувише скупа, јер је у ту сврху на већим површинама могућа примена одговарајуће механизације.
На земљиштима с високом подземном водом, треба приступити дренажи. Оваква земљишта само се изузетно користе за гајење воћака. Сувиште кисела земљишта, ако на њима треба да се подиже воћак морају претходно да се калифицирају.

У свим случајевима, када се ради о додатним инвестицијама — улагањима за подизање засада, препоручујемо да се тражи савет од одговарајућих стручњака. Искуство је показало да на земљиштима, на којима су биле шуме или воћнаци, нове воћке не могу успешно да се развијају. Све врсте воћака се у овоме различито понашају. Тако, трешња не успева, ако је раније била трешња на истој подлози, али успева ако је подлога друга — магрива. Бреска са другој подлози, такође успева. Крушка је мање осетљива од јабуке.

ОРГАНИЗАЦИЈА ЗЕМЉИШНЕ ТЕРИТОРИЈЕ

При подизању воћака веома је важна подела земљишне територије. Као што смо рекли, ово питање мора бити детаљно решено у самом плану. Нарочито је важно да се означи подела воћака на парцеле. Кроз средину воћака, у правцу који је најпрометнији (на стрмим нагибима по коси) треба обележити пут. Најбоље је да се, кад год је то могућно, искористи већ postoјећи пут, а ако не постоји, јасно је да га треба изградити. У ту сврху се мора кроз средину воћака оставити размак од 10 до 20 метара. Управно на главни пут пружаће се по могућству десно и лево, помоћни путеви. Добро је да ови путеви обележавају поједине парцеле (кад год постоје могућности да они буду правилни, да не секу парцелу). Они не морају бити широки као главни, довољно је да кола могу несметано пролазити онда, када се воћке потпуно развију. Редови у различитим наспрамним парцелама треба да се подударе ради лакше механизоване обраде земљишта, прскања воћака итд. Свака парцела се обележава редним бројем (римском цифром), истакнутим на таблама, постављеним на видном месту, увек са исте стране.

Веома је важно и питање величине парцела (табли). Сматра се да, с обзиром на површине које се могу обрађивати машинама, величина парцела треба да буде 7 до 10 ha. Дужина парцела је 400 до 500 метара, а ширина 180 до 220 метара. Парцеле се распоређују попреко према најјачим и најнеповољнијим ветровима. На нагибима од 2° до 3° парцеле треба тако распоредити да се основна обрада може вршити попреко. На већим нагибима и положајима јаче изложеним ветровима, оне могу да буду и мање — 5 до 6 ha, па и двапут мање — 2 до 3 ha.

РАСПОРЕД ВОЂАКА

Вођке могу бити у засадима распоређене у квадрат, правоугаоник, измењени правоугаоник, троугао, затим по изохипсама (контурно) и по групама.

Квадратни распоред. — По овом распореду вођке су посађене у правим редовима, с подједнаким размаком између редова и у редовима, тако да се редови пружају
и уздуж и попреко, и то под правим углом. Захваљујући томе вођке су подједнако изложене светлости и имају подједнак хранљиви простор. Осим тога, у квадратном распореду је најмањша обрада земљишта у оба правца; лако се обележавају места за сађење воћака; леп је изглед воћака; лакше се изводи прскање, лакше је комуницирање кроз воћак и сл.

![Diagram of planting patterns](image)

Сл. 71 – Распоред воћака у воћњаку: 1) правоугаони, 2) квадратни, 3) махмални (у равностраном шроуглу)

Правоугаони распоред. – Овај распоред се разликује од претходног по томе, што је размак између редова већи или што је размак воћака у редовима нешто умањен, тако да се крупне воћака кад одраста у редовима додирују. Ако је размак између воћака у редовима мањи, онда је рационалније искоришћавање простора. У оба случаја хранљиви простор има облик развученог правоугаоника. Механизована обрада земљишта је отежана само управно на редове. Због тога се правац редова подешава према...
изводњивости механизоване обраде земљишта и борбе против биљних штеточина. Ако при томе теренски услови дозвољавају, правац редова се прилагођава и према најбољем осветљавању, тј. у правцу север-југ.

Изменени правовугаони распоред. — При овом распореду размак између редова је већи него у претходним случајевима, а у редовима је нормалан. према потребама воћака различитих врста и сорти. Земљиште може несметано да се обрађује само дуж редова. Овакав распоред се примењује за воћке које развијају лозице или издanke, а нарочито за малину, купину и јагоду.

Троугаони (шаховски) распоред. — Овде се воћке саде на теменима равнограђаног троугла. Стабла сваког другог реда налазе се у међу просторима наизменичних редова. На овај начин стање 15% воћака више на истој површини, али то мораћи на

Са. 72 — Главне воћака на верасама: 1) обичне верасе, 2) верасе са каменим зидовима, 3) воћке у зони „лазићним зидовима“ на сфером верену, 4) верасе са завршеним јепостором, 5) верасе са бобовским шкарема, 6) скица профил верасе
уштрб хранљивог простора. Међутим, при оваквом распореду механизована обрада земљишта и борба против болести и штеточина тешко се могу изводити. Ако је нагиб мали или бар умерен, а размак између воћака довољан, обрада се може обављати и по дијагонали, при чему се изводи у два насиприма реда.

Распоред воћака јео изохисама (релефни, контурни распоред). – При овом распореду воћке се пружају преко нагиба по изохисама, тако да редови нису прави, већ се савијају у облику лука онако како је терен ниспресецан, а воћке у једном реду трева да се налазе на истој надморској висини. Размак између редова је неједнак, према величини нагиба, а у редовима може бити подједнак. При подизању пантажних засада у нашим воћарским рејонима овај распоред може имати врло велику примену и бити од огромног значаја. Њиме се постиже да воћњаци и на релативно великом површинама, подизани поступно, представљају целину и пружају леп изглед. Али распоред воћака по изохисама има много већа преимућества у томе, што се њиме ублажује ерозија на стрмим нагибима, а сем тога распоред сорти може много повољније да се изврши с обзиром на разлику у надморској висини.

Распоред воћака по изохисама по правилу мора да се прилагођава паду терена, али тако да се избегава уметање кратких редова – сурелица. Због тога је много боље да се редови доме на извесним тачкама и прилагођавају геометријским терасама, уместо да се уметно кратки редови. У прaksi они представљају озбиљне сметње при обављању механизованих процеса.

Групи распоред воћака. – Воћке се могу распоређити и по групама. Обично се саде заједно по 4 воћке у квадрат, на мањем међусобном размаку него што је нормално, а између ових група размак је већи, тако да су круне воћака великим делом осветљене са страни већег размака самих група. Овај распоред воћака нашао је извесну примену углавном само у Русији, нарочито у севернијим пределима, као један од начина за успешније одолевање воћака ветровима, мразевима и суши, јер се снег боље задржава.

Сл. 73 – На стрмим шверенима воћке се саде јо изохисама – контурно
РАЗМАК – РАСТОЈАЊЕ И ОДСТОЈАЊЕ ИЗМЕЂУ ВОЂАКА

Правилно одређивање размака између вођака најповољније утиче на њихово успевање. Размак треба да обезбеди нормалан и максималан развитак круне, тако да она буде довољно осветљена, а затим да стабло има задовољавајући хранљиви простор. Последице недовољног размака између стабала у воћњацима најчешће се манифестију у слабом развитку круне с ограниченијим могућностима родности: у недовољној осветлености круне, са свим неповољним последицама (слабо формирање цветних пупољака, веће отпадање заметних плодова, знатно лоши квалитет одржаних плодова, јачи развијак паразитних гљивица, недовољно здрвоњавање граници у унутрашњости круне, услед чега су ове осетљивије према мразевима итд.); затим у отежаној обради, борби против болести и штеточина, борби плодова, кретању по воћњаку и сл. Због тога је у таквим воћњацима, у којима су вођке на претерано малом размаку, родне само граничне врхе круне.

Раније је препоручивано да размак између вођака буде такав да вођке могу несамо несметано да се развијају, достижећи максималне размере круне, већ и да им се периферијске гранике круне никад не додирују.

Међутим, у савременој воћарској производњи, хранљиви простор, који се одређује растојањем између вођака у реду и редова вођака, у односу на ранија екватарна, у многоме се разликује. Уместо 100 стабала јабуке по једном хектару данас се у плантажним комерцијалним засадима гаји и до 5.000 стабала. На размак вођака утичу многи чиниоци, али су најважнији: врста и сорта воћака, облик и начин формирања круне, подлога, рељеф, положај, особине, земљишта, примењена механизација и сл.

 Вођке се морају садити на довољном растојању, тако да на јединицу површине стане највећи могући број садница, али да се тиме не створи засењивање који би неповољно деловало на приносе.

Од много чинилаца зависи на којем ће се растојању саднице вођака посадити, и ту не може бити никаквог шаблона. Најважнији су облик круне који треба да има будућа вођка, и врста подлоге. Узимајући ова два фактора у обзир за одређивање растојања, у табелама наводимо оријентациона растојања за све континенталне врсте воћака из којих се види да облик круне и бујност подлоге одређују хранљиви простор.

У наставку дајемо по врстама воћака, оријентациона растојања и одстојања, односно, величину њиховог хранљивог простора.

\textit{Јабука}

Хранљиви простор јабуке значајно зависи од подлоге, али исто тако утичу и други чиниоци: земљиште, клима, намена производње и могућност савремене технологије гајења.
Развијено сте сорте јабуке на подлози М 27 износи око 30% од развијености на сејанци дивље јабуке.
У табели бр. 29 су приказана растојања за јабуку у зависности од подлоге, бујности сорте и облика круне.

Таб. 29 – Оријентациони размаки јабуке у зависности од круне и подлоге

<table>
<thead>
<tr>
<th>круна</th>
<th>подлога</th>
<th>размак у м</th>
<th>висина стабла (м)</th>
<th>висина дебла (см)</th>
<th>број вођака по ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>клас. пирамида</td>
<td>сејанац</td>
<td>8,0</td>
<td>5–8,0</td>
<td>100</td>
<td>208</td>
</tr>
<tr>
<td>лидерна</td>
<td></td>
<td>6,0</td>
<td>4–6,0</td>
<td>80</td>
<td>333</td>
</tr>
<tr>
<td>коса палмета</td>
<td></td>
<td>5,0</td>
<td>3–4,0</td>
<td>60</td>
<td>500</td>
</tr>
<tr>
<td>коса палмета</td>
<td></td>
<td>4,0</td>
<td>3–3,5</td>
<td>50</td>
<td>833</td>
</tr>
<tr>
<td>вртенасти жбуни</td>
<td>M2</td>
<td>4,5</td>
<td>3–3,5</td>
<td>50</td>
<td>633</td>
</tr>
<tr>
<td>кориз. палмета</td>
<td>M4</td>
<td>4,5</td>
<td>3–3,5</td>
<td>50</td>
<td>690</td>
</tr>
<tr>
<td>буш-тома</td>
<td>M4</td>
<td>4,0</td>
<td>3–3,5</td>
<td>30</td>
<td>833</td>
</tr>
<tr>
<td>двостран. лепаж</td>
<td>M4</td>
<td>3,5</td>
<td>2–3,5</td>
<td>25</td>
<td>1.333</td>
</tr>
<tr>
<td>вртенасти жбуни</td>
<td>M7</td>
<td>3,5</td>
<td>2–3,5</td>
<td>40</td>
<td>952</td>
</tr>
<tr>
<td>вртенасти жбуни</td>
<td>M9</td>
<td>3,5</td>
<td>2–3,5</td>
<td>40</td>
<td>1.420</td>
</tr>
<tr>
<td>једностр. лепаж</td>
<td></td>
<td>3,5</td>
<td>2–3,5</td>
<td>25</td>
<td>2.875</td>
</tr>
<tr>
<td>витко вретено</td>
<td></td>
<td>3,5</td>
<td>2–3,5</td>
<td>25</td>
<td>2.380</td>
</tr>
<tr>
<td>витко вретeno у 2 реда</td>
<td></td>
<td>3,5</td>
<td>2–3,5</td>
<td>25</td>
<td>2.778</td>
</tr>
<tr>
<td>витко вретено у 3 реда</td>
<td></td>
<td>3,5</td>
<td>2–3,5</td>
<td>30</td>
<td>3.409</td>
</tr>
</tbody>
</table>

Таб. 30 – Растојање при садњи јабуке у зависности од облика круне, бујности сорте и вегетативне подлоге (у м)

<table>
<thead>
<tr>
<th>облик круне и бујност сорте</th>
<th>подлога – вегетативна</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M 9</td>
</tr>
<tr>
<td>витко вретено</td>
<td></td>
</tr>
<tr>
<td>- слабо бујне</td>
<td></td>
</tr>
<tr>
<td>од 3,5x1,0</td>
<td>3,8x1,4</td>
</tr>
<tr>
<td>до 3,8x1,2</td>
<td>3,8x1,6</td>
</tr>
<tr>
<td>- средње бујне</td>
<td></td>
</tr>
<tr>
<td>од 3,8x1,3</td>
<td>3,8x1,8</td>
</tr>
<tr>
<td>до 3,8x1,5</td>
<td>4,0x2,0</td>
</tr>
<tr>
<td>- бујне сорте</td>
<td></td>
</tr>
<tr>
<td>од 4,0x1,5</td>
<td></td>
</tr>
<tr>
<td>до 4,0x2,0</td>
<td></td>
</tr>
<tr>
<td>округла круна</td>
<td></td>
</tr>
<tr>
<td>- слабо бујне</td>
<td>3,5x2,0</td>
</tr>
<tr>
<td>- средње бујне</td>
<td>4,0x2,5</td>
</tr>
<tr>
<td>- бујне сорте</td>
<td>4,5x2,0</td>
</tr>
</tbody>
</table>
Крушка

Крушка као и јабука гаји се на круном у различитим облицима, па и оним најкомплексиванијим за обликовање као што су декоративни. Крушка се гаји на подлогама /вегетативним и генеративним/ неједнаке бујности. Од бујности подлоге зависи и хранљиви простор сорте. У наредној табели се види растојање за крушку на различним подлогама и број стабала по хектару.

Таб. 31 – Оријентационо растојање за крушку на различитим подлогама

<table>
<thead>
<tr>
<th>крона</th>
<th>подлога</th>
<th>бујност сорте</th>
<th>растојање (m)</th>
<th>салицна по ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>побољ. пиримилла</td>
<td>сејанац- дикљачица</td>
<td>бујна</td>
<td>7 x 5</td>
<td>300</td>
</tr>
<tr>
<td>побољ. пиримилла и етажна крона</td>
<td></td>
<td>средње бујна</td>
<td>6 x 4</td>
<td>400</td>
</tr>
<tr>
<td>палмета</td>
<td></td>
<td>бујна</td>
<td>5-4 x 4</td>
<td>600</td>
</tr>
<tr>
<td>палмета</td>
<td></td>
<td>средње бујна</td>
<td>4 x 3</td>
<td>800</td>
</tr>
<tr>
<td>палмета</td>
<td>луња МА</td>
<td>бујна</td>
<td>3 x 2,5</td>
<td>1.200</td>
</tr>
<tr>
<td>палмета</td>
<td></td>
<td>средње бујна</td>
<td>3 x 2</td>
<td>1.660</td>
</tr>
<tr>
<td>палмета</td>
<td></td>
<td>слабо бујна</td>
<td>3 x 1,5</td>
<td>2.200</td>
</tr>
<tr>
<td>њутајме и вертикална кордуница</td>
<td></td>
<td>слабо бујна</td>
<td>3 x 1</td>
<td>3.300</td>
</tr>
</tbody>
</table>

Дуња

Дуња без утицаја човека формира два основна облика круне: округласт и пирамидални. Међутим, нема изузетне разлике у формирању облика круне дуње, мушмуле, јабуке или крушке ако их човек формира.

У прaksi се чешће код дуње формира: котласта крона (ваза), побољшана пирамида. У новије време се формира и вретенасти жбун и витко вретено, ређе палмета.

О формирању ових облика дата су обавештења за јабуку и крушку. Слично дуњи се понаша и мушмула.

Растојање за дуњу варира од облика круне, сорте и плодности земљишта.

Просечна оријентациона растојања за дуњу виде се у доњој табели.
Таб. 32 – Утицај облика круне, сорте и плодности земљишта на растојање и одстојање (м)

<table>
<thead>
<tr>
<th>круна</th>
<th>земљиште</th>
<th>сорта</th>
<th>бујна</th>
<th>слабобујна</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>између редова</td>
<td>у реду</td>
<td>између редова</td>
</tr>
<tr>
<td>пирамидална</td>
<td>плодно</td>
<td>6,0</td>
<td>5,0</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>средње сиромашно</td>
<td>4,5</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>неправилна пазмета</td>
<td>плодно</td>
<td>5,0</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td>средње сиромашно</td>
<td>4,0</td>
<td>3,0</td>
<td>3,5</td>
</tr>
<tr>
<td>витко врстено</td>
<td>плодно</td>
<td>4,0</td>
<td>3,3</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>средње сиромашно</td>
<td>3,0</td>
<td>2,5</td>
<td>3,0</td>
</tr>
</tbody>
</table>

Брескеа

За максималне приносе плодова појединих сорти бреске важно је да се у складу са биолошким особинама сваке сорте одреди и величина хранљивог простора, тј. растојања воћака у плантажи. Количина плодова по стаблу појединих сорти је у директној зависности од развијености круне. Стабла с мање развијеном круном имају и мањи принос, и обрнуто. Међутим, разлике у приносу по јединци површине у две сорте неједнаке развијености могу бити незнатне, уколико се одреди правилан склоп стабала.

Таб. 33 – Оријентационо растојање и одстојање за сорте бреске различите бујности и облика круне

<table>
<thead>
<tr>
<th>бујност сорте</th>
<th>облик круне</th>
<th>ваза</th>
<th>пазмета</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>између редова (м)</td>
<td>у реду (м)</td>
<td>ком. (га)</td>
</tr>
<tr>
<td>бујне</td>
<td>5 5,5</td>
<td>364</td>
<td>4</td>
</tr>
<tr>
<td>средње бујне</td>
<td>5 4,5</td>
<td>444</td>
<td>4</td>
</tr>
<tr>
<td>слабо бујне</td>
<td>5 4,0</td>
<td>400</td>
<td>4</td>
</tr>
</tbody>
</table>

Сорица халеова Јозана има пројекцију круне око 15,26 м² и принос по 1 м² круне 2,87 kg. Сорта саутхевен има већу пројекцију круне (23,23 m²) и принос по m² 2,87 kg. Значи, код ове две сорте принос по јединци површине је приближно исти, иако се
њихови приноси по стаблу врло много разликују: код халеове познe 43,30 kg/стабло, а код саутхевена 66,70 kg/стабло.

Од значаја је нагласити да су новија истраживања показала да корен брекске не пронире и не меша се са кореном суседног стабла брекске. Ова околност још више повећава значај растојања за развој стабла брекске.

Шљива

Шљива се гаји у неколико облика круне: пирамидала, побољшана пирамидала са 3–4 основе гране, ваза и палмета с косим гранама.

Растојање кое се узима при садњи садница шљиве на сталном месту треба да је у складу са обликом круне, особеностима подлоге, конфигурацијом терена, плодношћу земљишта и могућношћу савремене примене технике и технологије.

Таб. 34 – Оријентационо растојање за шљиву у складу са обликом круне и бујношћу подлоге

<table>
<thead>
<tr>
<th>облик круне</th>
<th>бујност подлоге и сорте</th>
<th>растојање (м)</th>
<th>броj садница по га</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>пирамидална и побољшана пирамидала ваза</td>
<td>бујне, средње до слабо бујне, бујне</td>
<td>7 х 6, 6 х 5, 6 х 4</td>
<td>300, 333, 400</td>
<td></td>
</tr>
<tr>
<td>коса палмета</td>
<td>средње до слабо бујне, бујне</td>
<td>5 х 4, 5 х 4</td>
<td>500, 500</td>
<td></td>
</tr>
</tbody>
</table>

Пожегача на сопственом корену, сади се исто као саднице на слабобујним подлогама.

Кајсија

Кајсија је угрожена апоплексијом. То је утицало да се њено гајење прилагоди спречавању апоплексије. У том циљу је и њено калемљење, ради производње садница, на већој висини. Висина дебла, механизована берба и слично утичу на њену општу висину од које делимично зависи растојање (величина хранљивог простора) односно облик круне.

Растојање за кајсију зависи као и код других врста воћака од: сорте, подлоге, облика круне и општих услова гајења.

Оријентационо растојање за облик круне:
- пирамида: \[7-6 \text{ m} \times 5-4 \text{ m}, \]
- коша палмета: \[4-5 \text{ m} \times 3,5 \times 4 \text{ m}, \]
- котласта круна (ваза): \[4,5-5 \text{ m} \times 4 \text{ m}. \]

Трешња

Таб. 35 – Оријентацијно растојање за трешњу у зависности од круне, подлоге и сорте

<table>
<thead>
<tr>
<th>подлога</th>
<th>бујност сорте</th>
<th>кр у н а</th>
<th>пирамидална</th>
<th>котласта</th>
</tr>
</thead>
<tbody>
<tr>
<td>дивља трешња</td>
<td>бујна</td>
<td>7,5 x 6 m</td>
<td>7 x 7 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>средње</td>
<td>7 x 5 m</td>
<td>6,5 x 6 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>слабо бујна</td>
<td>6 x 4 m</td>
<td>6 x 5 m</td>
<td></td>
</tr>
<tr>
<td>магрива</td>
<td>бујна</td>
<td>6 x 5,5 m</td>
<td>6 x 5,5 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>средње</td>
<td>6 x 5 m</td>
<td>5,5 x 5 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>слабо бујна</td>
<td>5,5 x 4,5 m</td>
<td>5 x 4,5 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>бујна</td>
<td>6,5 x 5 m</td>
<td>6 x 5 m</td>
<td></td>
</tr>
<tr>
<td>конт</td>
<td>средње</td>
<td>5,5 x 4,5 m</td>
<td>5 x 4 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>слабо бујна</td>
<td>5 x 4 m</td>
<td>4 x 3,8 m</td>
<td></td>
</tr>
</tbody>
</table>

Вишња и марела

Различито је растојање на коме се саде саднице вишње. На величину хранљивог простора утичу сорта, подлога, облик круне и други чиниоци успевања. Висина дебла је око 60 cm, а за механизовану борбу око 80 – 100 cm.

Таб. 36 – Оријентацијно растојање за вишњу и марелу

<table>
<thead>
<tr>
<th>облик круне</th>
<th>подлога</th>
<th>облачниска на сопственом корену</th>
<th>примедбе</th>
</tr>
</thead>
<tbody>
<tr>
<td>ваза и слободна</td>
<td>дивља трешња</td>
<td>6 x 5 m</td>
<td>4 x 3 m</td>
</tr>
<tr>
<td></td>
<td>магрива</td>
<td>5 x 4 m</td>
<td>3,5 x 2,5 m</td>
</tr>
<tr>
<td>коса палмета</td>
<td></td>
<td>4 x 4 m</td>
<td>3 x 1,5-2 m</td>
</tr>
<tr>
<td>вретенасти пирамида</td>
<td></td>
<td>4,5 x 3 m</td>
<td>3,5 x 2,5 m</td>
</tr>
</tbody>
</table>

Орах

Правилно одређивање размака између стабала услов је за њихово повољно успевање. Размак треба да обезбеди нормалан и максималан развитак круне, тако да
она буде довољно осветљена, а затим да стабло има задовољавајући хранљиви простор. Последице недовољног размака између стабала најчешће се манифестују у слабом развитку круне са ограниченијим могућностима родности.

Таб. 37 – Оријентационо растојање за орах

<table>
<thead>
<tr>
<th>подлога</th>
<th>тип плантаже</th>
<th>висина дебла (см)</th>
<th>растојање између редова у реду</th>
</tr>
</thead>
<tbody>
<tr>
<td>домашни орах</td>
<td>за дрво</td>
<td>150–200</td>
<td>12–15</td>
</tr>
<tr>
<td></td>
<td>за дрво и плод</td>
<td>100–150</td>
<td>10–12</td>
</tr>
<tr>
<td></td>
<td>екстензивни или само за плод</td>
<td>80–120</td>
<td>8–10</td>
</tr>
<tr>
<td></td>
<td>интензивни само за плод</td>
<td>70–100</td>
<td>7–6</td>
</tr>
<tr>
<td></td>
<td>врло интензивни само за плод</td>
<td>60–70</td>
<td>6–5</td>
</tr>
<tr>
<td>црни орах</td>
<td>за дрво</td>
<td>150</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>за дрво и плод</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>екстензивни или само за плод</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>интензивни само за плод</td>
<td>70</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>врло интензивни само за плод</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>домашни орах</td>
<td>матични засад</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>црни орах</td>
<td>матични засад</td>
<td>30</td>
<td>3,5</td>
</tr>
</tbody>
</table>

Раније је препоручивано да размак између стабала буде такав да вођке могу, не само да се несметано развијају, достиже максималне размере круне, већ и да им се периферијске гране круне никад не додирују.

Међутим, у савременој воћарској производњи хранљиви простор, у односу на ранија схватања се разликује. Уместо 80–100 стабала по једном хектару данас се у плантажним комерцијалним засадима гаји и до 500 стабала. Изучава се растојање 3x2,5 m. Мање растојање, већи принос, то је доказано и у производњи плодова ораха. На размак утичу многи чиниоци, али су важнији: подлога и сорта, облик и начин формирања круне, релјеф, положај, особине земљишта, примењена механизација и сл. Посебно утиче намена производње. За производњу дрвета два пута је веће растојање него за производњу плодова.
Лешник

Сорте лешника се разликују по бујности. По овој особини се групирају у неколико група: кржњаве (требизондски); мало бујне (пијамонтски, дути шпански); средње бујне (барцелона, еугенија); бујне (негрет, косфорд) и врло бујне (халски цин). Осим наследне основе, на бујност утиче и бујност подлоге као и низ других чинилаца: плодност земљишта, падавине, примена агroteхничких и помотехничких мера, заштита и др.

Наведене чиниоце треба узети у обзир кад се одређују хранљиви простори за стабла у плантажи. Поред тога, примена механизације може да утиче на величину размака стабала лешника у плантажи. Максимална механизација у производњи плодова лешника условљена је и обликом кура. Боље се механизују процеси производње у засадима са стаблашицама и са већим растојањем.

Размак садања при подизању плантаже лешника треба усагласити са важним факторима од којих то и зависи. То су: земљиште, бујност сорти, особине стабла (жбун или стаблашица) па и конфигурација земљишта.

У табели 38 дат је преглед растојања у зависности од наведених чинилаца које препоручује Car lone (1962).

Таб. 38 – Преглед растојања за лешник у зависности од неких чинилаца

<table>
<thead>
<tr>
<th>земљиште</th>
<th>бујност сорте</th>
<th>особине стабла</th>
<th>растојање (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>равна површина</td>
</tr>
<tr>
<td>сиромашно</td>
<td>мала</td>
<td>стаблашица</td>
<td>5 x 5</td>
</tr>
<tr>
<td>средње</td>
<td>"</td>
<td>"</td>
<td>5 x 6</td>
</tr>
<tr>
<td>плодно</td>
<td>бујна</td>
<td>"</td>
<td>7 x 7</td>
</tr>
<tr>
<td>сиромашно</td>
<td>мала</td>
<td>жбун</td>
<td>6 x 7</td>
</tr>
<tr>
<td>средње</td>
<td>"</td>
<td>"</td>
<td>8 x 8</td>
</tr>
<tr>
<td>плодно</td>
<td>бујна</td>
<td>"</td>
<td>10 x 8</td>
</tr>
</tbody>
</table>

Стаблашице се гаје на мањем растојању просечно 5 x 6 м и најбоље је да се садања обави у квадрат уколико је равна површина, на нагнутим површинама растојање је 4 x 5 м. Разматри се велики, ако се лешник гаји као жбун, 7 х 8 м.

Према Ковачевић (1955), могу се препоручити различити размаци за лешник.

У Француској, лешник се гаји на растојању 5 х 5 м (Barbeau, 1973). У Италији се најчешће лешник гаји на растојању 4 х 6 м, у реду је мање растојање. У Орегону је ово растојање знатно веће, 6 х 6 м; 7,5 х 7,5 м што зависи од подлоге. У Немачкој лешник се гаји, ако је подлога C. columna, 8 х 4 м. Било је случајева да су после 24 године, кад је размак износио 4 х 4 м, мора да ваде стабла из сваког другог реда. Лешник је хелиофит, због тога тражи веће растојање.
Бадем

Приликом одређивања хранљивог простора будућих вођки треба узети у обзир: особине земљишта, бујност сорте, бујност подлоге, облик круне, примењену механизацију и др.

Таб. 39 – Растојање за бадем у зависности од подлоге, сорте и облика круне

<table>
<thead>
<tr>
<th>подлога</th>
<th>бујност сорте</th>
<th>облик круне</th>
<th>растојање (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>сејанац бадема</td>
<td>бујна</td>
<td>класичан</td>
<td>8 x 6</td>
</tr>
<tr>
<td></td>
<td>средње бујна</td>
<td>"</td>
<td>7 x 5</td>
</tr>
<tr>
<td></td>
<td>слабо бујна</td>
<td>"</td>
<td>5 x 4</td>
</tr>
<tr>
<td>сејанац брекске</td>
<td>бујна</td>
<td>класичан</td>
<td>6 x 5</td>
</tr>
<tr>
<td></td>
<td>средње бујна</td>
<td>"</td>
<td>5 x 4</td>
</tr>
<tr>
<td></td>
<td>слабо бујна</td>
<td>"</td>
<td>4 x 3</td>
</tr>
<tr>
<td></td>
<td>слабо бујна</td>
<td>витко кретено</td>
<td>4 x 2 (3 x 1,5)</td>
</tr>
</tbody>
</table>

Кестен

При подизању засада кестена, земљиште треба припремити на уобичајени начин. Сади се на растојању 12 до 15 м ред од реда, и на 8 до 10 м између биљака у реду. Препоручује се комбиновано сађење с другим вођкама или дрвећем ради заштите од хладноће, на пример, с багремом, који се после 10 до 15 година уклања, а кестен остаје. Првих година се орезује ради формирања правилне круне. Није осетљив на сечу грана. Изданке који се развијају из корена, треба стално чистити. Повремено подмлађивање кестенових стабала врло је корисно, јер се на тај начин образује већа родна површина.

Актинидија

Актинидија се гаји уз притку, у шпалиру и по систему перголе. У Новом Зеланду је гаје на растојању 5 м између редова и 6 м између биљака у реду. У Калифорнији је растојање 7–8 м x 6 м, а у Француској 5 м x 6 м. Растојање зависи пре свега од начина на који се актинидија гаји. За појединачне биљке у пантаји постављају се притке 1,7–2 м висине. За остале начине потребан је наслон као за зивовну лозу.

Рибизла

Рибизла је вишегодишња биљка (15–20 година), жбунастог изгледа. Кактерише се великом снагом бокорења и изразитом родношћу. Рађа на прошлогодишњим леторастима, те их треба проређивати; цветни пунолиц се диференцирају у јулу. Отпорна је према болестима, штеточинама и мразу.
Растојање садње рибизле зависи од многих чинилаца: система узгоја, бујности сорте, плодности земљишта, начина обраде и одржавања земљишта.
За ручну обраду рибизле се саде у квадрат 2,5 x 2,5 m; за запрежну обраду 2,5 x 2 m; за машинску обраду 3 x 1 до 3 x 1,5 m. Од броја садница по једном хектару зависи принос и време постизања пуне родности.

Малина
Малине се гаје или као грм – жбуни или у облику шпалира. При узгоју као грм није потребна арматура односно наслон. За шпалирско гајење потребна је арматура која се састоји од стубова и жице. Стубови се постављају на растојању 3 до 5 m. То су обично тањи стубови (10 cm у пречнику), дужине 2,20 до 2,30 m.
Малина може да се сади на различитом растојању. То зависи од система узгоја, бујности сорте и површине за сађење. Оријентационо, када се малина сади на сталном месту, потребно је:

\[-3,0 \times 0,5 \ m = 6.606 \ sадница,\]
\[-2,0 \times 1,0 \ m = 5.000 \ sадница,\]
\[-2,5 \times 1,0 \ m = 4.000 \ sадница,\]
\[-2,5 \times 0,5 \ m = 8.000 \ sадница.\]

ИЗРАЧУНАВАЊЕ БРОЈА САДНИЦА ПО ХЕКТАРУ
Израчунавање броја садница по хектару врши се на тај начин, што се прво израчунава површина коју заузима једна садница, а потом се том површином подели површина 1 хектара. На пример, размах између садница 6 x 6 m (квадратни распоред). Према томе, садница захвата површину од 36 m². За површину од 10.000 m² (1 ha) биће потребно 278 воћних садница, јер је 10.000 : 36 = 278. Поступак за изнаплашење броја садница у правоугаоном облику је исти као и за квадрат, односно помножи се растојање између воћа са растојањем између редова (a x b).
При сађењу у троугао (шаховски распоред) стане 15% више садница него у квадрат или правоугаоник. На пример, уместо 278 воћних садница, колико стане на један хектар квадратног облика и распореда, при сађењу у троугао стане 320 садница.
Израчунавање броја садница за подизање пантаже с већим бројем садница по јединици површине и њиховим распоредом у траке, с више редова, многима пред-ставља тешкоћу. Због тога се дају формуле за ово израчунавање.

а) Густа садња с појединачним редовима:

\[N_i = \frac{P}{a \cdot b}\]
б) Густа садња у тракама с два реда:

\[N_2 = \frac{P \cdot 2}{a(b + c)} \]

в) Густа садња у тракама с три реда:

\[N_3 = \frac{P \cdot 3}{a(b + c)} \]

Објашњење:

\[N_1, N_2, N_3 = \text{тражени број садница}, \]
\[P = \text{површина 1 ha = 10.000 m}^2, \]
\[a = \text{размак воћака у реду (u m)}, \]
\[b = \text{размак појединачних редова и размак између трака с два, три или више редова}, \]
\[c = \text{размак редова у тракама}. \]

Таб. 40 – Број воћака по хектару при различитом размаку стабала

<table>
<thead>
<tr>
<th>размак између редова (u m)</th>
<th>1</th>
<th>1,5</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>4.000</td>
<td>2.667</td>
<td>1.333</td>
<td>1.000</td>
<td>800</td>
<td>667</td>
<td>571</td>
<td>500</td>
<td>400</td>
<td>333</td>
</tr>
<tr>
<td>3</td>
<td>3.333</td>
<td>2.222</td>
<td>1.111</td>
<td>833</td>
<td>667</td>
<td>556</td>
<td>476</td>
<td>417</td>
<td>333</td>
<td>278</td>
</tr>
<tr>
<td>4</td>
<td>2.500</td>
<td>1.667</td>
<td>833</td>
<td>625</td>
<td>500</td>
<td>417</td>
<td>357</td>
<td>312</td>
<td>250</td>
<td>208</td>
</tr>
<tr>
<td>5</td>
<td>2.000</td>
<td>1.333</td>
<td>667</td>
<td>500</td>
<td>400</td>
<td>333</td>
<td>286</td>
<td>250</td>
<td>200</td>
<td>167</td>
</tr>
<tr>
<td>6</td>
<td>1.667</td>
<td>1.111</td>
<td>556</td>
<td>417</td>
<td>333</td>
<td>278</td>
<td>238</td>
<td>208</td>
<td>167</td>
<td>139</td>
</tr>
<tr>
<td>7</td>
<td>1.429</td>
<td>1.111</td>
<td>556</td>
<td>417</td>
<td>333</td>
<td>278</td>
<td>238</td>
<td>208</td>
<td>167</td>
<td>139</td>
</tr>
<tr>
<td>8</td>
<td>1.250</td>
<td>1.111</td>
<td>556</td>
<td>417</td>
<td>333</td>
<td>278</td>
<td>238</td>
<td>208</td>
<td>167</td>
<td>139</td>
</tr>
<tr>
<td>10</td>
<td>1.000</td>
<td>1.111</td>
<td>556</td>
<td>417</td>
<td>333</td>
<td>278</td>
<td>238</td>
<td>208</td>
<td>167</td>
<td>139</td>
</tr>
<tr>
<td>12</td>
<td>833</td>
<td>1.111</td>
<td>556</td>
<td>417</td>
<td>333</td>
<td>278</td>
<td>238</td>
<td>208</td>
<td>167</td>
<td>139</td>
</tr>
</tbody>
</table>

РАЗМЕРАВАЊЕ ПОВРШИНЕ И ОБЕЛЕЖАВАЊЕ МЕСТА ЗА ВОЋНЕ САДНИЦЕ

Размеравање површине за садњу садница мора да претходи обележавању места где треба садница да се посади. Ова радња може да се обави на разне начине. То је посао који на већим површинама треба поверити геометру да помогу инструмената или евентуално помоћу призме размери површину – изврши парцелацију површине и утврди места за први ред воћака, затим према плану обележавајући путну мрежу и места за саднице на целој површини. Међутим, ако се ради о мањим површинама размеравање
може да се обави на један од следећих начина: помоћу крста за визирање; пантеликом или канапом са обележеним местима. Визир мотке се користи помоћу оквира који се за ту сврху посебно направи од летава таквог облика, какав ће бити распоред садници — квадрат, троугао или правоугаоник. На углова (на пресеку две стране) остављају се десетак сантиметара дуже летве. Приликом размеравања, два или више радника рукују оквиром и на углова забацају кочиће ради обележавања места за садницу. Треба водити рачун да се при размеравању саднице не саде уз саму ограду. Одстојање од ограде до првог реда вођака треба да износи најмање половину међуредног растојања. Оно може бити и веће, уколико је потребан пролаз за машине.

Сл. 74 — Размеравање за садњу воћних садница на естрадном месту: 1) визирањем у два јаваца, при чему се јава Јослави основој јава ред, 2) визирање докуће прекршено направљеног крсти, 3) докућу јава од леђава са странницама обично 3 и 4 метри, и хипохенузом 5 м, 4) оређивање јавеуга угли (90°) докућу каната, 5) докућу квадрала направљеног од леђава
Размеравање површине, како је и приказано, изводи се после утврђивања правца редова и постављања основе за размеравање. Основу за размеравање чине два правца, први је правец редова, који по могућству треба да је север-југ, а други је управан на први. За одређивање првог правца користи се бусола (компас) пошто се обележи кочићима. Други правец се одређује тако да заклапа угао од 90° са првим правцем. То је могуће ако се од летава направи тротуар са границама – катетама, једном од 3 м, другом од 4 м и хипотенузом од 5 м. Поставља се дужа катета на правца север-југ и обележи кочићем у тачкама a, b, и c. Одређене су по две тачке за правца север и југ: a и b, и управно на овај правца: a и c (види цртеж).

Поступак за даље размеравање, кад су одређене по две тачке за сваки правец, није тежак и изводи се на неки од набројаних начина.

Маркирање (обележавање) места за садњу садница врши се на већим површинама малим кочићима, траком, летивцама или сличним материјалом који треба да траје само док се сађење не заврши. Ради уштеде није потребно да се обезбеди материјал за обележавање места на целој површини. Он се користи више пута што зависи од тога како је организована садња.

За обележавање места садница користе се и притке – мање или веће што зависи од начина гајења воћака. У том случају посађене саднице се везују за притке.

ОСНОВНА ОБРАДА – ПРИПРЕМА ЗЕМЉИШТА ЗА САДЊУ

Ридоловање

Припрема земљишта намењеног за садњу садница треба да омогући да се у њему жиле могу стално успешно развијати, не наилазећи ни на какве јаче механичке сметење, а такође и пораст коренове мреже у складу с биолошком природом сваке воћке. Полазећи од ове чињенице, најбоље је ако се земљиште на одређеној дубини припреми на целој површини. Ово није могуће извести само на врло strmim terenima.

Поред припреме земљишта на одређену дубину целе површине, постоји припрема у пантликама и копање јамица за сваку садницу. Искуство показује да воћке често нису успевале само зато, што припрема није била извршена како треба.
Дубоко орање — риголовање целе површине, обавља се плугом риголером. Оно је у широкој примени, не само у припреми за подизање комерцијалних плантажа, већ и кад се ради о мањим засадима.

У случајевима кад се ради о кућном врту, риголовање се изводи ручно. Површина се подели у два дела, па се прво риголује једна страна, а затим друга.

Копање јамића (ручно)

При копању јамића, потребно је обратити пажњу на ширину, дубину, облик јамића и време копања. Треба разликовати два основна случаја који се јављају у пракси: копање јамића је једини начин припреме земљишта за сађење воћака; јамићи се копају у земљиштима која су на целој површини умерено дубоко обрађена. У првом случају, јамићи чине основну припрему земљишта за сађење садница, у другом, они треба да обезбеде лакше и правилније сађење. Због тога на необрађеној површини јамићи треба да су већих димензија, него кад се копају на обрађеној — пораној површини.

Јамићи могу бити округли или четвртасти. С обзиром на пружање жила у свим правцима, најбоље је да јамић буде у облику круга.

Што се тиче величине јамића — ширине и дубине, она зависи од особина земљишта. На умерено-растреситом земљишту довољно је 50–60 см дубок јамић. Ако је здравица збијена, тада дубина мора да буде 70–80 см. Дубина јамића зависи и од врсте подлоге. За вегетативне подлоге, јамићи могу бити плићи него за подлоге сејанце. Од изванредног је значаја ширина јамића, која се мора прилагођавати особинама земљишта. Уколико је земљиште теже, збијеније, тврђе, утолико јамићи морају бити шири, ако под таквим условима нема могућности да се цела површина обради на потребној дубини. Ако би јамићи на таквим земљиштима били узани, онда би се жило само прве

Сл. 76 — Прављење јамића: 1) ручно и 2) јемоћу екскаватора
године несметано развијале. Ту би развитак жила подсећао на развитак у лонцима. Најмања ширина јамића треба да је 100–150 cm.

Прављење јамића помоћу експлозива

Експлозивом се, не само много брже и јевтиније, већ и много боље припреми земљиште за сађење садница, него ручним копањем јамића. Нарочито корисну примену овај начин има на тврђем и каменитијем земљишту, али његова примена је могућа и у свим другим земљиштима. Примена експлозива за прављење јамића за садњу воћака има потешкоћа техничке природе – око набавке и употребе – па се у прaksi у нас мало користи.

Механизовано копање јамића

Прављење јамића помоћу специјалне буругице која се монтира на трактор, или је са сопственим погоном, има велику предност над ручним копањем. Пре свега, знатно је јевтиније, брже се изводи, штеди се у људској радној снази и сл. Од велике је користи овако механизовано прављење јамића, јер благовремено може да се припреми велика површина за садњу, што је понекад тешко изводљиво ако се обавља ручно.

Што се тиче времена копања јамића, јасно је да ће воћке наћи утолико повољније услове за своје успевање, уколико је копање извршено раније. За јесене сађење најбоље је да се јамићи ископају на 1,5–2 месеца раније, за пролеће – у току претходне јесени или зиме. У крајњем случају треба да прође најмање 4 недеље од копања јамића до сађења садница. Благовременим копањем, земљиште постаје погодније за примање и успевање воћака – мекше, расреситије, јаче, аериранио. При копању, земљу првог ашова стављају на једну страну, а другог на другу страну или је растурили унаоколо по површини. Приликом затрпавања јамића прво се врати земља првог ашова, а затим се допуни јамић површинском земљом која је око јамића.

РАСПОРЕД СОРТИ ЗА БОЉЕ ОПЛОЂАЊЕ

При подизању воћнака у коме ће бити самооплодне сорте може се у једном засаду посадити само једна сорта. Насупрот томе, у воћницаима, у којима ће се гајити самобеспродне воћке, треба изабрати сорте према односима оплођења. То је један од неопходних услова родности воћака. У том погледу настају две противречне појаве: прва је тежња да се ради стандардизације воћарске производње број сорти сведе на минимум, а друга је неопходност да се у појединим засадима, чак и релативно мањих размера, гаји најмање две па и више сорти. Решење ових противречних појава налази се у правилном избору сорти и њиховом најбољем распореду према међусобним односима оплођења, тако да се може успешно гајити најмањи број сорти који омогућује обилне приносе. При том ће се једна, две па и више сорти гајити ради производње.
плодова, а друге ће бити тако подешене да као опрашивачи обезбеђују највеће приносе. Сорте опрашивачи треба да се одликују овим особинама: да су добро прилагођене условима средине; да испољавају што бољу попуну подударност са главним сортама и тиме обезбеђују што обилније приносе; да имају добру клијавост полена, да им се време цветања што потпуније подудара; да им плодови имају што бољи квалитет и да им се дуговечности приближно подударају с главним сортама.

У појединим вођњацима могу се гајити најмање две сорте које се одликују већином споменутих особина, и што је битно, сорте које могу добро међусобно да се оплођују. Сигурније је да се гаје по три сорте, и то све три с успехом међусобном опложњом.

Ако се сорте које се желе гајити одликују великим вредношћу по квалитету плодова и могу се сматрати главним, а добро се међусобно оплођују, тада се оне смењују са по 4 или највише 6 редова (убек са парним бројем редова). При нормалном развитку

Сл. 77 – Схема распоређа сорти вођака у циљу бољшевијег обрашивања:
пример 3 сорти јабуке засипујење у односу 1:2:2 и 3 варакциона: - 1. од сваке сорти је број редова 4:8:8; - 2. од сваке сорти је број редова 4:4:2:4:4:4;
- 3. од сваке сорти је број редова у односу 4:4:4:4
заjabuke i kruške to je uđaljenost koja obzežđuje uspešno međusobno opreshivanje. U
cluchaju da se pojedine sorte žele gažiti u malim razmerama, pratežno kao opreshivaci,
tada se može izvršiti različit raspored ovih opreshivaca u voćnjacima. Ali, ako je
jedna od ovih sorti loš opreshivac, onda nije preporedjivano da se gaži u više od dva
reda zajedno. To znaci da će se takva sorte smanjivati sa po dva reda. Tako će se
obezbediti dobra rodnost zahtevajućih opreshivanja i oplođenj susедnih stabala,
dobrih opreshivaca.

Neparna broj redova od jedne sorte može zlog evantualne diferencijacije
agrotehnike da pozveća troškovne produkcije, a ima uticaj i na produktivnost pada.
Treba izbegavati raspored po kojem bi u istom redu bile po dve sorte, jer bi to kvarelo
izgled i imalo niz drugih nepovoljnih posledica na organizaciju pada i ujednačenje
agrotehničkih mer koje se u voćnjacima moraju primenjivatis. Takav raspored se
izbegava narocito u velikim voćnjacima.

Odnosi opreshivanja i oproštene voćaka

Sve sorte jabuke i kruške (sa vrlom retkim izuzecima) su potpuno ili
praktično samobesplođne (auitoinkopatiбилне). Pri samoopreshivanju kod ovih sorti
ne dolazi do samooplođe, odnosno obrazovanja i razvoja ploda, ili ako dolazi
zamena plodova je malo i ekonomski beznačajno.

Zlog tega je potrebno sortama jabuke i kruške obezbediti odgovaraću
opreshivache.

Tab. 41 – Pregled opreshivaca za neke sorte jabuke (Bidabe Lezec, 1975)

<table>
<thead>
<tr>
<th>сорте које се опрашивају</th>
<th>сорта добар полинатор</th>
</tr>
</thead>
<tbody>
<tr>
<td>акане (Akane):</td>
<td>златни делишес (Golden Delicious)</td>
</tr>
<tr>
<td>црвени астрахан (Astrahan Rouge)</td>
<td>ајдаред (Idared)</td>
</tr>
<tr>
<td></td>
<td>ричаред (Richared Delicious)</td>
</tr>
<tr>
<td></td>
<td>лепоцветка (Belle Fleur Jaune)</td>
</tr>
<tr>
<td></td>
<td>боровици (Borowitsky)</td>
</tr>
<tr>
<td></td>
<td>мекинтош (Mc Intosh)</td>
</tr>
<tr>
<td></td>
<td>ерлинест (Stark Earliest)</td>
</tr>
<tr>
<td></td>
<td>зимска банана (Winter Banana)</td>
</tr>
<tr>
<td>Топ и црвени боскоп (Belle de Boskoop и Boskoop Rouge):</td>
<td>црвени астрахан (Astrahan Rouge)</td>
</tr>
<tr>
<td></td>
<td>лепоцветка (Belle Fleur Jaune)</td>
</tr>
<tr>
<td></td>
<td>боровици (Borowitsky)</td>
</tr>
<tr>
<td></td>
<td>ајдаред (Idared)</td>
</tr>
<tr>
<td></td>
<td>ерлинест (Stark Earliest)</td>
</tr>
<tr>
<td></td>
<td>зимска банана (Winter Banana)</td>
</tr>
</tbody>
</table>
Зимски Калвил (Calville Blanche):

Лепоцветка (Belle Fleur Jaune)
Кокс оранж (Cox’s Orange Pippin)
Златни делишес (Golden Delicious)
Ричаред (Richared Delicious)

Чарден (Charden):

Айаред (Idared)
Ричаред (Richared Delicious)
Грени смит (Granny Smith)
Мелроуз (Melrose)

Кокс оранж (Cox’s orange Pippin):

Бели Калвил (Calville Blanche)
Златни делишес (Golden Delicious)
Йонатан (Jonathan)
Онтарио (Ontario)
Ричаред (Richared Delicious)
Ерлиност (Stark Earliest)

Ерлибенс (Early Blaze):

Златни делишес (Golden Delicious)
Акана (Akane)
Кокс оранж (Cox’s Orange Pippin)
Грени смит (Granny Smith)
Айаред (Idared)
Йонадел (Jonadel)
Йонатан (Jonathan)
Мелроуз (Melrose)

Грени смит (Granny Smith):

Златни делишес (Golden Delicious)
Айаред (Idared)
Мелроуз (Melrose)
Ричаред (Richared Delicious)

Айаред (Idared):

Акана (Akane)
Црвени астрахан (Astrahan Rouge)
Златни делишес (Golden Delicious)
Грени смит (Granny Smith)
Цемс грив (James Grieve)
Йонатан (Jonathan)
Мекинтош (Mcintosh)
Мелроуз (Melrose)

Цемс грив (James Grieve):

Айаред (Idared)
Ерлиност (Stark Earliest)

Йонатан, блаксон и йонаред (Jonathan Blackson i Jonared):

Кокс оранж (Cox’s Orange Pippin)
Златни делишес (Golden Delicious)
Айаред (Idared)
Мекинтош (Mcintosh)
Бауманова Ренета (Rainette Baumann)
Шампаньска Ренета (Rainette de Champagne)
Ричаред (Richared Delicious)
<table>
<thead>
<tr>
<th>Сорт</th>
<th>Наши назви</th>
<th>Англиjsке назви</th>
</tr>
</thead>
<tbody>
<tr>
<td>јонадел (Jonadel)</td>
<td>златни делишес (Golden Delicious)</td>
<td>Черчард (Richard Delicious)</td>
</tr>
<tr>
<td>муцу (Mutsu)</td>
<td>златни делишес (Golden Delicious)</td>
<td>Грени смит (Granny Smith)</td>
</tr>
<tr>
<td>мелроуз (Melrose)</td>
<td>ајдарад (Idared)</td>
<td>Грецки (Greece)</td>
</tr>
<tr>
<td>онтарио (Ontario)</td>
<td>кокс оранж (Cox’s Orange Pippin)</td>
<td>Бауманова ренета (Reinette Baumann)</td>
</tr>
<tr>
<td>графенитајка (Red Gravenstein)</td>
<td>боровишки (Borowitsky)</td>
<td>Ајдарад (Idared)</td>
</tr>
<tr>
<td>бауманова ренета (Reinette Baumann)</td>
<td>лепоцветка (Belle Fleur Jaune)</td>
<td>Златни делишес (Golden Delicious)</td>
</tr>
<tr>
<td>шампана ренета (Reinette de Champagne)</td>
<td>јонатан (Jonathan)</td>
<td>Онтарио (Ontario)</td>
</tr>
<tr>
<td>ричард и мутанти делишеса (Richard Delicious)</td>
<td>ричард (Richard Delicious)</td>
<td>Златни делишес (Golden Delicious)</td>
</tr>
<tr>
<td>ерлинст (Stark Earliest)</td>
<td>акане (Akane)</td>
<td>Џонатан (Jonathan)</td>
</tr>
<tr>
<td>бели калви (Calvile Blanc)</td>
<td>кокс оранж (Cox’s Orange Pippin)</td>
<td>Мекинтош (Mc Intosh)</td>
</tr>
<tr>
<td>златни делишес (Golden Delicious)</td>
<td>Грени смит (Granny Smith)</td>
<td>Џонатан (Jonathan)</td>
</tr>
<tr>
<td>ајдарад (Idared)</td>
<td>Грецки (Greece)</td>
<td>Мекинтош (Mc Intosh)</td>
</tr>
<tr>
<td>црвени астрахан (Astrahan Rouge)</td>
<td>Боровишки (Borowitsky)</td>
<td>Карденал (Cardenal)</td>
</tr>
</tbody>
</table>

Таб. 42 – Просвид опрашиваца – полинатора за важније сорте крушка

<table>
<thead>
<tr>
<th>Сорте опрашиваца</th>
<th>Сорта која се опрашује</th>
</tr>
</thead>
<tbody>
<tr>
<td>добра луја (Louise Bonne)</td>
<td>Андре деспорт (André Desportes)</td>
</tr>
<tr>
<td>париска грофица (Contesse de Paris)</td>
<td>Лукасова (Beurre Alexandre Lucas)</td>
</tr>
<tr>
<td>црвена виламовка (Max Red Bartlett)</td>
<td>Виламовка (Williams)</td>
</tr>
<tr>
<td>клержова (Beurre Clairgrau)</td>
<td>Клиржова (Beurre Clairgrau)</td>
</tr>
<tr>
<td>жифардова (Beurre Giffard)</td>
<td>Жифардова (Beurre Giffard)</td>
</tr>
<tr>
<td>хардијева (Beurre Hardy)</td>
<td>Хардијева (Beurre Hardy)</td>
</tr>
<tr>
<td>добра луја (Louise Bonne)</td>
<td>Добра луја (Louise Bonne)</td>
</tr>
<tr>
<td>црвена виламовка (Max Red Bartlett)</td>
<td>Црвена виламовка (Max Red Bartlett)</td>
</tr>
<tr>
<td>красанка (Passe-Crassane)</td>
<td>Красанка (Passe-Crassane)</td>
</tr>
</tbody>
</table>
анжу (Beurre d'Anjou):
конферанс (Conference)
вилемовка (Williams)
боскова бочица (Beurre Bosc):
хардепонова (Beurre d'Hardenpont)
клапова (Clapp's Favourite)
конферанс (Conference)
гидотова (Dr Jules Goyot)
вилемовка (Williams)
клергова (Beurre Clairgeau)
хардйева (Beurre Hardy)
красанка (Passe Crassane)
клергова (Beurre Clairgeau):
хардйева (Beurre Hardy)
зимска деканткиња (Doyenne d'Hiver)
добра луја (Louise Bonne)
пакхамс тријумф (Packham's Triumph)
красанка (Passe-Crassane)
дила (Beurre Diel):
клергова (Beurre Clairgeau)
джифардова (Beurre Giffard)
хардйева (Beurre Hardy)
добра луја (Louise Bonne)
красанка (Passe Crassane)
джифардова (Beurre Giffard):
анаре деспорт (André Desportes)
клергова (Beurre Clairgeau)
добра луја (Louise Bonne)
црвена вилемовка (Max Red Bartlett)
тренушка (Precoce de Trevoix)
хардепонова (Beurre d'Hardenpont):
боскова бочица (Beurre Bosc)
клапова (Clapp's Favourite)
гидотова (Dr Jules Goyot)
красанка (Passe-Crassane)
вилемовка (Williams)
клергова (Beurre Clairgeau)
хардйева (Beurre Hardy)
жандарц (Jeanne d'Arc):
хардепонова (Beurre d'Hardenpont)
красанка (Passe-Crassane)
вилемовка (Williams)
добра луја (Louise Bonne):
анаре деспортс (André Desportes)
анжу (Beurre d'Anjou)
клергова (Beurre Clairgeau)
джифардова (Beurre Giffard)
хардйева (Beurre Hardy)
ангусмка (Duchesse d'Angouleme)
конферанс (Conference)
красанка (Passe Crassane)
црвена виљамовка (Max Red Bartelett): босковица (Beurre Bosc)
жибардова (Beurre Giffard)
хареспонова (Beurre d’Hardenpont)
хардиева (Beurre Hardy)
клапова (Clapp’s Favourite)
конферанс (Conference)
красанка (Passe Crassane)
клеркови (Beurre Clairgeau)
требушка (Precoce de Trevoix)
друзардова (President Drouard)

пакхамс триумф (Packham’s Triumph): црвена виљамовка (Max Red Bartlett)
виљамовка (Williams)
боскова бочина (Beurre Bosc)

красанка (Passe Crassane): клеркови (Beurre Clairgeau)
жибардова (Beurre Giffard)
хареспонова (Beurre d’Hardenpont)
хардиева (Beurre Hardy)
клапова (Clapp’s Favourite)
конферанс (Conference)
виљамовка (Williams)

требушка рана (Precoce de Trevoix): андрес деспортес (Andr Desportes)
хибардова (Beurre Hardy)
кошица (Coscia)
друзардова (President Drouard)

друзардова (President Drouard): клеркови (Beurre Clairgeau)
хардиева (Beurre Hardy)
виљамовка (Williams)

санта марија (Santa Maria): жибардова (Beurre Giffard)
хардиева (Beurre Hardy)
рана моретиниева (Beurre Precoce Moretini)
кошица (Coscia)
красанка (Passe Crassane)
моретиниева рана виљамовка (Williams Precoce Moretini)

старкrimson (Starkrimson): боскова бочина (Beurre Bosc)
конферанс (Conference)
виљамовка (Williams)

хардиева (Beurre Hardy): клеркови (Beurre Clairgeau)
жибардова (Beurre Giffard)
добра лујза (Louise Bonne)
црвена виљамовка (Max Red Bartlett)
красањка (Passe-Crassane)
тревушка (Precocce de Trevoux)
боскова бочица (Beurre Bosc)
клапова (Clapp’s Favorite)
конферанс (Conference)
виљамовка (Williams)
морстинијева рана (Beurre Prococe Morettini):
коција (Coscia)
ангулемка (Duchesse d’Angouleme)
клеркова (Beurre Clairgeau)
жифардова (Beurre Giffard)
красањка (Passe-Crassane)
морстинијева рана виљамовка (Williams Precocce Morettini)
клапова (Clapp’s Favourite):
боскова бочица (Beurre Bosc)
хардепонова (Beurre d’Hardenpont)
конферанс (Conference)
виљамовка (Williams)
клеркова (Beurre Clairgeau)
хардијева (Beurre Hardy)
конферанс (Conference):
боскова бочица (Beurre Bosc)
клапова (Clapp’s Favorite)
гијотова (Dr Jules Guyot)
црвена виљамовка (Max Red Bartlett)
красањка (Passe-Crassane)
виљамовка (Williams)
хардијева (Beurre Hardy)
коција (Coscia):
тревушка (Precocce de Trevoux)
клеркова (Beurre Clairgeau)
жифардова (Beurre Giffard)
добра лујза (Louise Bonne)
калудерка (Cure):
андре деспортес (Andrè Desportes)
хардијева (Beurre Hardy)
добра лујза (Louise Bonne)
тревушка рана (Precocce de Trevoux)
красањка (Passe-Crassane)
зимска деканткиња (Doyenne d’Hivar):
анжу (Beurre d’Anjou)
добра лујза (Louise Bonne)
хардијева (Beurre Clairgeau)
зимска деканткиња (Dyenné d’Hivar)
красањка (Passe-Crassane)
ангулемка (Duchesse d’Angouleme):
тијотова (Dr Jules Guyot):
боскова бочица (Beurre Bosc)
харденпонтова (Beurre d’Hardenpont)
клапова (Clapp’s Favourite)
конферанс (Conference)
црвена виљамовка (Max Red Bartlett)
виљамовка (Williams)
хардијева (Beurre Hardy)

вијенка (Triomphe de Vienne):
клержова (Beurre Clairgeau)
клапова (Clapp’s Favourite)
зимска деканткиња (Doyenne d’Hivar)
црвена виљамовка (Max Red Bartlett)
виљамовка (Williamsa)

виљамовка (Williams):
боскова бочица (Beurre Bosc)
харденпонтова (Beurre d’Hardenpont)
клапова (Clapp’s Favourite)
конферанс (Conference)
тијотова (Dr Jules Guyot)
пакхам тројумф (Packham’s Triumph)
красанка (Passe Crassane)
клержова (Beurre Clairgeau)
жифардова (Beurre Giffard)
хардијева (Beurre Hardy)
трасушка (Prococe de Trevoux)
друардова (President Drouard)

Сорте шљива могу бити:
1. самооплодне (аутофертилне) – које се могу гајити у хомогеним (једносортним) засадима,
2. делимично самобесплодне,
3. потпуно самобесплодне.
Сорте шљива друге и треће групе, ради сигурне производње, морају се гајити у комбинацији са сортама опрашивачима.
Таб. 43 – Опрашивачи за неке сорте шљиве (Mishan, 1979)

<table>
<thead>
<tr>
<th>сорта која се опрашује</th>
<th>сорта опрашивач</th>
</tr>
</thead>
<tbody>
<tr>
<td>алтанова</td>
<td>ана шпет, валингтон, викторија, италијанка, зелена ренклода, кирке, оптарео, пожегача</td>
</tr>
<tr>
<td>ана шпет</td>
<td>алтанова ренклода, билска рана, пожегача</td>
</tr>
<tr>
<td>аженка</td>
<td>алтанова ренклода, валингтон, викторија, зелена ренклода, италијанка, степли</td>
</tr>
<tr>
<td>блуфри</td>
<td>стенли, чачанска најбоља</td>
</tr>
<tr>
<td>италијанка</td>
<td>алтанова, ана шпет, аженка, пожегача</td>
</tr>
<tr>
<td>крушка зелена ренклода</td>
<td>алтанова, аженка, ана шпет, билска рана, италијанка, пожегача</td>
</tr>
<tr>
<td>президент</td>
<td>рутгерштетер, калифорнијска плава, степли, блуфри</td>
</tr>
<tr>
<td>степли</td>
<td>рутгерштетер, президент, блуфри</td>
</tr>
<tr>
<td>чачанска најбоља</td>
<td>чачанска рана, чачанска лепотица</td>
</tr>
<tr>
<td>чачанска рана</td>
<td>чачанска лепотица, чачанска најбоља</td>
</tr>
<tr>
<td>цимерова рана</td>
<td>калифорнијска плава, степли, рутгерштетер</td>
</tr>
</tbody>
</table>

Већина сорти бресака су самооплодне. Само мали број сорти су странооплодне. Оне се, углавном, код нас не гаје, са изузетком сорте 1. Н. Halle (халеове позне) која је самобезплодна (због цитолошке мушке стерилиности полена), а која се гаји као сорта локалног значаја.

Највећи број сорти kaicije европске групе, су самооплодне. Само мали број сорти ове групе су делним или потпуном самобезплодне. Од познатијих сорти то су: риланд, рана добруџанска, шегеди мамут и др.

Највећи број сорти прешања је самобезплодан (аутоинкапатибилан). Поред тога код трешње је уочена и межубезплодност (интеринкапатибилност).

Ову појаву, која представља немогућност поленове невицица да из цитолошко-биохемијских разлога допре до ембрионове кесице и изврши оплодњу, већ зауставља свој пораст на горњој тречини стубића правећи петле, ражне или задебљања, први је уочио Гарднер, 1912. год., комбинујући сорте бинг, ламбер и наполеонову. Касније је на овом проблему радио Кобел, откривши у Швајцарској 17 межубезплодних група сорти трешње. Данас се сматра да међу важнијим сортама трешње има преко 60 интеринкапатибилних група. Сорте исте инкапатибилне групе не могу међусобно да се комбинују као опрашивачи.
Ово је до сега био озбиљан производни проблем, јер су се као опрашивају бириле компатибилне сорте, које често нису задовољавале по својим квалитетним особинама (таб. 44).

Проналаском самооплондних сорти трешња (стела, компакт стела, самберст, лапинс, њу стар и др.) овај проблем је превазиђен, јер се самооплондне сорте (које су и добрих привредних и квалитетних особина) понашају као универзални опрашивају.

Сорте вишане могу бити: самооплондне, делимично самооплондне и самобесплодне. Данас се у производњи фаворизују самооплондне сорте вишане и оне доминирају у стандартном сортименту.

Таб. 44 – Преглед опрашивају – полинатора за важније сорте трешње

<table>
<thead>
<tr>
<th>сорта која се опрашује</th>
<th>сорте опрашивају</th>
</tr>
</thead>
<tbody>
<tr>
<td>рана бурлатова</td>
<td>гермердорфска, випавка, стела</td>
</tr>
<tr>
<td>лионска рана</td>
<td>випавка, касинова рана, мармата, стела</td>
</tr>
<tr>
<td>риверсова рана</td>
<td>наполеонова, хеделфингерска, стела</td>
</tr>
<tr>
<td>хеделфингерова</td>
<td>мајова рана, лионска рана, стела</td>
</tr>
<tr>
<td>гермердорфска</td>
<td>бурлатова, хеделфингерска, стела</td>
</tr>
<tr>
<td>бинг</td>
<td>ван, десакон, република, стела</td>
</tr>
<tr>
<td>ламберт</td>
<td>гермердорфска, гилпис, стела</td>
</tr>
<tr>
<td>наполеонова</td>
<td>хеделфингерска, випавка, касинова рана, стела</td>
</tr>
<tr>
<td>старкип харди цаји</td>
<td>стела</td>
</tr>
<tr>
<td>дроганова жута</td>
<td>ламберт, гермердорфска, хеделфингерска, стела</td>
</tr>
</tbody>
</table>

Сорте и селекције ораха су најчешће странооплондне, те их треба гајити са опрашивају.

Највећи број сорти лешника је самобесплодан (аутоинкопатибилан). Оне се морају гајити са сортама опрашивају (таб. 45).
Таb 45 – Преглед опрашивача важнијих сорти лешника

<table>
<thead>
<tr>
<th>сорте</th>
<th>опрашивачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>тонда ди ђифони</td>
<td>косфорд, мортарела, негрет. тонда ђентиле дела ланге</td>
</tr>
<tr>
<td>халски шин</td>
<td>римски, косфорд</td>
</tr>
<tr>
<td>мортарела</td>
<td>тонда ди ђифони, сан ђовани</td>
</tr>
<tr>
<td>тонда ђентиле романа</td>
<td>косфорд, мортарела, тонда ђентиле дела ланге, тонда ди ђифони</td>
</tr>
<tr>
<td>тонда ђентиле дела ланге</td>
<td>барселона, мортарела, негрет, тонда ђентиле романа, косфорд и др.</td>
</tr>
<tr>
<td>римски</td>
<td>косфорд</td>
</tr>
<tr>
<td>негре</td>
<td>косфорд, тонда ђентиле дела ланге, тонда ди ђифони</td>
</tr>
<tr>
<td>косфорд</td>
<td>гуксеберг, шпански дуги</td>
</tr>
<tr>
<td>империјал ∗</td>
<td>боливијеров лешник</td>
</tr>
<tr>
<td>барселона</td>
<td>мортарела, косфорд, тонда ђентиле дела ланге</td>
</tr>
</tbody>
</table>

Само мали број сорти лешника је самооплодан (бадемолисни, косфорд, рани трапизонски и др.).
Нajвећи број сорти бадема су самобезплодне (аутоинкопатибилне). И они се морају гајити са сортама опрашивацима.

Таb. 46 – Преглед опрашивача важнијих сорти бадема

<table>
<thead>
<tr>
<th>сорта</th>
<th>опрашивачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>нонпарамеј</td>
<td>марково 11, дабков, нипли сатра, десертни, кримски и никитски 62</td>
</tr>
<tr>
<td>ароматички</td>
<td>јалтински, кримски, десертни</td>
</tr>
<tr>
<td>приморски</td>
<td>нонпарамеј, приморски, ароматични</td>
</tr>
<tr>
<td>кримски</td>
<td>нонпарамеј, филипзео</td>
</tr>
<tr>
<td>тексас</td>
<td>ароматични, кримски, десертни</td>
</tr>
<tr>
<td>никитски позноцветајући</td>
<td>ферадил, тексас, туono</td>
</tr>
<tr>
<td>феранье</td>
<td>феранье, тексас, туono</td>
</tr>
<tr>
<td>ферадила</td>
<td>феранье, туono</td>
</tr>
<tr>
<td>фра ђулио</td>
<td>туono</td>
</tr>
<tr>
<td>филипзеo</td>
<td>ферадил, феранье, филипзеo, тексас</td>
</tr>
<tr>
<td>туono</td>
<td></td>
</tr>
</tbody>
</table>
Мали број сорти бадема су самооплодне (авелана, маркона и др.). У Италији је створена самооплодна сорта супернова, добрих производних особина која се може гајити и као универзални опрашивац за странооплодне сорте бадема.

ПРИПРЕМА САДНИЦА

На примање и развитак воћака огроман утицај имају воћне саднице, односно квалитет садног материјала и начин на који су саднице одграјене.

При избору садног материјала мора се обратити пажња на следеће:

- аутентичност сорте и подлоге,
- старост садница и њихово здравствено стање,
- развјеност садница, а нарочито развјеност корена,
- механичке повреде,
- начин вађења, паковања и транспорта,
- особеност подлога,
- услови у којима су саднице одграјене.

Аутентичност сорте мора бити потпуна, јер свака грешка учињена у том погледу, нарочито када се подназу плаантажни воћњаци, одржава се вишеструко неповољно на воћарску производњу. На пример, ако је посађено само понеког стабло неке друге сорте у реду одрежене сорте, квари се изглед тог дела воћака. Осим тога, ремете се односно оплођења код самобесплодних сората, а разлике у времену сазревања изазивају и посебне трошкове, те само око бербе плодова већ и око заштите воћака.

Аутентичност подлоге је још важнија, јер од подлоге највише и зависи успевање воћака.

Питање узрasta садница је од практичног значаја. У пракси долазе у обзир једногодишње и двогодишње саднице, а само изузетно и трогодишње. Одатно је предvlадало схватање да су трогодишње саднице неподесне и да не обезбеђују задовољавајуће успехе. Према мишљењу и искусству многих воћарских стручњака и оцене производних организација, једногодишње саднице пружају многобројна преимућства: вађење садница је лакше и брже, а жиље се боље сачувају, паковање и транспорт се јевтинији; примање посађених садница је лакше и сигурније; круна се може формирати на жељеној висини; ветар у првој години мање клати посађене саднице.

Треба поменути да је при коришћењу двогодишњих садница крушке, трешње и вишње запажена могућност очењивања круне, па се стога с њима мора врло опрезно поступати од вађења до сађења.

Саднице изданака шљиве чине изузетак у погледу старости. Изданци треба да остану у растпду годину дана, и то на плодном земљишту и при доброј нези, да би им се жиле што боље развиле.
Јасно је да за вађење на стално место долазе у обзир само потпуно здраве саднице, без икаквих знакова вирозних и других болести, без присуства цететочина, а нарочито без тумора на корену или надземним деловима (Bacterium tumefaciens), тргленици жица, повреда изазваних неким паразитним гљивицама и без ваши санцоје. Посебна пажња мора се обратити садницима шљиве, нарочито из изданака, не смеју бити заражене шарком шљиве. Тако заражене саднице морају се сматрати неупотрељивим. Због тога саднице шљиве треба пажљиво да прегледају стручњаци за заштиту биља у току вегетације, кад се шарка једино и може открити свободним оком. У истој мери ваља посветити пажњу и матичним стаблима од којих се узимају калем-граничци или користе изданци. Саднице на којима се примећују неки од наведених недостатака морају се одбацити.

Саднице морају бити добро чување од мразева, исушивања и механичких повреда. Нарочито је значајно да корен буде поштеђен од измрзавања, јер је према мразу осетљивији него остали органи воћке. Нарочито је корисно да саднице имају снажан, добро развијен и жилачаст коренов систем, што боље очува приликом вађења. Коренов систем се врло често знатно оштети приликом непажљивог вађења садница. Због тога је вађење машинама боље, брже и једноставније. Тиме се при вађењу сачувају управо оне ситуације шипе-сисалце од којих највише зависи примање.

Време и начин вађења садница имају велики утицај на примање и успевање воћака. Саднице морају бити извађене само у пуном зими моравању. Ако се изваде пре потпуно грабљивања вегетације, онда ће имати у току мање хранилих резерви, биће подложније исушивању и измрзавању него благовремено извађене. То је нарочито случај с копитичним врстама воћака. Напротив, ако се с вађењем задоци, повреди се жиле развијене у јесен, што представља непотребно губљење резерви утрошенх за образовање тих жилца. Најзад, ако се с вађењем толико закасни, да већ настане и кретање вегетације у пролеће, тада се резерве далеко више утроше узалауд, те је примање и због тога доведено у питање; а ако се воћке и приме, слабо ће се развијати. Најбоље је да се саднице вађе у јесен по завршетку вегетације, па да се, уколико услови дозвољавају, тада и посаде. Ако се не могу посадити одмах, морају се добро утрпави, уз све потребне предосторовности од исушивања и глодара (нарочито мишева и пацова). Да се саднице у тропу сачувају од глодара, приликом трапљења се упotreбљава неко защитно средство на бази цинк-фосфида. Показало се да је лоше развијен или при вађењу садница јаче поврђен коренов систем један од најчешћих узрокова слабог успевања воћака.

Саднице воћака морају бити лепо и умерено развијене. Искусство је показало да кршћане саднице не треба користити, јер се слабо примају, а и кад се приме, лоше се развијају и могу страдати преко зиме од мразева, чак и кад ови нису нарочито јаки. Ово поткрепљују и наша искуства.
Посебно се поставља и питање подлога. Јасно је да подлоге треба да буду пре свега подударне с датим сортама и врстама и што више прилагођене условима средине.

Наязд, није за потцењивање ни препорука да се саднице произведу у приближно сличним климатским, а нарочито земљишним, условима у којима ће се воћке гајити. То значи да се може очекивати боље успевање воћака ако су саднице произведене у истом резону, у сличним еколошким условима и без наводњавања. Саднице које не одговарају овим условима треба сматрати неупотребљивим.

Преглед садница

Набављене саднице се морају пажљиво прегледати да се утврдиле у каквом су стању приспеле. При томе нарочито пажњу ваља обратити на коренов систем: да ли је повређен од мраза или исушивања; да ли има јачих механичких повреда и поломљених жила, итд. Повреде од мраза могу се лако утврдити, ако се на пресеку извршено још једном прегледати и оценити одок и по пресеку. Прегледи ли се да су жиле све нешто, треба их најпре држати у води један до два дана, па до времена сажења чувати у трапу. Ако жиле нису све нешто, саднице се само утрапе чим се распакују.

Најбоље би било да се сажење обави чим саднице буду приспеле. Оне које се у току дана не могу посадити треба привремено утрапанити, на тај начин, што им се жиле покрију трошном земљом. Саднице намењене сажењу у току једног дана морају се држати у хладовини, а ако је ваздух сувљи, жиле треба нечим покрити. Утрапљене саднице вадити поступно, и то онолико колико се може посадити за краће време.

Чињенице и скраћивање жила

Непосредно пред сажење воћака треба пополнене и сувише повређене жиле одсећи, а здраве правилно и равномерно скратити. Исто тако треба одсећи и неку жилу која расте неправилно, па се преплиће или украпта с другим жилама. Важно је да се све то уради ошtrim маказама или кресачим ножем који не нагњечује жиле. Настојати да се пресеком не ствара велика рана.

Поставља се питање када је најбоље да се чисти и скраћује корен — после вађења садица или пред њихово сажење. Ако воћак после вађења треба да проведе дуже време у трапу, она да жиле морају скратити приликом трапљења, јер ће пресекси, добрим делом, до времена сажења почети да обрастају. Ако је од вађења прошло краће време, или ако пресекси нису зарасли, треба их пред сажење освежити, али ако се на пресексима примећује калус, као почетак зарастања, онда их не треба скраћивати. У сваком случају, после вађења воћака вала скратити бар веће жиле, а пополнене или више оштећене жиле потпуно одсећи до здравог дела. Иначе, жиле се не smeju много скраћивати, већ само толико да им се крајеви освеже новим пресеком. Ако је сржна жила
јако развијена, треба је више скратити да би се сузбило растење кореновог система претежно у дубину.

Пресец не морају бити прави, а не коси, јер су прави пресеци најмањи и најбоље зараставају и обновљају жиле. Све танке жиле ваља или оставити или само помало скратити, ако су сувише дугачке, да не би ометале успешно садње.

Потапање корена садница уре садње

Корен садница с већ скраћеним жилама треба потопити у 2%-ни раствор плавог камена ради дезинфекције пресека, па затим спустити у кашу направљену од једног дела свеже говеђе балеге и два дела глине – да би се спречила свака свенулост жилица и побољшали услови образовања калуса. У овој каши жиле остају око 24 часа. Овако третирање корена је веома препоручљиво, кад се саднице саде у проšеће и под неповољним условима. Ако се саде раније у јесен, у добро припремљеном земљишту, не морају се потапати.

У последње време препоручује се потапање жила непосредно пред садње у фитохормоналне растворе, као што су индолсирићетна, индолбутерна и фенилисирићетна киселина. Ови хормони делују на корен стимулативно, убравају образовање калуса на пресецима и омогућују боље примање и развитак воћака. Упутство за примену ових препарата дају фабрике које их производе.

Слика 78 – Припрема корена садница воћака за садњу на смешном месту

ТЕХНИКА САЂЕЊА

Пошто је земљиште правилно припремљено (риголовано и добро нађубрено), треба га непрекидно, пре садње изравнати и по потреби истицаји. Размеравање површине и одређивање места за јамиће, односно за саднице, врши се канапом и кочићима. Пожељно је да редови имају правац север-југ.

На риголованом земљишту јамићи се копају непосредно пред садње. Дубина и величина јамића зависи од кореновог система садница. Посађена воћка треба да буде на истој висини, односно око 5 cm дубље него што је била у растилу.
Пре свега, потребно је да се најмање на две недеље пред садње, ако су јамићи копани, изврши делимично попунавање јамића, како би се земља слепла. Приликом затрпавања јамића, земља се враћа обрнутим редом – прво се враћа земља из првог слоја, а затим из другог. Овом приликом, предрачуном утврђена норма ђубрива меша се са земљом и то у оном доњем слоју. Препоручује се да се додaje истовремено и стајско ђубриво.

Ђубрива, (минерална и органска) мешају се са земљом, тако што један радник враћа земљу док други радник додaje ђубриво и повремено нанесену земљу и ђубриво с неколико удара мотиком измеђа.

Иако је обављена припрема земљишта за садњу, у време кад се она изводи, на означеном месту за садњу, мотиком се ископа толико земље колико може несметано да се постави корен саднице. Приликом самог садњења, од највећег је значаја да се правилно одреди дубина на коју ће садница бити посађена. Мора се строго избегавати сувиште дубоко и претерано плитко садњење. У првом случају примање је слабије и теже, воћке се крхљавије развивају, родност је незадовољавајућа, па и век воћака је краћи. У другом, при сувиште плитком садњењу, воћке су изложене суши, корен ће бити плитак те се, такође, воћке слабије развивају, приликом обраде многе жиле се повређују, што доводи до заостајања у порасту. По једном општем усвојеном правилу воћке се саде на истој дубини на којој су расле у растилу. Та је дубина регулисана самим природом воћака и она им најбоље одговара. Треба имати на уму да се земља редовно слепне и тако корен дође на већу дубину него што је био у почетку. То значи да је за препоруку да се садња обави за који сантиметар плиће него што су раније саднице расле. За оријентацију, на којој дубини саднице воћака треба да се саде, служи коренов врат саднице, који одређује ниво садњења. Дубина садњења не би требало да се одређује од ока, јер се она на тај начин не може правилно одредити, нарочито ако су јамићи широки, а делимично су затрпани земљом. Најбоље је да се за ту сврху користи даска или летва.

Пошто се дубина садњења правилно одреди, што се постиже употребом за то направљене даске, један радник придржава садницу, док други нанosi синзу земљу и покрива њоме жиле саднице. Кад се набаци добро земље, тако да се жиле покрију, полако се стреса садница како би земља запала између жила, а затим се са стране земља почне газити, почев од периферије јамића према центру. Ако се ово не изводи пажљиво, може доћи до кидања синтих жилица. Гажење треба поновити 2–3 пута. Кад се набаци добро земље и последњи пут изврши гажење, треба по површини ставити стајњак. Колико стајњака, зависи од плодности земљишта као и од врсте саднице воћака. За бујније врсте воћака, обично се ставља 15–20 kg по сваком јамићу; за средње бујне и коштичеве врсте 10–15 kg; јагодасто воће, осим јагоде, 5–10 kg и за јагоду 1–2 kg. Стајњак може да замени трест, компост или органски отпад из индустрије. Ова органска ђубрива се сиромашина од стајњака, па им треба додати и минералних ђубрива. У одсуству органских ђубрива, додава се минерална ђубрива и то према врсти
садница. Количина ђубрива треба да је у складу са развијеношћу саднице као и врсте воћака. Оријентационо се додаје, по садници (у чистом хранилу) азота 5–10 грама, фосфора 2–5 грама и калијума 8–12 грама. Нарочито се води рачуна да се вештачко ђубриво, као и органска ђубрива, не додају директно на корен саднице. Уколико би случајно минерално ђубриво ставили на корен саднице, дошло би вероватно до сушења саднице.

Овде је изнет поступак о садњи воћака у јамиће. Скоро се на исти начин обавља садња воћака и у свим другим случајевима. Сађење јагода је нешто специфично. Њихово пооране земљишту, које је поравнано и припремљено за садњу, врши се размеравање помоћу канапа или жице и на одређеном растојању садњком се саде живићи. Они се саде и у ярке који се затрпавају, а постоји и машине за садњу јагода.

Сл. 79 – Схема сађења садница воћака: 1) ђуршка, 2) враћена јовришница земља, 3) земља јурвог агрова јури којано јамића, 4) гаска за сађење, 5) коренов врх саднице, 6) земља из доњег слоја која се најчешће још јури којано јамића унакоље раскрива, 7) земља с јовришне која замењује земљу из доњег слоја, 8) садњско ђубриво и 9) завршни слој земље

РАДОВИ ПОСЛЕ САЂЕЊА

Постављање наслона

После садње, што зависи од начина гајења и облика куше, поставља се наслон. Наслон може бити од разног материјала. Он је потребан за шпалирно гајење
воћака. У ту сврху се користе стубови и жица. Сматра се да је најједноставнији наслон, привезивање саднице уз притку. Притке се постављају пре или после сађења, мада се чешће постављају после сађења. Стављање притке уз садницу треба да спречи њено клаћење, које настаје дејством ветра. Она се поставља на стране са које најчешће ветар дува. Вођкица се уз притку привеже у облику осмице, при врху, а по потреби, и још на једно место ниже. Везивање се врши врбовим прућем, а може и разним другим везивима. Притка је до висине дебла (уколико нема и другу намену) — помоћ у формирању неких облика круне.

НАСЛОН — ПОТПОРА КАО САСТАВНИ ДЕО НАЧИНА ГАЈЕЊА ВОЂАКА

У интензивној вођарској производњи за неке начине гајења воћака неопходни су наслони или одговарајуће потпоре. Они могу бити од стубова и жице, стабилни и мање стабилни. Затим се користе и појединачне притке, односно коље различитих димензија. Чак могу да се користе и штапови од трске или дрвета, метална и пластична масе. Према начину гајења воћака, а и према економским могућностима примењују се и одговарајући наслони, односно потпоре.

Праве се од различитог материјала: дрвета (четинара, храстовине, од кестена, багрема и сл.), затим од бетона (пренапрегнутих али сазрелог), металних и стубови од пластичне масе. Притке или коље је од сличног материјала.

Наслон од стубова и жице врло је чест кад се ради о густој садњи воћака, нарочито ако је сорт и подлога мале бујности. У таквим вођњацима може да се користи и појединачно коље за сваку вођкицу.

Деблина стубова зависи од намене. Ако наслон треба да носи род, тада је и њихова деблина нешто већих димензија, од 6–10 cm на вршном делу пречника стуба. У другим случајевима, кад имају улогу бољег формирања облика круне, њихове димензије су мање. Крајњи стубови увек су већих димензија. Наслони за шпалире састоје се из
Сл. 80 - Наслони постављени као састојни део неких крива.
Сл. 80 – 2. Даш је врело виједимних наслони, који могу бити од различитег материјала и са већим бројем регова жице (од 2–5), даш је и начин ландерисања четири стуба.
више хоризонтално положених поцинкованих жица. Оне се постављају према потреби, на растојању од око 50 до 80 cm. И стубови се постављају, на различитим растојањима, према томе, какав терет треба да носе, обично, на 8 до 15 m.

За планирање материјала приликом пројектовања засада, или и без тога, треба да се зна колико је потребно стубова за одређену површину. По једном ha тај број се може израчунати, било да се узме растојање између воћка (4 m) и растојање између стубова у реду воћка (10 m). При датом растојању између редова, по једном ha биће (100 : 4 = 25, а за ha (100 x 25) = 2500 m. На сваких 10 m потребно је поставити по један стуб или 250 стубова/ha.

Прорачун потреба у стубовима се израчунава и по формули:

\[Q = \frac{10.000}{a \times b}, \text{ где је} \]

\[Q = \text{потребно стубова}, \ a = \text{растојање између редова воћка} \ \text{и} \ b = \text{растојање између стубова}. \ У \ горњем \ примеру \ то \ би \ износило:} \]

\[Q = \frac{10.000}{a \times b} = \frac{10.000}{4 \times 10} = 250 \text{ стубова/ha} \]

У 1 000 m жице од 2 mm има 24,5 kg, и даље од 2,4 mm je 29,64 kg, од 2,7 mm je 35,28 kg и 3,00 mm - 44,65 kg итд.

Из ових елемента могу се израчунати потребне количине жице.

Заливање

Врло често се намење потреба да се саднице воћка на сталном месту залију. Чешће треба заливати саднице посађене у пролеће. Свака се садница залије с једном кофом воде, а заливане се понавља, по потреби, и више пута.

Површинска обрада

Приликом извођења радова око садње, површина у воћњаку се много угаси. Због тога се изводи површинска обрада. Уколико су само копани јамићи, а површина није обрађивана, само се, евентуално, око воћка обаве поправке „чинија“ које су направљене приликом садње садница.

Напомињемо да у завршне радове спада и успостављање књиге зване „Историја поља“, у коjoj по прво унесе план са свим подацима о сортама. Вођење ове књиге се наставља и све се бељу што се у воћњаку обавља. На овај начин прикупљени подаци могу да буду врло корисни за спровођење агро и помотехничких захвата.
Сл. 81 – Деталь современного виноградникового засаживания яблони
АГРОТЕХНИКА И ПОМОТЕХНИКА У ГАЈЕЊУ ВОЂАКА

РЕЗИДБА ВОЂАКА

Одавно је уочена велика корист, која се постиже резидбом у гајењу вођака. Она је практикована у давној пропислисти, али је описана тек у доба римске и грчко-римске цивилизације. Резидба је с осталим захватима у воћарству, усавршавана и прилагођавана биолошким особинама, не само врсту него и сорте вођака. Она и данас представља сложену вештину и врло одговорну операцију у програму производње вођака. Резидбом се могу постићи успешни резултати уколико се познају основни закони физиологије. Врло је значајна мера у остваривању рентабилне производње, јер њен утицај на вођке почиње од њеног првог извођења. Описи различитих система резидбе садрже искуства и знања о резидби за формирање круне и регулисање плодоношења вођака.

Проучавање резидбе вођака више се односило на њихов период узгоја (формирање облика) него у редовној производњи. У савременој производњи се резидба проучава и у периоду родности. Ова су проучавања комплексна, јер обухватају утицаје многобројних чинилаца.

Однос вођака према резидби је условљен временским периодом у коме се изводи. Уколико се она изводи у зимском периоду, вођке у наредној вегетацији се развијају уједначено, подједнако: лист, леторасти и родне границе.

Од интензивности резидбе зависи уједначеност пораста вегетативне масе и формирање репродуктивних органа.

Резидба вођака изазива промене у физиолошкој равнотежи. Орезана вођка у вегетацији има дуже леторасте, крупије лишеће, а и многи се пупољци развијају у продужне леторасти. Тако се издужеју мајски букетићи чиме се повећава родни потенцијал. Осим тога, многи спавајући пупољци се активирају, па су у наредној вегетацији и родни.
Утицај резидбе се испољава осим на повећање вегетативне масе, и на друге начине. Тако се њен позитиван утицај одржава на повећану оплодњу цветова, одржавање плодова и повећање њихове масе, што резултира већом родношћу и квалитетом плодова. Велики је њен утицај на повећање родних граници, на којима се формира и више цветних пупољака. Према неким ауторима, а и наше искуство је слично, резидба има позитиван утицај и на здравствено стање воћака.

То су само неки утицаји који се неједнако јављају код воћака. У томе се специфично понашају и сорте појединачних врста воћака. Свакако, то условљава биолошку природу врсте, односно сорте воћака што се види у морфолошким особинама репродуктивних органа, као и њиховом формирању, од чега зависи њихова способност за доношење рода.

ОСОБЕНОСТИ РЕЗИДБЕ У ОСНОВНИМ ПЕРИОДИМА ЖИВОТА воћАКА

Као што је истакнуто, у животу сваке воћке постоје три основна периода: период растења, период родности и период старења. Разуме се, између ова три периода не постоје никакве оштре и јасне границе. Наведени периоди у животном циклусу воћака захтевају и неједнаку резидбу, не само по интензитету, већ и по времену извођења и у складу са наследним основом сваке врсте воћака.

У првом периоду – периоду рас тења, резидба се врло мало изводи. Њен интензитет се повећава са старошћу. У овом периоду тешко се може препоручити стандард за њену примену. Велике су специфичности по врстама. Основно је правило да се у овом периоду воћке не орезују или се сасвим мало орезују. Она се састоји у пророђивању граници ради регулисања њиховог правилног развоја. Само се изузетно лекторасти скраћују. Треба, уколико је то могуће, избегавати њихово прекраћивање, наручито првих година, док траје обликовање круне. Лектораст који треба прекратити, боље је превести на најближу граничу где би лектораст требало да се прекрати.

У другом периоду – периоду родности воћака, могу се разликовати потпериоди почетне, пуне и опадајуће родности. Резидбом воћака у овом периоду се настоји да се задржи што дуже њихово трајање. У овом периоду резидба треба да је у складу с родним границама и родним дрветом сваке врсте, односно сорте воћака. Свакако, за њено практично извођење потребно је узeti у обзир низ чинилаца: подлогу, сорту, примењену агротехнику, здравствено стање, висину и квалитет рода, намену итд. Ова је резидба основа у регулисању раста и плодношења и захтева солидно познавање физиолошких процеса.

У овом периоду нужно је да се установи равнотежа између коренове мреже и надземног дела – круне. Од степена изведене резидбе зависи у којој је мери поремећена поменута равнотежа. Ако се на стаблима исте врсте воћака, али неједнаке бујности:
Сл. 82 — Физиолошке последице различито орезаних гранчица: 1) неорезан лепораси — у ведењацији се дотично сви ђуђољци развијају у лепораси, 2) лепораси — гранчица, врло мало орезана, у ведењацији се развио исти број ђуђољака као у (1) с јим, шта су они развијенији, 3) гранчица скараћена на једну шестину, у ведењацији се развијало шеснаест бујних (појединачно у ривори) лепораса и 4) гранчица скараћена на једну третину, из ђуђољака у ведењацији се развило четири бујна лепораса
jabuka – zlatni delišće na podlogama sejanca i M 9, na isti način primeni rezidba, tada je njihova fiziološka ravnosjeka korisnog mreža i podzemnog dela nejednako poručenja. Kao što će ona biti nejednako poručena i u slučaju kad se na isti način oрезују две сорте jabuke, nejedнаке бујности (златни делишес и старкримсон). Могу се очекивати исте физиолошки последице резидбе само онда ako je у одређеном локалитету (еколошкој средини) исто земљиште, подлога, сорта, облик круне, старост, примењена техника и технологија гајења.

Као последица примењене резидбе дешавају се следећи физиолошки поређаји:

1. кратка резидба на бујним стаблима утиче на повећање виталности и успорава ступање воћке у род;
2. кратка резидба на слабобујним стаблима повећава бујност и редовну родност;
3. дуга резидба на бујним стаблима смањује бујност и убрзава ступање на род;
4. дуга резидба слабобујних стабала смањује бујност и води изнуривању стабала.

Између овако формулисаних правила могуће су многе комбинације, што значи, да се у пракси њима треба руководити. Резидба треба да je прилагођена свему што води повећању бујности одређеног стабла воћака, као и свему што води смањеноj бујности воћака, па се мора и интензитет резидбе прилагођавати. У првом случају изводити краћу резидбу, а у другом, дужу.

Сл. 83 – Ручна резидба
Резидба воћака у периоду пуне родности је врло специфична, готово свака воћка тражи појединачна решења.

У тренутном периоду — периоду старења, који се карактерише јако смањењем прирастањем дужих границица, нарочито у броју и дужини, знатно се повећава број кратких родних границица. Ова појава се објашњава конкурентним односом чинилаца вегетације који се завршава масовним сушењем границица, чак и дебљих грана. Преређивање круне сушењем грана и границица је праћено појавом водопија из спавајућих пупољака скелетних грана.

То значи да се у тренутном периоду јавља преређивање круне, оглобавањем дугих грана носилаца родних границица. Цветни пупољци се формирају претежно на вршном делу грана и на периферији круне. То је последња фаза живота воћака, у којој њихово даље гајење постаје економски неисплативо. Зато старање о воћкама у тренутном периоду треба да почне благовремено како би оне биле економски исплативе. Овоме значајно доприноси одговарајућа резидба прилагођена врстама воћака.

Напомињемо да је важно приликом извођења резидбе воћака у појединим периодима, разликовати утицаје других чинилаца (климе, земљишта, примењене технике и технологије гајења).

РЕЗИДБА ВОЋАКА ПО НАМЕНИ

Циљна резидба воћака

Од почетка извођења, резидба је употребљавала поступке у појединим етапама животног циклуса. То значи да је имала и одређени циљ. На тај начин се издиференирали резидба воћака у: угледном периоду (период вегетативног развоја), периоду пуне развијености и периоду смањеног вегетативног прирasta воћака. Како су ови периоди по дужини трајања и њиховом почетку за врсте воћака специфични, било је потребно да се резидба класификује по њеној намени извођења, а затим и према групи воћака сврстаних како то чини примерошћа класификација воћака.

Оцењујемо да резидбу у савременом гајењу воћака треба прилагођавати одређеној намени, односно циљу и сврхи. Према томе, у воћарској прaksi се разликују резидбе:

- у производњи садница и калемграница воћака;
- за обликовање (формирање) круне воћака;
- за род (регулисање родности);
- за обнову (регенерацију) старих и изнурених воћака;
- за одржавање доброг здравственог стања воћака;
- за промену сорте (прекалемљивање) воћака.
ВРЕМЕ ИЗВОЂЕЊА РЕЗИДБЕ ВОЂАКА

Вођке се у току године орезују у периоду мировања (биолошког и еколошког) и периоду вегетације. С тим у вези је уобичајена и подела резидбе на: зимску (резидбу на зрело) и летњу (резидбу на зелено). Обе ове резидбе су врло значајне за многие животне манифестације сваке вођке.

О резидби на зрело биће више речи у делу који се односи на регулисање родности вођака.

Неколико општих констатација ће се дати о резидби која се обавља у току вегетације – зеленој резиђби:
- њоме се регулише вегетација, посматрају се развој гранчица у доњем делу основних грана, да ове, нарочито кад се ради о бујним сортама, не би остале празне;
- уклањањем једног дела и броја летораста постиже се јачи притисак сокова у остављени део грана и гранчица, па је у току вегетације и исхране боља, јер има више хранљивих материја које чине леторасте отпорнијим према негативним температурарама;
- поред изправљања грешака учињених зимском резидбом, могуће је да се утиче на стварање родних гранчица;
- избегнута је појава некрозе (брескава);
- омогућује се економичније извођење резидбе у фази мировања (зимске);
- њоме се убрзава формирање крупне нарочито код неких врста вођака (брескава);
- скраћује се период младалачке неродности (узајни период) и повећава економски ефект.
- Извођење зелене резидбе треба да је у складу са виталношћу, условима успевања и примењеном технологијом гајења.

АЛАТ, ПРИБОР И МАШИНЕ ЗА ИЗВОЂЕЊЕ РЕЗИДБЕ ВОЂАКА

Резидба вођака, њено техничко извођење могуће је на више начина: ручно, полумеханизовано и механизовано.

Најједноставније је, а и најсукобље ако се резидба обавља ручно. Са ста новишта њене физиолошке основе таква резидба је најбоља. Извођач ове резидбе је у могућности да контролише начин орезивања сваке гране и гранчице.

Полумеханизовано извођење резидбе вођака са пневматским маказама изводи се на више начина: са и без платформе за обављање резидбе као и са специјалним корпама којима се по потреби подешавају висина и положај. Најједноставније је извођење ако је радни део (маказе) прикључен дугачким цревима за компресор. То су обично два црева са двоје маказа којима управља по један радник. На маказама, ножеви могу
бити двојаки – с једним сечивом и са два сечива. Боље су са два сечива јер не повређују ткиво гране. Компресор може да има сопствени погон или је преносив (прикључује се на трактор). Друга варијанта ове резидбе је уз примену платформи – вучних или са сопственим погоном. На платформама је све уграђено: компресор са одговарајућом дужином прево и пневматским маказама.

Механизовано обављање резидбе је могуће специјалним машинама. Радни део ових машина је у облику циркулара (куружни) и једног ножа који подсећа на нож косачице. Први уређај ради тако што се два диска (циркулара) крећу један према другом. Други уређај је тако подешен да му се радни део креће праволинијски – лево-десно, управо као код косачице. Уколико се од узгојног периода примењују уређаји за механизовану резидбу, континуирано и даље у периоду експлоатације, последице ове резидбе нису такве, као у случају када се она повремено изводи. Потпуно механизована резидба воћака има мањакавости. Ипак, највећи њен недостатак је што се обавља резидба свих грана у једној равни, њоме се остављају равне површине што доводи до стварања компактних круна, без довољно светлости.

За ручно извођење резидбе воћака са већом (развијенијом) круном од неколико метара, (5 и више) потребне су прикладне мердевине. Мердевине могу бити

Сл. 84 – Полумеханизована резидба воћака применом пневматских маказа, компресор носи бракшор. У горњем делу слике, излевајућ маказа
различитих димензија, боље су оне мањих димензија, јер се са њима лакше манипулише. За воћке које се гаје са крепном у једној равни могу се користити мердевине, платформе и најбољи елиптични сталци (степенице) око 1 m. За ручно извођење резидбе потребно је обезбедити маказе, ручне тестерице, моторну тестеру, ножеве кресаче, калем-восак ради премазивања пресека деблних грана, мердевине различих величина, сталке веће и мање. У сваком конкретном газдинству обезбеђује се овај ситни инвентар према стварним потребама.

Приликом подумеханизованог извођења резидбе потребне су пнеуматске маказе, платформа, компресор.

Механизована резидба тражи за то посебне машине, како је већ наглашено.

Врло је добро да се граничнице, после резидбе уклоне и изнесу из воћнака. One могу у воћнаку и да се самељу (издробе). За ту сврху постоје специјалне машине. После се издробљена маса заоре и у земљишту распада. На овај начин се земљиште обогаћује минералним материјама, због чега је ова радња корисна, а неповољне последице нису уочене. Према сазнањима, штетне последице, на овај начин унесене масе, настају само од брескве. Познато је да код брескве не долази до преплитања коренове мреже. Kod ове врсте воћака, изгледа, постоје неке материје још недовољно испитане, којих нема у другим воћкама.

За добру организацију резидбе воћака потребно је да се испланирају потребе у прибору, алату, машинама и материјалу. С тим у вези је неопходно познавање норми: за једног резача број стабала, или, колико резача је потребно по ћа. У периоду формирања круне у првој вегетацији, по ћа је потребно 2–3 радника, у другој години у току лета 4–5 радника и у периоду мировања, исто толико; у трећој вегетацији за зелену резидбу – 6 до 7 радника и у четвртој вегетацији 7–8 радника. Ово су просечне оријентационе вредности. Резидба одраслих стабала воћака свакако јесложенија и захтева више или мање радника по ћа, често зависи од узгојног облика, старости,
Оштетење цвета бреске јошим јролећним мразевима: шучка (десно) и цвећних елемената (лево)

Оштетење дебла кајсије од зимских мразева:
1-камбијума;
2-коре са йовришним слојем дрвећа;
3-неоштетено дебло;
4-оштетени сржни део гране
Сиојно месио љодлоће и йлемке:
једна од сиојних манифестација инковашивилности (лево);
уздухни пресек сиојног месиа кајсије и љодлоће дамасценке 1869 (десно)

Ушница љодлоће на бујности сориће сиенли: Пикси (лево) и Цанарика (десно)
Декоративна кордунца код јабуке

Буше - Томасова круна код јрешће
Калифорнијска ваза код бреске

Круна у облику слова V код бреске
проређености, интензитета резидбе. Сви чиниоци, који утичу на примену резидбе морају се узeti у обзир. Оријентацијони број резача по ња је око 12–15.

КРУНЕ ВОЂАКА

Према својој наследној основи вођке се разликују у погледу наклоноста ка формирању пираимдалне или котласте крузе, са израженом вођницом или без ње; ретке или густе крузе и низа прелаза између ових двеју крајности које су наведене.

У ранијој прaksi је врло често коришћена склоност вођака, па је формирана круна вођака, које су гајене у складу са израженом тенденцијом вођака за неком од наведених особина, или је пак више њих комбиновано.

Данис, у савременој воћарској производњи, срећемо се са великим бројем облика круна вођака. Разликујемо два основна система по којима се вођке гаје. Један је, кад се вођке гаје са круном у простору, а други, чије су круне у једној равни. И у једном и у другом систему постоји више облика круна. Круне, чије је гране налазе у простору (на све стране) више се приближавају природном облику, док се круне са гранама у једној равни не налазе у природи, већ су, углавном, резултат деловања човека – то су вештачки облици. Од многих вођака могу да се формирају разне фигуре – изведени облици. Ови облици у производној прaksi немају значај, већ су интересантни за аматере због декоративности, који њима улепшавају окупаче. Велики економски значај имају круне у једној равни. Човек усмерава развој грана у правцу редова стварајући „живи зид“ односно „живе ограде“. Постоји могућност за формирање многих облика круне са гранама у једној равни. У томе неке врсте вођака, чак и сорте, имају предност над другим.

После садења садишица вођака на стално место, међу првим пословима, које на њима треба урадити, јесте резидба. У ствари, већ тада почиње да се формира њихова круна. Период узгоја је онај период у животу вођака, кад оне не доносе род или не толики да би вредност плодова била већа од трошкова производње. У овом периоду значајно је неколико радања: формирање круне, односно, резидба на облику, ђубрење, одржавање најповољнијег режима влажности у земљишту, заштита и др.

Овде ће бити речи о резидби у фази формирања круне. Узгојна резидба се поклапа са периодом развоја вођака у којем преовладава интензивни вегетативни пораст. Због тога је нужно да се познају физиолошке промене које се резидбом изазвају. Ако се примењује кратка резидба, долази до успоравања ступања вођака на род, а неповољно се одржава и потпуно изостављена резидба. Потпуно изостављање резидбе у овом периоду може неповољно да се одрази на пораст вођцице и на њену каснују продуктивност.
<table>
<thead>
<tr>
<th>распоред грана (у простору)</th>
<th>круна</th>
<th>подлога</th>
</tr>
</thead>
<tbody>
<tr>
<td>у свим правцима</td>
<td>1. пирамидална</td>
<td>генеративна</td>
</tr>
<tr>
<td></td>
<td>2. побољшано пирамидална</td>
<td>генеративна</td>
</tr>
<tr>
<td></td>
<td>3. лидерна (комбинована, америчка)</td>
<td>генеративна</td>
</tr>
<tr>
<td></td>
<td>4. копласта (ваза, округласта, „француска“)</td>
<td>генеративна, вегетативна</td>
</tr>
<tr>
<td></td>
<td>5. етажна</td>
<td>генеративна, вегетативна</td>
</tr>
<tr>
<td></td>
<td>6. вретенасто жбуно</td>
<td>генеративна, вегетативна</td>
</tr>
<tr>
<td></td>
<td>7. витко вретено (Schlanke Spindel)</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>8. илар</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>9. у облику „V“, у правцу на редове</td>
<td>генеративна, вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>10. модификован (уска пирамида) и сл.</td>
<td>генеративна, вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>11. хайтак (Hytec) са змијоликом вођнишем</td>
<td>генеративна, вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>12. жбунаста ваза</td>
<td>генеративна, сопствен корен</td>
</tr>
<tr>
<td></td>
<td>13. жбуна</td>
<td>сопствен корен</td>
</tr>
<tr>
<td></td>
<td>14. пергола</td>
<td>генеративна, сопствен корен</td>
</tr>
<tr>
<td>у једном правцу (у једној равни)</td>
<td>1. правилна палмета са косим гранама</td>
<td>генеративна, вегетативна, (бујна, средње бујна)</td>
</tr>
<tr>
<td></td>
<td>2. неправилна палмета са косим гранама</td>
<td>вегетативна, средње и слабобујна</td>
</tr>
<tr>
<td></td>
<td>3. лепак</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>4. тома – буше</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>5. —њу-тајме</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>6. маршан</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>7. хоризонтална кордунцица</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>8. вертикална кордунцица</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>9. виласта палмета</td>
<td>генеративна, вегетативна, (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>10. положен кордунцица</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>11. кордунцица у облику слова „U“ и „V“</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>12. коса кордунцица</td>
<td>вегетативна (слабобујна)</td>
</tr>
<tr>
<td></td>
<td>13. варијева палмета</td>
<td>вегетативна (слабобујна)</td>
</tr>
</tbody>
</table>

При обављању резидбе у периоду узгоја, треба имати на уму (посматрана само једна грана) да ће се развијати бујније она грана, која затвара оштрији угао са вођнишем, затим, грана, која је више по положају, онда, грана која је дебља и напослетку, грана, која се резидбом остави дужа.

На крају орезаној грани већи број пунољака се развија у леторасте, што значи да се одлаже почетак периода родности. Због тога се не препоручује скраћивање
летораста. Леторасти се прекраћују изузетно, када се жели форсирање њиховог разграђивања. Умерено скраћивање продужних летораста омогућује стварање довољног броја секундарних грана, које ће на себи носити родно дрво, правилно распоређено по целој дужини.

У непрестаном леторастима је несметана циркулација сокова. То утиче вероватно и на ранги почетак родности. Због тога је у узгојном периоду нужно да се приладивом резидбом утиче на вегетативни пораст и рано плодоношење. У ову сврху примењује се усекавање пораста појединих грана под одређене углове и савијање једног броја летораста, не врхом ка земљи, него водоравно. Основне гране и оне које чине скелет круне треба усмерити да се развијају под углом од 45–65°, у односу на замишљену осу. Леторasti и граници које на себи носе родне границе, треба да се развијају више хоризонтално.

Сл. 86 – Гранчица (1) савијена у четири разна положаја (2). У шоку вегетације може да се очекује нова вегетативна маса у зависности од угла Јед који је граница (1) савијена
Све што је овде речено може да се односи и на све облике круна воћа.
Сл. 88—Помоћна средства у обликовању купе воћака: развођење и савиђање грана ири обликовању јажмеше са косим гранама, са армадуrom од бешенских стубова и жице (1), коришћење шарке или слично за Јошерчана јавења ради развођења основних грана (2 и 3), унакрсно Јосељање шајова ради развођења грана, (4) Јосељање шајова Јо који се развође гране, углавном Јеово срао.
РЕЗИДБА ВОЋАКА ЗА ОБЛИК КРУНЕ

РЕЗИДБА ЈАБУКЕ ЗА ОБЛИК КРУНЕ

У масовнијем тајењу јабуке најчешће се формирају круне код сорти на генеративној подлози: ваза, пирамида и правилна палмета са косим гранама. На вегетативним подлогама формирају се круне: витко вретено, вертикална и хоризонтална кордунцена, једнострана и двострана лепаж, вретенасти жбун и многи декоративни облици круне.

Круна код јабуке је у простору (пирамидална, котласта, вретенасти жбун, витко вретено и др.) и у једној равни - шпалири (жива ограда). Најчешће је то палмета - коса и хоризонтална, лепаж - круна, тома-буше, маршан и др.

Код свих облика круне заједничко је да им се основне гране најбоље развијају под углом од 45°. При оваквом развоју се постиже најбоља веза основне гране с централном граном (деблом), ракље су отпорније према негативним температурама. Доње гране по положају треба да се развијају под мањим углом у односу на горње; свака основна грана било којег облика круне, индивидуално пос-

Сл. 89 – Круна јабуке: хоризонтална валмента

Сл. 90 – Круна јабуке: вретенасти жбун
матрана, има готово идентичан развој, разграњава се и остављају се наизменично гране тренег реда; прва на мањем растојању (око 30 cm) од централне гране (осовине), друга на око 50–80 cm у зависности од бујности, сортних особина и особина подлоге. Свакако да су велики утицаји и других чинилаца (земљиште и др.).

Резидба у циљу формирања круне јабуке се поклапа са узутином периодом у коме преовладава вегетативни прираст. Отуда важи правило да се у овом периоду резидба сведе на најмању меру. Она се ипак изводи пошто се њоме коригује приоритет по-раст и упливше на развој потребних грана и гранчица. Није препоручиво да се од укупне годишње вегетативне масе резидбом уклони више од 25%.

При обављању резидбе јабуке у периоду узгоја, треба се придржавати неких законитости: да гране, које са вертикалном осом заклапају мања угло, брже раствр и развијају се, као и грана која је виша по положају, дебља грана и грана која се дуже ореже. На краће орезаној грани, више путољака развије се у леторасте. Зависно од тога под којим углом раствр грана, као и од дужине на коју се прекраћује у наредној вегетацији, неједнако се развијају леторасти. С тим у вези настаје бржа или спорије трансформације лисних у цветне путољке, односно, од тога зависи и формирање родних грана, односно родног дрвета.

Леторасти се јаче прекраћују са циљем да се изазове њихово разграњавање. Умерено скраћивање летораста омогућује стварање секундарних грана које треба да формирају родно дрво и родне гранчице.

На непрекраћеним леторастима је несметана циркулација сокова, што омогућава брже формирање цветних путољака, односно ранији почетак родности. Због тога је у узутином периоду нужно да се применом прикладне резидбе утиче на вегетативни пораст и рано плодоносење.
Сл. 92 – Двострана лепаж круна јабуке

За ову сврху се усмеравају гране да се развијају под одређеним углом, уз савијање једног броја летораста више хоризонтално. Основне гране или оне које чине скелет усмерити под углом од 45° до 65° у односу на замишљену осу, а све остале треба да се развијају више хоризонтално.

Ово су опште законитости и односе се на све облике круне.

Сл. 93 – Марирана круна јабуке
У досад публикованој литеатури из ове области, формирање одређених облика крнуне, као што су: пирамидална, контрастна, браздна са косим гранима, лептатова, моно-бушев, маршалове, корупица и ур. је често детаљно описивано, па ће у овој публикацији бити приказано само шематски.

Насупрот томе, детаљно ће се описати, а такође и шематски приказати формирање крнуне, које су релативно новије у вођарској прaksi, као што су: пилар, витко вретено и хајтек.

Пилар крнуне

Пилар крнуне код јабуке, односно, гајење сорти јабуке по систему пилар у нас, није нашло широку примену, не као оригинални начин. Често је замењиван уз неке модификације другим, а најчешће витким вретеном. Неки аутори су истицали да за класичан начин гајења јабуке по пилар систему није потребан наслон. Међутим, у неким земљама по овом систему гаје јабуку уз притку. Чак је и сам систем по томе добио име. „Пилар” у преводу значи притка - колац. Због тога смо мислили да је за пилар крнуну треба да налази наслон. Слабобујн сво је на мањеобућим подлогама тешко би се успешно гајило, већ је потребна притка за сваку воћку или наслон од стубова и жице. Вероватно су били пукати да се употребе за гајење по пилар систему бујније сорте и бујније подлоге. У таквим комбинацијама за пилар систем гајења јабуке, није била потребна никаква потпора. Пилар крнуне је модификовања вертикална корупица, чак и други, мањи облици курне који имају основне гране у простору. Основна разлика ове крнуне у односу на друге јесте, што се на централној осовини налазе спирално поређани од 25–30 cm „родни чворови” – јединицу. Од бујности сорте зависи колико ће бити ових јединица – код слабобујних сорти на слабобујним подлогама њихов број је око 25–30. Код бујнихих
комбинација број се повећава и до око 45. У доњем делу круне су на већем растојању, како би се избегло засењивање. Дужина носача родних јединица износи у основи око половине растојања између воћница. Идући ка вршном делу круне, носеће гране родних јединица су краће, тако да облик круне има купаст облик.

Родне граничнице се формирају резидбом на чепове око 2 cm. Из чепова се формирају леторасти, које по потреби треба проређивати. Оне, који расту усправно треба уклонити, а оставити оне са стране и оне који расту врхом ка земљи. Нови леторасте ће после две године донети род. После доношења рода један број се орезује на око 2 cm, како би се вршила њихова замена и стабно обновљавае родне граничнице. У основи, орезују се и сви развијени леторасти. Повремено треба да се замене и гране носоци родних јединица. Кад пречник ових грана достигне 2/3 пречника на спојном месту, обавезно се уклања.

Пилар систем омогућује високи принос. У шестој години око 60 t по ha. Овако високи приноси су могући пре свега због великог броја воћака по једном ha, и до 3,000 стабала. Осим тога, мањи су и трошкови производње, уз редовну родност доброг квалитета плодова.

Сл. 95 - Устойчив корупниц (pillar): а, б, в и г прве године, е и ф друге године. Доле, комбинација једноредног и вишередног пилара
За гајење јабуке по пилар систему користе се једногодишње саднице. Превремене гранчице на садницама, ако их има, треба оставити изnad 40–50 cm. Овакве саднице се не прекраћују. Саднице без превремених гранчица се прекраћују на 80–90 cm. У вегетацији се уклањају леторасти који конкуришу вођици, затим и они који су сувишни, односно, који нису одређени за носиоце „родних јединица”. Следеће године се леторасти не скраћују, само се проређују. Наредних година слично се поступа. Све развијене гранчице се уклањају.

Овај систем има и недостатака. Пре свега, тешко је успоставити равнотежу између родности и вегетативне масе, затим доста је скупо подизање (наслон и др.). Одржавање крупне захтева солидно познавање физиолошких процеса.

 Вође се могу гајити и у више редова. Због испољених недостатака, нисмо за ту варијант гајења вођака.

Витко вретено (Schlanke Spindel)

Витко вретено је облик крупне код сорти јабуке, претежно у комбинацији – слабобујка сорта и подлога. То је круна у простору, у основи шира, са купастим изгледом. Родни потенцијал чини родно дрво са родним гранчицама од 3 до 4 године. Основне гране – родно дрво чине 20–25 grana спирално поређаних на растојању у доњем делу 20 cm и од основе око 70–80 cm. У горњем делу крупне дужина основних грана се смањује.

За садњу се користе једногодишње саднице. Искуство је показало да се добија уједначенна вегетативна маса ако се саднице орежу на 70–90 cm, према бујности сорте и подлоге.

Саднице са превременим гранчицама се такође орезују на висину према сорти 70–90 cm. Превремене гранчице испод 30–40 cm до основе се уклоне, а остале се не орезују. У току вегетације се при основи орезују сви развијени леторасти. Најежиће се ореже летораст који конкурише вођица. Овом резидбом се прореде и леторasti koji су развијени, као и они који расти под мањим углом од 65–70°. У току вегетације треба још да се равномерно развију родне гранчице дуж основних грана, извођењем зелене резидбе, односно пинцирањем.

Друге године се зимском резидбом изврше до- датне корекциje – одстрањују се развијени леторасти, они, који ометају развој једини другима. Вођица треба слободно да се развија без конкурентских летораста.

Једногодишњи леторasti се не орезују.

Треће године и наредних година, посебно об- ратити пажњу на вођицу. По правилу, њу треба заменити превођењем на доњи летораст. Леторасте, који при врху
расту бујно, треба у основи орезати. У доњем делу кRUNе, због засењивања, леторасте такође треба проредити. Препоручује се орезивање једног броја летораста старијих од 3 године, на 2-3 пуноља, ради обнове родних граница.

Резидбом за род треба задржати облик кRUNе. То се постиже правилном физиолошком равнотежом између родности и вегетативног пораста. По правилу у кRUNи треба да се налази по 1/3 летораста старих 1, 2 и 3 године. Доњи делови кRUNе не смеју бити засењени. Резидбом се уклањају и старије гране, као и једногодишњи леторасти при врhu.

Сл. 97-1 – Вишко врелоно: 1 – садње са Јрве временим границама после садње; 2 – садње без Јрве времених граница; 3 – веоља после Јрве вегетације: а – Јре резиџбе, б – Јреле резиџбе
Сл. 97-2 – 4 – воћнице јошле друге вегетације: а – пре резибре, б – јошле резибре;
5 – воћнице јошле пете вегетације: а – пре резибре, б – јошле резибре
Сл. 97-3 - 6 - већица јошле четврте вегетације: а - пре резиже, б - јошле резиже; 7 - излед већица бугајних сорти јошле друге вегетације: а - пре резиже, б - јошле резиже
У унутрашњем делу круне се уклањају или сасвим, или се проређују граничице – леторасти.
У неким земљама је заступљено модификовано витко вретено (северноходанског) Schmitz-Hübsch варијанта. То значи да је класичан систем узгоја јабуке, па и крушке, витко вретено, први пут нашао примену у Холандији. Данас су у прaksi настали слични узгојни облици. Овај систем модификације је врло сличан вретенастом жбуну. Међутим, ипак, сам назив, „витко вретено“, је у основи нешто друго.
Наводи се да је витко вретено комбинација вретенастог жбуна и пилар система. Због тога се често, витко вретено поистовећује са пилар круном. Изгледа да је у прaksi то тако најчешће прихваћено.

Хајтек (Hytec) систем

У последњих десетак година овај систем је доминантан у једном делу САД. Његов творац Берит (Barritt) овај систем назива хибридним купастим дрветом. Представља модификацију вретенастог жбуна.

Слика 98 - Послабијак у формирању круне ћо хајтек систему: 1 - прво јочељак прве вегетације; 2 - на kraju друге вегетације; 3 - на kraju треће вегетације; 4, 5 и 6 - на kraju четврте, петте и шесте вегетације.
Важније карактеристике хајтек система су: висина стабла око 3 m; размак воћкица у реду је 1,2–1,8 m; а између редова 3,3–4,2 m; број воћака по ха је 1.235–2.223. Овај систем одликује змијолика вођица, чиме се смањује бујност, посебно се гранање, као и већа родна површина. На змијоликој вођици су спирално распоређене 4–6 основних грана. Гране у средишњем делу круне и при врху се мање бујности. Остварена је већа родност по ха.

Почетак формирања хајтек система почине садњем једногодишњих садница. Пожељне су саднице са превременим граничницама. Садница се скрати на око 25 см изнад највише превремене граничице. Нова вођица која се развија, савија се под углом од око 45°. Она се и наредних година савија, тад у супротном правцу, тако да вијуга као змија. Граничице, које треба да донесу род, одржавају се у хоризонталном положају. Оне се везују, или се на неки други начин задржавају у том положају. За ову сврху постоје поред везива, штипаљке, тегови или летвице са ракластим завршетком. За вођицу се користи мање развијени лестораст.

Као подлога се користи М 9 и М 26. За спур типове сорти користе се бујније подлоге. Обавезан је наслон од стубова и две жице.

Сл. 99 – Разна помагала за развођење основних грана као и за савијање грана
Кад се заврши формирање облика круне, резидба се изводи да би се одржавао купаст облик круне. Гране, које расту изван овог простора, се прекраћују. Горње 2/3 стабла се орезују, да круна има купаст облик. Гране, старе 5 и више година се сасвим

Сл. 100 — Разни декоративни облици круна код јабуке и др.: 1) усправна кордунција — А, коса кордунција — Б. (2) разни облици хоризонталне кордунције, (3) обично и дуго слово „U“ формирана — А и још један формирана — Б. (4) комбинација вертикалне и хоризонталне кордунције — А, белгијска кордунција — Б
уклањају, тако да се побољшава осветљеност круне. Као правило се примењује да све гране са пречником до 2/3 од пречника дебла на месту гдје се сплајују са вобицом, се сасвим уклањају. Препоручује се да се оставе патрљи од око 5–6 см, из којих треба да се развију нови леторасти ради замене.

Сл. 101 – Декоративни облици круне воћака – Јалмейа: хоризонтална Јалмейа са љушћеном формирања и димензијама, (2) хоризонтална Јалмейа са дугим гранама, (3 и 4) Вернерова Јалмейа, (5) Вернерова Јалмейа, почетак формирања са мерами
РЕЗИДБА КРУШКЕ ЗА ОБЛИК КРУНЕ

Крушка се може гајити као и јабука, у различим облицима круне, па и у оним најсложенијим, који су намењени у декоративне сврхе.

У масовној производњи круше, најбоље се формирају следећи облици круне: побољшана пирамидална круна, палмета са косим гранама, етажна круна, вертикална кордунцица или "њутажме" круна и др.

Напред описани општи принципи резидбе у циљу формирања круне код јабуке, могу се применити и код круше.

Сл. 102 – Схематски приказ формирања палмете с косим гранама (небравилне) код круше
Сл. 103 - Посењак у формирању љуравигалне круне
Сл. 104 – Пирамидална крона крушка

Сл. 105 – Неправилна йалмеша са косим гранама крушка
Сл. 106 – Хоризонтална йалмейа крушке

Сл. 107 – Лидерна круна (лево) и изменена лидерна (десно) крушка
РЕЗИДБА БРЕСКВЕ ЗА ОБЛИК КРУНЕ

Код брескве се успешно формирају круне: котласта (ваза), палмета с косим гранама, затим у облику слова„V”, цвета, са две основне гране, углавно на редове. Осим ових облика круне, бресква се гаји још и с нешто модификованим косом палметом, (формира само I спрат). За механизовану резидбу формира се посебан облик круне са мањим размаком 2–2,5 m x 3–3,5 m. Првих година се стабла мало орезују, усмеравањем развоја круне у правцу редова. Позната је и крона у облику вретена. То је пирамидална круна до 3 m висине. За ову круну је размак 2 x 3 m, или мање, у зависности од бујности сорте, подлоге и услова успевања. Ова крона је спична круни јабуке гајене уз колац — модификовани пилар начин гајења.

Бресква се одликује врло бујним порастом. Ова особеност се може успешно искористити да се брже формира круна и да бресква раније проводи. То значи, да од примењеног система резидбе брескве у младом узрасту зависи и дужина трајања младалачке бесплодности. Мада је период бесплодности брескве врло кратак, он може орезивањем и да се продужи. То се дешава када се од почетка примењује кратка резидба, која посепштује развој лепотаста по дужини.

Основни принцип којег се треба држати јесте да се бресква у току формирања крune дуже орезује. Доцније се скарањује: ако се дужине прве резидбе означи са 100, у
другој резидби треба да је 80, а у трећој 60. Уколико се стабло више оптерећује родом, утолико је резидба краћа. Сем тога, неопходно је оставити већи број секундарних грана.

Леторасти из претходне вегетације, уколико се не орезују, на њиховом доњем делу пупољци остају неразвијени. Ако су орезани на 4–5 пупољака, из свих ће се развијети леторасти. На слици се виде последице неједнаке дужине орезаних летораста. Треба у сваком конкретном случају применти прикладну резидбу, при чему се има на уму бујност стабла – бујнија се стабла дуже орезују. Слично се пошају и леторасти који су под различитим углom. Најбољи су леторасти под углом од 45°. Из таквих се летораста пупољци развијају целом дужином.

При формирању палмете са косим гранама, растојање између основних грана зависи од сорте, што се види из таблици бр. 48.

Таб. 48 – Оријентационо растојање између основних грана код палмете с косим гранама у зависности од бујности сорте

<table>
<thead>
<tr>
<th>бујност</th>
<th>висина дебла (cm)</th>
<th>растојање између грана</th>
<th>укупна висина (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>велика бујност (елберта)</td>
<td>60</td>
<td>120, 110, 90, 50</td>
<td>430</td>
</tr>
<tr>
<td>средња бујност (редхавен)</td>
<td>50</td>
<td>100, 90, 70, 40</td>
<td>350</td>
</tr>
<tr>
<td>мала бујност (халесова позна)</td>
<td>40</td>
<td>80, 70, 60, 30</td>
<td>280</td>
</tr>
</tbody>
</table>

Сл. 109 -1 – Почетак формирања правилне палмете с косим гранама код бреске: (1) лево раздваја прве резица, (2) резица у средини, (3) на крају дрве вежбајуцег, десно
Код вазе је неједнако растојање између серија грана, што зависи од бујности сорти.

Таб. 49 – Растојање између појединих серија грана код вазе и сорти различите бујности (у cm)

<table>
<thead>
<tr>
<th>бујност</th>
<th>висина дебла</th>
<th>растојање између серије грана (cm)</th>
<th>од основе до I серије грана</th>
<th>од I до II серије</th>
<th>од II до III серије</th>
</tr>
</thead>
<tbody>
<tr>
<td>велика (елберта)</td>
<td>70</td>
<td>50</td>
<td>120</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>средња (редхавен)</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>мала бујност (J.H. Hale)</td>
<td>50</td>
<td>30</td>
<td>70</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Висина стабла код ове крүне треба да је у складу с растојањем на којем су засађена стабла. И овде се мора узети у обзир корисно дејство светлости. Уколико је висина стабла већа од међуредног растојања, утолико је јаче засењивање.

![Схема формирања копласне крүне брекске: једнолоцница садница се скрсти на 70 cm од површине, иста садница на почетку друге веђа-
fhаније после садње на стазном месту (a)](image-url)
Сл. 110-2 – Схема формирања копласте круне бреске: волчица (б) са лепорасизма 1, 2 и 3, које ђребе равномерно распоредићи како се виђи на икрштежу (и и г)
Сл. 110-3 – Схема формирања копласте круне брекве: Формирање серије секундарних и шерицијарних грана, уршени (е и ф)
РЕБИ ОБЛИЦИ КРУНЕ БРЕСКВЕ

То је пирамидална (ушка пирамидална) круна до 3 m висине. Са овом круном је највећи број стабала по ња, пошто захтева и најмање растојање – просечно 2 x 3 m, или мање. Изгледа да се ова круна може дефинисати и неодређеним обликом круне. За њено формирање нема правилности у распореду грана. Гране су спирално поређане, а резидбом се ограничава пораст. Круна може бити различитих димензија. Бресква се одликује првих година бујним и брзим порастом. Осим тога, сви леторасти из претходне вегетације су родни. То значи, да се резидбом за облик круне изводи и резидба за род. Значајно је правилно успостављање равнотеже пораста вегетативне масе и родности.

РЕЗИДБА ШЉИВЕ ЗА ОБЛИК КРУНЕ

Шљива може да се гаји у разним облицима круне. У пантажном гајењу највише су заступљене круне: пирамидална, побољшана пирамидална са 3–4 основе гране, ваза и палмета са косим гранама.

Праћена резидбе у формирању облика круне јесте скраћивање једногодишњих садница. Даљи поступак је исти као и код других врста воћака. Највећа разлика између наведених облика круна је у растојању између основних грана на које утичу: подлога, сорта, услови успевања и др.

У табели бр. 50 су дате оријентационе вредности за растојање између основних грана код косе палмете за три сорте шљиве неједнаке бујности.

Таб. 50 – Растојање између спратова основних грана код косе палмете

<table>
<thead>
<tr>
<th>сорта</th>
<th>I и II</th>
<th>II и III</th>
<th>III и IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ана шпит</td>
<td>50–60</td>
<td>60–70</td>
<td>70–80</td>
</tr>
<tr>
<td>ложегача</td>
<td>60–70</td>
<td>70–80</td>
<td>80–90</td>
</tr>
<tr>
<td>италијанка</td>
<td>70–80</td>
<td>80–90</td>
<td>90–100</td>
</tr>
</tbody>
</table>
Растојање основних грана код пирамидалне круне је око 25–45 cm. Број основних грана је 5–7. Код побољшане пирамидалне круне увек је мањи број основних грана. Ваза је са 3–4 основне гране. Серија секундарних грана је као и код пирамидалне круне. Све остало је, при формирању ове круне, исто као код других врста воћака.

При извођењу резицибе младих стабала шљиве тежи се брзом формирању круне, како би се остварила у краћем року максимална производна површина. Ево неколико општих принципа који се односе на све облике круне. После прве вегетације

![Diagram of tree growth phases](image-url)

Сл. 112 – Фазе у обликовању Јабољишно-кожласне круне шљиве: 1) скраћивање ваншице, 2) у шоку вегетације, 3) изда изле резицибе, 4) у вегетацији, 5) изле резицибе, 6) у вегетацији и 7) три крају обликовано
развилио се по неколико летораста. За продужницу се оставља један, осим за вазу, који се орезује на висини од 50–80 cm, останући се не орезују. Наредне вегетације, зеленом резидбом се уклања летораст, који је у конкурентском односу са вођицом (продужницом), а на основним гранама се орезују и проређују леторасти. Наијачима се остављају леторasti лево и десно, као гране другог реда. У трећој години, пре почетка вегетације, ово се поново као у претходној години. То траје док се не постиgne жељени облик и висина. У текућој вегетацији, треће или четврте године се формирају родне границе. Неке родне границе, мање развијене, могу се оставити и неорезане, док оне јако развијене, сасвим у основи орезати, или их скратити на неколико пунољака из којих треба да се развију родне границе.

РЕЗИРБА КАЈСИЈЕ ЗА ОБЛИК КРУНЕ

Природни облик круне кајсије је округласт, с мањим изузетцима. Најчешћи облици круне кајсије у комерцијалним засадима су:

- модификована пирамидална круна,
- котласта круна,
- палмета (правилна) са косим гранама.

У зависности од жеља одгачивача, могу се гајити круне свих облика, па и оне које служе у декоративне сврхе.

Има аутора који сматрају да кајсији није потребно орезивати. За такву тврдњу нема научне основе. У неким земљама се она орезује врло слично брескви. При том се не испољавају никаква нежелисна дејства.

Бујан пораст кајсије у узгојном периоду се користи за њено временски краће формирање круне. Ова биолошка особеност је наметнула и принцип за резидбу, док траје формирање круне. Без обзира на форму круне, принцип је исти.

На тек засађеним садницима, пред почетак вегетације обавља се њихово прекрашивање. На одређеној висини дебла, којој се дода и висина са 5–6 пунољака, саднице се прекрате. У вегетацији се остави за поједине круне потребан број пунољака.

У другој години резидбом се врши мања корекција (проређивање, екстремно развијени леторасти се уклањају). Избегава се прекрашивање летораста за основне гране, осим вођице, коју треба прекратити. Практично, резидбом се уклања врло мало вегетативне масе.

Треће године резидб се изводи по истом принципу. Треба водити рачун да гране, ниже по положају, морају бити дуже од горњих. Само тако ће се одржати равнотежа у њиховој развијености. И ове године се продужница (основна) прекрашјује. Конкурентски леторасти, ако их има, у основи се орезују. Ситни и средње развијени леторасти се проређују, један број може да се прекрати ради формирања будућих родних граница.
У вегетацији исте године, препоручује се на продужницама, зеленом резидбом, одстрањивање свих конкурентских летораста. Осим тога и уклањање оних, који управно расту.

Сличан је поступак и даље, док се не постигне жељена висина. Резидбом после тога, одржава се висина превођењем продужнице на једну мање развијену граничницу.

РЕЗИДБА ТРЕШЊЕ ЗА ОБЛИК КРУНЕ

Облик круне код трешње, ако спонтано расте, без интервенције човека је пирамидалан, и то изразито пирамидалан. Постоје неке сорте трешње код којих се формира и округласта круна. Међутим, интервенцијом човека могу се формирати и разни облици круне у простору, и у једној равни. Чешће се трешња гаји са круном у простору, а ређе са круном у једној равни.

Честа круна код трешње гајење на савременим основама је: котласта, пирамидална и у последње време нека модификована палмета.

По обављеном садњи се на жељеној висини дебла орезују саднице. Најчешће та висина одређује облик круне, а од утицаја је и подлога — њена бујност, плодност земљишта и евентуална могућност механизоване бербе плодова. Висина дебла је нешто мања код котласте круне.

Некад се, а и данас понеко препоручује, млада стабла трешње нису орезивала. Мишљења смо, да нема бојазни од последица резидбе младих стабала трешње.

Резидба је знатно смањена самим тим, што трешња има ретку круну. У периоду узгоја треба водити рачуна да се резидбом правилно утиче на формирање круне, а то значи, да се све тање па и дебле граничне, које ометају правилан развој основних и других грана, у основи орежу и тако уклоне. Граничне са цветним пупољцима се резидбом остављају дуже или краће. Кратко се орезују уколико из њихових пупољака треба да се добије нов летораст ради попуњавања круне.

РЕЗИДБА ВИШЊЕ И МАРЕЛЕ ЗА ОБЛИК КРУНЕ

У природи је облик круне вишње и мареле округласт. Интервенцијом човека, постижу се различити облици круне. Ипак је најчешћа круна: котласта, коса палмета и вретенаста пирамида.

Висина дебла је око 60 cm, односно, за механизовану бербу од 80–100 cm.

Облици круне за вишњу и марелу се формирају по принципу који је већ изнет код других врста воћака.
РЕЗИДБА ОРАХА ЗА ОБЛИК КРУНЕ

Најчешћи облик круне који се код ораха формира је ваза – котласта круна, ређе округласта – пирамидална са 4-5 основних грана. Орах је воћка са израженом особином регенерације, што омогућава лако прилагођавање свим облицима круне и оним у једној равни „живе ограде“.

После садења садница на сталном месту, међу првим пословима које на њима треба урадити, је резидба. У ствари, већ тада се почиње са формирањем његове круне.

Летораси се прехрањују изузетно онда, када је потребно форсирање њиховог разграњавања. Умерено скраћивање продужних летораста омогућује стварање довољног броја секундарних грана, које ће на себи носити родно дрво правилно распоређено по целој дужини.

На непрекраћеним леторастима је несметана циркулација сокова, а самим тим и ранији почетак родности. Због тога је у узгојном периоду нужно да се применом прикладне резидбе утиче на вегетативни пораст и рано плодоношење. За ову сврху примењује се усмеравање пораста појединих грана под одређене углове. Основне гране и оне које
чине скелет крүне, треба усмерити да се развивају под углом од 45–65° у односу на замишљену осу. Леторасти и гранични, које на себи носе родне граничне, треба да се развивају више хоризонтално.
Све што је речено односи се на све облике крүне.

РЕЗИДБА ЛЕШНИКА ЗА ОБЛИК КРУНЕ

Међу значајнијим променама у процесу производње лешника свакако је напуштање жбуна и прелазак на стаблашице као узгојни облици са различитим облицима крүне. Најчешће је облик крүне ваза, али се не искључују и остали облици.
Могуће је да се од садница са подлогом С. colurnе, формира жбун са 3–4 основне гране, настале од исто толико садница, које треба засадити на сваком садном месту. Сматра се да је овај начин формирања облика релативно скуп и да нема оправдања.
У новоподигнутим засадима лешника све је више стабала с деблом од око 50–80 см и крным у облику вазе са 3–4 гране. На овај начин, леска почиње да се гаји у Европи, гаји се у САД – Орегону и Вашингтону. Многи аутори истичу да су, на овај начин, трошкови производње лешника мањи. Предности стаблашице над жбуном се могу овако дефинисати:
– стабла боље користе светлост,
– већа је продуктивност рада,
– могућа је максимална примена механизације,
– мањи су трошкови производње.
Према биолошкој природи лешник формира жбун. Због тога се некад давала предност овом облику крүне лешника. У Европи доминира жбун, облик гајења лешника или се формира садном садници, 3–4 саднице на једном месту. Лешник формира много изданака који повећавају жбун. Погрешно се приписују нека позитивна својства жбуну, а утврди су само привременог карактера. По неким ауторима жбун је роднији. Он је роднији само у првим годинама, јер је лешник на сопственом корену, па пре пророди. Међутим, овај облик гајења је са мањим бројем стабала по ха, и како се обрачун принос изврши по јединици површине, тада је принос мањи код жбуну него код стаблашица, наравно, ако је нежа сорта.
После 10–12 година жбун почиње да се због физиолошких промена у формирању светлних пупољка, другачије понаша у погледу родности и вегетативног пораста. Она да родност, смањује се виталност. Због тога се намеће потреба за интензивнијом производњом, а то значи и већим трошковима производње. Поред тога, и примена механизоване бербе је отежана, што поскупљује производњу плодова.
РЕЗИДБА БАДЕМА ЗА ОБЛИК КРУНЕ

Бадем се прилагођава разним облицима круне. Најчешће су: класична (окружаста или пирамидална) и круна у једној равни – палмета са косим гранама. Формирање ових облика је на исти начин као и код других вођака.

РЕЗИДБА КЕСТЕНА ЗА ОБЛИК КРУНЕ

Код нас су скромна искуства са гајењем кестена. Наша практична знања о облицима круне кестена су недовољна. Намена гајења кестена, опредељује одговарајући облик круне. Треба водити рачуна да је круна довољно осветљена. За стабла у дрворедима, односно мањим групама и код стабала солитера, формира се округласт круна. Међутим, код кестена гајеног ради производње дрвне масе, круна се спонтано формира.

Кестен, гајен у плантажи, мора да је обликован на истим принципима као и друге вођке. У том смислу он дозвољава врло интензивне облике круне.

Резидба кестена ради обликовања круне је усаглашена према желењом типу. У току формирања круне, важи као правило, да се млада стабла што мање орезују, тј. да се само обликују, остављајући у почетку онолико број грана, колико је потребно за
тај облик крнне. Све непотребне гране се уклањају у основи. Неке гране преводе се на гранчице трећег реда. Са старошћу, појачава се интензитет резидбе, а са ступањем у период родности, резидба је још интензивнија.

РЕЗИДБА МАЛИНЕ

Карактеристично је за малину да јој надземни део живи само две године. Изданак се развија у првој години, а род доноси у другој години. По обављеној берби,

![Diagram of apple pruned shapes](image)

Сл. 117 – Обликовање крнне рибизле: а) пре вегетације и посед вегетације. У доњем реду: орезана садица б) на крају вегетације и десно орезана воћница на крају вегетације. Доле, формирани жебун рибизле.
он се осуши. Леторасти су најроднији на средњем делу. Само неке сорте имају на врховима летораста по који плод. Осим тога, малина даје велики број изданака. Ово треба знати због тога, да би се резидба извела правилно јер те особености одређују начин орезивања малине.

Слика 118 – Разни начини размења малине
С обзиром на велики број изданака који трају само две године, одређује се и број, који је нужан за принос идуће године.

У првој години, по сађењу, избија мали број изданака, а у наредној години избије више њих, који се у почетку вегетације проређују. Проређивање зелених ластара има за циљ да се појача пораст оних, који се остављају да донесу род идуће године.

Овом приликом могу се остављати леторости и за производњу садница (ако се врши производња садница). Оставља се онолико летораста колико се сматра да је довољно за обезбеђење приноса. Колико ће летораста остати, зависи од бујности сорте, положаја и плодности земљишта, као и од система узгоја и размака садње. При већем размаку може се оставити већи број изданака у сваком жбуну.

Слика 119 – Наслон за гајење малине
Сл. 120 – Фазе у обликовању круна одрзда: 1) орезана садница, 2) иста већина на крају вегетације, 3) на крају вегетације друге године, и 4) обликована круна одрзда

Сл. 121 – Схемајски приказ гајења кућине (1 и 2) и резиџбе кућине (3) пре резиџбе и после резиџбе (4)
РЕЗИДБА АКТИНИДИЈЕ ЗА ОБЛИК КРУНЕ

Формирање облика крune актинидије почиње у првој години вегетације. Оно се састоји у одабирању најразвијенијег летораста за продужницу (вођицу). Он се привезује за притку и то је будуће дебло. Остали леторасти се пицирају на неколико листова ради стварања асимилат. Друге године, пициране леторасте у основи орезати. Летораст, остављен за дебло се прекрати на жељену висину, око 100–120 см. Уколико летораст нема жељену висину, не орезује се. Чак се препоручује углаживање – орезивање у основи, како би се добило довољно развијен летораст од којег би се формирало дебло за све облике. У вегетацији се, после првог прекраћивања вођице (дебла) развија више летораста. Оставља се три: један за продужницу, а две за будуће основне гране. Остали леторасти се уклањају резидбом.

Пре почетка вегетације, (треће године) резидбом почињу да се формирају прве родне гране, које у наредној години доносе род. Родне гране остају 3–4 године, кад се замењују новим, ближе основи развијеним скелетним гранама. На родним граничкама, цветни пунољци заједно са лисним су од другог до осмог, и донеће род.

Без обзира који ће се облик формирати, поступак је исти.
Сл. 123 – Наслони за гајење акиленидије – киви (горе)
Распоред мужјих и женских биљака (доле).
РЕЗИДБЕ ВОЋАКА ЗА РОД

Резидба воћака представља сложену операцију, на коју утичу општи и специфични чиниоци. Због тога је пракса наметнула објашњавање резидбе у светлу тих чинилаца. Из практичних разлога, разматрања о резидби биће по групама воћака онако, како су воћке сврстане по помоћној класификацији: воћке са јабучастим плодовима, воћке са коштничавим плодовима, воћке са језгрстим плодовима и воћке са јагодастим плодовима.

ВОЋКЕ С ЈАБУЧАСТИМ ПЛОДОВИМА

По помоћној класификацији воћака у ову групу спадају: јабука, крушка, дуња, мушмула и оскоруша.

Иако су воћке ове групе сврстане заједно, оне се међусобно разликују. Тешко је њихову резидбу поистоветити и давати уопштена обавештења. Основно њихово заједничко обележје значајно за примену резидбе јесте способност прилагођавања за обликовање различитих форми крune.

У круни ових воћака се налази заступљено, поред осталих, родно дрво с родним гранчицама. Код јабуке и крушке родно дрво и гранчице су готово исте, док се код дуње, мушмуле и оскоруше разликују.

Родно дрво и родне гранчице дуње и мушмуле се у односу на јабуку и крушку разликују не само у морфологији, већ и по физиолошким карактеристикама.

Морфолошко-физиолошке основе за примену резидбе јабуке за рог

Код јабуке, а и код других врста воћака, треба разликовати родно дрво и родне гранчице. Родно дрво је вишегодишње, док су родне гранчице старе свега једну годину.

Трансформација лисног у цветни пупољак траје годину дана, да би се већ наредне године из цветног пупољка развио плод.

Формирање цветних пупољака зависи од услова који на то формирање утичу. Општи услови, као што је однос између минералних материја (азота) и органских материја је подједнак значајан за јабуку, као и за друге врсте воћака. Међутим, постоје и многи други чиниоци који убрзавају или успоравају формирање цветних пупољака. Не упуштајући се у све те услове, указујемо на онај који је условљен резидбом, а то је довољно присуство светлости. У недовољно осветљеним гранчицама нема формирања...
цветних пупољака. Нема довољно цветних пупољака ни код стабала са оштећеним лисним апаратом.

У просечно обезбеђеним условима редовно може да се очекује и довољно цветних пупољака. Процес трансформације од лисног пупољака до плода траје две године. На прошлогоодишњој граници из лисног пупољака, по повољним оптималним условима, формирају се цветни пупољци. То је такозвано родно дрво, старо на храју вегетације, две године, са родним границама старим неколико или једну годину. Ово родно дрво је врло продуктивно. На њему је велики број родних граница са још већим бројем цветова. У сваком цветном пупољку јабуке просечно се налази 5-7 цветова из којих се формирају плодови. Неправилно изведена резидба, резидба која послепуша развој вегетативне масе, може из цветних пупољака да формира развој летораста, при чему изостаје формирање плодова. То се дешава при краћој или сувије краткој резидби двогодишњег родног дрвета, па и родног дрвета разне старости. Прошлогоодишње границие скраћене на неједнакој дужини, у вегетацији развијају више или мање летораста, као што се на слици види. Најмање је нових летораста, ако се уопште не скраћују. У овом случају формира се највише цветних пупољака, према орезаној граници по 3-4 пупољка, из којих се развијају леторасти, а цветних пупољака уопште нема.

Ако се посматра двогодишње родно дрво, оно је комплетно, са родним границама. Наредне године, и у наредним годинама проређују се родне граничнице. Трансформација родних граница у родно дрво тече са старошћу. Тако настаје родна грана. Она има кратко, са наборима, родно дрво неједнаке старости. Ова родна грана има родно дрво: просто, ако се не рачва и сложено, када се рачва. Са старошћу се продуктивност родне гране смањује. По правилу, код буйних сорти и подлога продуктивност траје око 6-8 година, за разлику од слабобујних сорти на слабобујним подлогама где је краћа, 4-5 година.

Морфолошке и физиолошке особине, како су изнете за родно дрво и родне граничнице, чине основу за практичну примену резидбе за род.

У прaksi се понекад формирају цветни пупољци у истој вегетацији. У зависности од сорте, њихова локација је основа летораста, или се летораст завршава цветним пупољкам. Ове родне граничнице нису носиоци рода. Само изузетно могу донети род. То се дешава у случајевима, кад под утицајем негативних температура у ванвегетационом периоду, дође до измрзавања цветних пупољака на родном дрвету. Оштећење може бити не само цветних пупољака него и дрвета.

Техничко извођење резидбе јабуке увек треба прилагодити сваком конкретном случају. Прво о чему се води рачуна је сорта. Све сорте није могуће једнинство посматрати. Неке се са ретким крнном и кратким родним дрвом. Друге сорте су са гушћом крнном и дужим родним дрвом. Ако преовладава кратко родно дрво, код
њих је нужно да се знатно већи број таквог дрвета резидбом одстрани, у односу на сорте код којих је родно дрво дуже.

Посебно треба прилагодити резидбу на род јабуке, бујности сорте и подлоге. У пракси постоји велики број подлога на којима се гаје сорте. Сорте су такође неједнаке бујности. То дозвољава да у пракси буду заступљене многобројне комбинације: сорта – подлога, што може да утиче на примену резидбе.

Пре почетка резидбе за род, то може бити раније ако је прошао период са јачим мразевима, треба да се утврде евентуална оштећења од негативних температура.

Сл. 124 – Структура родних и неродних гранича јабуке: а) неродна гранича, б) промењена родна гранича са крајњим родним граничама, в) вишегодишње крајње родно дрво, г) родно склопиште, д) крајња вишна гранича, неродне граничне из родног склопишта, е) вишна родна гранича. У вегетацији б1 и б2 прелаз из лисних у цветне буђење
Индивидуалним прегледом цветних пупољака утврђује се процена онштећених пупољака, односно цветних зачатака. У једном цветном пупољку има више цветова и при непотпуном онштећењу цветног пупољака, само ако је један цвет неонштећен, може се очекивати пун род. Онштећења од мраза се утврђују сигурно и лако. Потребно је узeti сасвим оштро сечиво (најбоље обично жилет) и њиме направити попречан пресек. Уколико је пресек пупољка зелене боје, то је знак да је пупољак неонштећен. Ако пресек пупољка нема уобичајену зелену боју, већ је пресек тамносоколадне боје, сигурно је онштећен. Овом приликом обратити пажњу да ли постоје онштећени цветови. У то време су цветови као лоптице које се на исти начин прегледају као и пупољци.

Објективно мерило виталности јабуке, па и других воћака је концентрација хранива у ћелијском соку листа. Од степена концентрације овог сока, зависи виталност стабла. Стабла јабуке, чија је концентрација хранива у листу на минимуму су у слабијој кондицији и захтевају јачу интервенцију резидбом. Ако је концентрација на максимуму, интервенција резидбом треба да је мања. Резидба се подешава према степени концентрације хранива у ћелијском соку.

Код јабуке се појављују знаци мањка хранива, ако је концентрација ћелијског сока у листу: азота – 1,8%; фосфора – 0,12%; калијума – 1,2%; калијум – 1,2%; магnezijума – 0,24% итд. Симптоми вишака хранива у ћелијском соку листа се јављају ако је азота – 2,60%; фосфора – 0,22%; калијума – 1,80%; магnezijума 0,4% и калијума – 1,5%. Нормалне вредности поменутих концентрација су: азот – 1,9–2,4%; фосфор – 0,13–0,16%; калијум – 1,1–1,5%; калијум – 1,0–2,0% и магnezijum – 0,25–0,35%.

На бази вредности концентрације елемената у ћелијском листу сока јабуке, може се одредити и интензитет резидбе. Мање вредности елемената, посебно азота, смањују бујност и мању вегетативну моћ. У том случају је потребно да се изводи кратка резидба.

Резидба за род, по многобројним критеријумима, спада у операције од економског значаја. Њени су утицаји, на економске ефekte производње врло велики.

Резидба за род почиње делимично још у фази формирања круне. Период резидбе за род треба да траје што дуже. Он значајно утиче на економски ефекат гајења.

Слика 125 – Возобије на старијим стаблима из основних грана (α)
јабуке. У њему се разликуju три потпериода и то: почетак родности, пун и смањена (опадајућа) родност. У почетној родности резидбом се и даље упливише на повећано стварање вегетативне масе, води се рачуна да род не угрожава вегетативни прираст. Продужни летораст морају имати просечну дужину око 50 cm. Варирања су могућа што зависи од врсте и сорте, подлоге и других чинилаца успевања. Леторасти, у пуној развијености јабука, када је и пун родност, узимајући у обзир и утицај свих чинилаца, треба да су просечне дужине 30–50 cm.

У периоду смањене родности, који је карактеристичан и по смањеном прирасту вегетативне масе, примењена резидба треба да успливише на обнову вегетативне масе. Ово се постиже краћом резидбом и нешто мањим оптерећењем родом. Правилно извођење резидбе током овог целог периода, учиниће да се потпериод смањеног приноса јасно не испољи. Прираштај летораста је мањи него раније и просечна им је дужина око 15–25 cm.

Резидба јабуке у пошуму развијености

Резидба јабуке у периоду родности је помотехничка мера која има за циљ да успостави правilan однос између родности и вегетативног прираста. Због тога она има значај код старијих стабала са незнатним вегетативним прирастом. Према томе, резидбом у периоду родности, треба да се одржи и продужи период пуне родnosti. Сем тога, ова резидба се с правом назива регулатором родности. Нарочито последњих година у овом правцу истиче се позитиван утицај резидбе на стабилност приноса. Тако је резидба постала редовна помотехничка мера у процесу произвођења јабуке.

Сл. 126 – Јабука: једнодогађање границе; 1 – нерођена дућка границе; 2 – крајња нерођена граница развијена из вружака за дрво, завршава се цветним вружаком, који се прегрижао гусаку, из стране развија у цвети, односно шлоп; 3 – крајња нерођена граница развијена из вружака "родног колача" (родних склиништа), завршава се цветним вружаком. Чешће се развија у цвети и шлоп

Резидба: Нерођена граница (1) се не орезује (не јрецираљује се). Њих држа само у прорези и што више, ако је стабло мање буносности (60–80%); 2 –ишцо као и 1; 3 – По правило, све се остављају неорезане
Јачина резидбе зависи, како је већ изнето, од старости воћке. По правилу, младе воћке су и веће бујности, па се таква стабла мање орезују него слабо бујна и закржљала. Значи, да се треба придржавати принципа: дуга резидба на бујним стаблима убрзava и повећава родност, а кратка резидба повећава бујност и успорава родност.

Резидбом се регулише развој одређених броја летораста на којима ће се образовати цветни пунољи и родне гранчице. Родне гранчице на родној грани пропадају са старошћу гране. Осим тога, и родност се смањује. Родну грану с родним

![Diagram](image_url)
гранчицама треба сваке четврте до шесте године обновити, што се постиже резидбом. Ваља настојати да се сваке године с једног развијеног дрвета обнови једна четвртина до једна шестина родних гранчица. На овај начин примењена резидба омогућава да се круна одржава у правилној биолошкој равнетежи — максимално оптерећење родом уз одговарајући вегетативни прираст. Правилном резидбом, уз примену осталих агротехничких мера, искључује се појава альтернативности рађања јабуке.

Принципи резидбе важе, углавном, за све системе узгоја, мада постоје и неке специфичности у начину извођења ове операције. Тако је, на пример, резидба на родност код палмете с косим грнама нешто другачија, јер се велики број летораста савија ради убрзавања образовања цветних пупољака. Због тога се дешава да се на једном стаблу образује више цветних пупољака, односно цветова, из којих се образују плодови који се не могу лепо развити, јер коренов систем није у могућности да прими одговарајућу количину хранљивих материја. На таквим стаблима изводи се резидба ради проређивања родних грна и смањивања броја родних гранчица, а у крајњој линији и смањивања броја плодова. Интензитет ове резидбе зависи од тога да ли се предвиђа обилније ђубрење уз наводњавање и друге агротехничке мере. И на савијеним границима, после неког времена, (4–6 година) почива да се проређују родне гранчице, о чему се при извођењу резидбе мора водити рачуна. Ове родне грне после 4–6 година се уклањају до основе да би се постепено развој спавајућих пупољака у леторасте, који се током вегетације савијају у наредној вегетацији на њима се диференцирају цветни пупољци. У трећој години на таквом леторасту се развијају плодови. На једном одраслом стаблу палмете с косим грнама, треба да се налазе тек развијени леторасти који се савијају ради

Сл. 128 — Вишегодишње родно дрво са стабалом неједнаке бујности: 1-бунјиће; 2-мане буњи. Резидба: утицање биолошке границе (1) орезује се у њачку А. Мане бунја граница (2) орезује се у Б
образовања цветних пуопљака, затим, савијени леторасти у претходној вегетацији, а у текућој вегетацији се образују цветни пуопљци, леторасти, који први пут доносе род, затим, серија родних грана које носе родне гранчице с плодовима друге, треће, четврте, пете и шесте године. У току лета леторasti се проређују. И наредних година, поступак је исти.

У Француској, према особеностима родног потенцијала се различито диференцирало неколико група (4) сорти јабуке, које захтевају да се на њима примењује резибда у складу са карактеристикама родног дрвета (Lespinasse, 1977).

Важније сорте јабуке по групама, са карактеристикама:

Прву групу сорти карактерише доношење плодова на кратким родним гранчицама, које немају већу способност разграњивања. Плодови су претежно на родним гранчицама, лоцирани на скелетним гранама. Овој групи припадају сви спер (Spur) типови као што је сорта старкимсон, спер златни делишес и др. спер типови.

Сл. 129 – Недовољно развијена гранчика.

Резибда: У основи се орезују у црву јовечана бујност, односно може се јерекраишти у вачки A

Сл. 130 – Недовољно развијена проширодишина родна гранчика (a–b).

Резибда: Орезује се у вачки A1 око 60%. Осове гранчице се у основи орезују.
Друга европа сорти има родне гранчице на родном дрвету до 4 године старости. У основи родног дрвета долази до изумирања родних гранчица тако да се родност удаљава од основе гране и постепено премешта у вршицу деба. Важније сорте ове групе су: канадска ренета и друге ренете, црвени боскоп и још неке друге.

Трету европу сорти одликује способност да се разграњава и да преноси род у вршине делове грана. На тај начин постепено огољавају доњи делови дебљих грана. Родне гранчице су кратке, на до 3 године родном дрвету. Код ових сорти заступљене

Сл. 131–1– Сложено родно дрво, различите старости у крупи слабобујних стабала
Сл. 131-2 – Рогне гране (1) и (2) нейравномерно примењена гула резидба извирно до изсушености. Рогна грана (3) краче је орезвавана и њена бујност је израженија – арошлогодишњи прирасци вегетациона масе (а–б) и израженији, неко кое грани (1) и (2). На рогно до грани (1) једногодишњи вегетациона прирасци: а–б; 1, 2 и 3 означавају врсеве где је резидбам извешњено прекрашање.

Рогна грани (2) је сегамограције сибарости. На њој није обављана резидба. Одсуствво резидбе је гула и у изсушености вегетациона маса, а одсуштава рогних грани и одноже, сибариће и између вегетациона и вегетациона прирасци.

Сложена рогна грани (3) има једногодишњи део (а–б); уногодишњи (б–в); арошлогодишњи (в–г); четворогодишњи (г–д). Месица, где је обављена резидба, означена су 1, 2 и 3. На овој рогно грани су крајке рогне границице.

Резидба: Рогну грани (1) шрета ореза ни у А1 око 50% и у А2 око 50%; грани (2) је орезује у Б око 60% и Б1 око 40%; рогно гриво (3) ореза ни у Ц око 70% и у Ц1 око 30%. Преводи се на крашку рогну границицу б1.

су и дуже рогне границице. Овде се убрајају: група златног делишеса, акане, церзимск, црвени јонатан, ајдаред, мушу, група црвеног делишеса и др.

Четврту јабуку спорт веома одличује родни потенцијал на младом родном дрвету (1–2 године). Разграничавање настаје у горњој третини. Родност се преноси на вршини део грани, док им доњи део оголава. Грени смит, мелроуз, глостер и неке друге су у овој групи.
Напомињемо, да овако груписање кори није непромењива законитост. То је више условна подела, пошто је неизбежан утицај многобројних чинилаца на морфо-физиолошке особености родног потенцијала и његове промене. Критеријум за сврставање кори у поједине групе, свакако су коре најстабилијих карактеристика, које се убрајају у прву и другу групу. Коре осталих група могу да се нађу у пракси и у некој неодговарајућој групи. Извођење резидбе јабуке за род, са добром познавањем физиолошких особености кора, груписање кори, како је приказано, губи на своме значају.

Сл. 132 – Девеље родне гране са крајњим родним границама (од 1 до 8) неједнаке стањоспособности; а–б једногодишња везе везајаца у време; в–г двогодишње дрво; и дадиће и–г четворогодишње; а–е четворогодишње и е–ф петогодишње дрво.

Резултат: Преподне дрвиче у А граница је орезана, а у А1 је чини чини. Примењена је гуна резултат којом је био узрокован формиране четворохилних вуса у у вестерамине везајаца или велика родносив без везајаца масе. Због што се овом резултатом родно дрво орезује у Б и у Б1. Кој изнурених стамбола родно дрво се орезује у Б1.
Сл. 133—Десян — вишегодишње сложене родне дрве. На њему је 8 (осам) цвећних јукулака (1—8). Почетак одголовац на делу A—A1, изумирање рођене границе a и a1 и цвећни јукулци 1, 2 и 3 који вероватно у наредној години изумирају, уколико се грана не орезве.

Резиџб: Обавезно јредба применам резиџбу за обнову велешацне масе. То се добија резиџбом у јачини B и B1. Тај однос може бити у приближно истом броју (1:1).
Резибла крушка за рог

По биолошко-физиолошкој природи крушка и јабука су сличних особина. Због тога ће бити изостављене многе информације, које би се нужно понављале, а обрадиће се само специфичности за крушку.

Сл. 134 – Гранчице крушка: 1 – неродна гранчица; 2 – гранчица рогна развијена из гранчице 1; 3 – рогна гранчица на йочејку вегетације; 4 – иста гранчица (3) на крају вегетације; 5 – гранчица 4 после резибле; 6 – иста гранчица у рогу; 7 – гранчица са плодовима; 8 – неродна гранчица
У току формирања круне, крушка почиње да формира цветне пупољке, чак неке сорте, друге године по садњи на сталном месту. Велико оптерећење родом, у овом периоду се не препоручује, јер би то умањило општу виталност воћнице и немогућност да се формира жељени облик круне. Дозвољава се пораст једном броју мање развијених летораста, да се на њима формирају цветни пупољци и да донесу род. При томе, ваља се држати принципа: продужни леторасти се не прекраћују, прекраћивати се могу гранчице са цветним пупољцима. Гранчице, које немају цветне пупољке се не прекраћују. На таквим гранчицама, кад се прекрате, у зависности колико је прекраћена, развија се више летораста и уместо једног или два летораста формира се метласт изглед, тиме се погоршавају услови за фотосинтетичке реакције.

За правилно извођење резидбе неопходно је да се разликују цветни од лисних пупољака, старост родних гранчица као и старост родног дрвета. Најпродуктивније је

Слика 135 – Схема израде лисног јубољка у цветни, родну границу и доношење излода. Гранчица (A) са лисним јубољцима (a), исца граница (B) са цветним јубољцима (b), у везивању цветни јубољак (b) на граници (C) и на крају, родна граница са излодом (D)
родно дрво старо две и три године. Поред тога је и незаобилазан принцип: на стаблу са мало цветних пуопљака, оставља се рецидбом, више родних гранчица са цветним пуопљима и обратно — више цветних пуопљака — треба обавити проређивање и скраћивање родних гранчица и родног дрвета.

На стаблима са много старог родног дрвета рецидба се изводи њиховим проређивањем, било сасвим, са делом гране или делимично, скраћивањем тог рачастог родног дрвета. Води се рачуна да се из остављеног дела добије нови летораст који треба да постане родна гранчица. Интензитет рецидбе се подешава према сорти и броју цветних пуопљака.

Кратко родно дрво имају: крашанка, клерко и зимска деканткиња. Ове сорте се кратко орезују, а дуге гранчице с терминалним цветним пуопљком се не орезују, само се проређују. Сложено родно дрво обавезно подмладити, при чему се преводе на неку гранчицу. Такав се поступак спроводи у циљу обнове родног дрвета.

Према Sansawinji, кратко родно дрво имају око 50% сорте — кошика и виљамовка, затим 51—65% андре деспорт, црвена виљамовка, санта марија; 65—80% жифардова, друштвенка, зимска деканткиња, крашанка; 81—90% фетелова, араншника, клерко, хардијева, рана моретинијева, конферанс, пахам триумф и више од 91% клапова, боскова бочица итд.

Сл. 136 — Прака з неорезан секторизире гране (I) са проређеним производницим лепторасима (A, B).
Резултат: Прилоза з неорезан секторизире гране (I) са рецидбом у мером украса, друга
(A) се оставила са проређиви.)
Сл. 137 – Продужена границца (1) јерекраћена у шачки A1. Из вршина два јушаља су се развиле граничне (1 и 2).

Резултати: У шачки B се уклања границца (1), због конкуренцијског односа је слабије развијена. Гранична 2 се орезује у A2 и јреводи на границу (а).
Сл. 138 — Грачице 1, 2 и 3 регулярно се налазе у круни. Засушљеност зависи од сиреће, старости, Јоголе и применаване резибре. Грачица (1) је неродна, (2) је родна и (3), нашегодишња родна грачица раној неорезивани. На њој су одумрле кратке грачице са осаћенима на којима су биле људови (означени са а) и цветним Југолицама (б).

Резибре: Грачица (1) резибром се уклања или се орезује у А; грачица (2) се орезује у Б ког мање бујних сибабака у Б1 ког бујнијих сибабака, грачицу (3) шреда орезаји у Ц, односно, један број се у основи орезује.
Резидба за род крушке се изводи слично на свим облицима круне. За сорте калемљене на сејанцу важе, у принципу, исте оштете законитости за примену резидбе. За интензитет резидбе круше служе иста мерила као за јабуке.

Сл. 139-1 - Приказ родног дрвета у јабуч језгру
Сл. 139-2 – Родно дрво (1) је двогодишње (А – A1) и аље (2) шестогодишње (В – B1) и (3) четворогодишње (Ц – Ц1). Резибу је била приближно иста – крајка. На родним гранама 1 и 2 у врховим делу орезаних грана (месић пресека А и Б) развијено је још један граничник. Коло грани (1) – две (1 и 2) и гране (2) – четири (1, 2, 3 и 4), у четворогодишњем делу родне гране (3) развијене су четири граничнице и 2 (два) цветна вукоља (б) и (б2).

Резибу: Родну грану (1) орезану у А2, родну грану (2) у ванци Б2, оставивши граничнике (2, 3 и 4) и родну грану (3) у ванци Ц2 уклоњена граничнице (2, 3 и 4). Граничница (1) наставља пораст – што је проузроковања.
Сл. 140 – Изглед две родне гране неједнаке бујности – бујнија (1), мање бујна (2) и ареалне године су осицаље неорезане.

Резултати: Родна грана – бујнија стабла (1) орезане се у А, друга (2) у шаљеви Б.
Сл. 141 – Изглед родних грана (1 и 2), у брекшиюгој години су неједнако орезане. Родна грана (1) орезана крајком и (2), дуга резиба. Осим још, родна грана (1) има хоризонталан, а (2) ускрсаван йошексај. Ускрсаван йошексај родне гране (2) има ушкања на вегетацијом јрмраси (1, 2, 3) ледораси и формирање цветних луциваха (4). У овом случају била је изведена йошекса резиба.

Резиба: Родна грана (1) се орезује у шачки A3. Родна грана (2) се орезује у B3 и укључују се границе (2) и (3), док (1) остаје.
Сл. 142 – Троходрисна рошна грана (1)
Структура: Промодорисна гранчица а – б; шкородрина грео b – ц; шкородрина грео ц – г.
На шкородриин коме рошне гране (б–ц) развијено је 5 (већи) Јуйољака у гранчице са цвећем Јуйољцем на врху (1, 2, 3, 4 и 5).
Троходрисна грео рошне гране има развијене цвећне Јуйољце.

Резултати: Треба рошну грану орезати у фази (A4). Преведе се на гранчицу (3) око 80–90% грана. Превонеле се у основи уклоњају или орезују у Б. Уклоњају се резултати, ако је у крани ових грана пејовохран распоред – једна другој смештају.
Ст. 143—Традиционална неорезана редица грана. Структура гране: Мали вегета-тивни прираса (а-б), 6-ти годишни дрво-тини део гране; 7-ти годишни дрво-тини гране; активан одурањ ендексих раних гранчина. Треба да се очекује даље одурање. Необогаћена резирана разар ће обезбедити експлозивност.

Резултати: У око 50% грана резирана се изводи у шиши A и преводи на гранчичу (1). Један број (око 15%) се преводи у шиши A1 и гранчичу (1, 2, 3) у ванцаша: A2, A3 и A4.
Сл. 144-1- Четворогодишња рођна грана А и Б нејезине бујности: А-мање бујна, Б израженије бујности
Сл. 144-2 – Структура грана: Рожна грана А и Б: a – б, једногодишње гранчице; b – ц, двогодишња грана; и гране н – д, итроодошика; q – e, четворогодишњи гране. А4 и Б4 местно, где је била прекраћена граница. На двогодишњем делу рођене гране (А) формирана су цветни југољи на крајним и унутрам границама. Тролошића гране (c – g) у основи одложен, нема развијених Југоља, а при врху су две граниче, и најзад четворогодишње дрво (q – e) ове рођене гране је одложен са славајућим Југољима. У рођене гране (Б) мање је изражено одложене. На двогодишњем делу су развијени цветни југољи (b – ц); итроодошика гране (c – g), при врху су три граниче (1, 2 и 3) и цветни југољи. Четврти године сагаре дрво је са изумрлим једним бројем крајњег рођеног дрвећа.

Резултати: Рожна грана (А) се орезује у тачки А1 и А2 до 80% од укупног броја тих грана и 20% рођених грана у тачки А3. Рожна грана (Б) се орезује у тачки Б1 и Б2. Један мањи број грана (Б) орезује се у тачки Б3. Однос орезивања рођених грана у тачки Б1 и тачки Б3, треба да је око 4:1. Критеријум за примену овакве резултата, треба да су цветни Југољи на свим рођеним гранама.
Са. 145-1 – Дводогашње рогно дрво неједнаке бујности: 1–слабобујно, 2–средњебујно и 3–бујно
Сл. 145-2 – Сиркулатора: На јединодвршном делу (а – 6) нема цветних пупољака. У врховом делу (б – ц) рођене грани (1) су 11 цветних пупољака, у врховом делу 5 (лево) на крашким роговима лепаторства које рођене грани (2) су 8 (лево) цветних пупољака, 2 (десно) су на развијеном рогу граници, рођена грани (3) има 12 цветних пупољака. 3 су на границама развијеном у врховом делу (1, 2 и 3). Резидба: Розну грани (1) орезави у тачки А где се пољеша садржина. Од ових грани може се ослањати до 80%, а престојених 20% се резидбом оправа. Рођена грани (2) орезава у тачки Б и грани (3) орезава у тачки Б могу преводити се на гранични (3).

Резидба дуње и мушикуле за рођ

Дуња и мушикула, по морфометрији цветних пупољака као и места цветова и родног дрвета, се разликују у односу на јабуку и крушку. Кад дуње, цветови на врховима лепораста су у текуће вегетације. Због непознавања овог феномена, у вези са резидбом, за ове воћке су стицана различита искуства. Једини су против њеног орезивања, други су за примenu резидбе. Резидба даје поверљиве ефekte ако се при њеном извођењу познaje физиологија цвета већака. Родное дрво се проређује, а не скраћује.

Кад лепораста из текуће вегетације достигну дужину око 4-10 cm, на њиховим врховима се појављује цвет. То значи, цвет се не развија директно из пупољака, као код јабуке и крушке, већ прво лепораст и на њему цвет. На скоро сваком лепорасту,
развијеном из младог родног дрвета, (око 4 године) развија се цвет. Колико ће бити плодова, зависи од свих чинилаца који су наведени раније, за јабуку. Проценат оплођених цветова креће се од 0% до 35%.

Имајући у виду физиолошке основе формирања цветних пунољака и њихове морфолошке особености, (отежано распознавање) код дуње и делимично код мушикуле, технички извођење резидбе ових воћака захтева више искуства. У круни се задржава младо родно дрво с граничницама које имају цветне пунољке. Најпродуктивније је родно дрво старо 2 до 3 године. Уколико је стабло старије, настоји се, резидбом, да се обнови репродуктивни потенцијал. Појединости за примену резидбе су исте као код јабуке и крушка.

РЕЗИДБА ВОЂАКА СА КОШТИЧАВИМ ПЛОДОВИМА

Воћке са коштичавим плодовима (шљива, бресква, кајсија, трешња, вишња и марела) су врсте код којих је знатно краћи период до ступања на род, а и век трајања је краћи од воћака са јабукастим плодовима. Њихова физиолошка својства се разликују. Морфологија родних грана и граничница није слична. Родне границе воћака с коштичавим плодовима, увек се завршавају цветним пунољком, а јабукастим воћака, лисним. Воћке са коштичавим плодовима међусобно се разликују. Стога следи обавештење о резидби сваке врсте и њиховим особеностима.

Резидба брескве за род

Морфолошко-физиолошке особине

Круна код брескве је округла, разведена, никад изразито пирамидална. Разграђивање је карактеристично, а границе у основи дебљих грана, изумиру. Нови летораста јављају се на периферији круне. Граничце су родне и неродне, и на њима се налазе лисни или цветни пунољци. Могуће је да се на једној гранични налазе и једни и други пунољци. Распоред пунољака је врло различит: само један лисни, или само један цветни пунољак; затим, један лисни и један цветни; два лисна или два цветна; два цветна и један лисни, који се налази у средини између два цветна, итд.

Родно дрво је вишегодишње. На њему су једногодишње родне границе на којима су поређани цветни пунољци. Према томе, родно дрво је онај део границе који има дуже или краће једногодишње леторасте с цветним и лисним пунољцима. Цветни и лисни пунољци могу бити на леторастима, који су:
- кратки – један цветни и један лисни пунољак;
- мајски букетић 2–7 cm, с више цветних пунољака;
— сламасти (такни), с појединачним цветним пупољцима (10–15 cm);
— мешовити — више пупољака заједно, (два, три и више) дужине преко 15 cm;
— превремени — кад се пупољци из текуће вегетације развију у леторасте.
С обзиром на то где се налазе, разликују се три групе цветних пупољака, па постоје и три групе сорти бреске: A, B и C.
Сорте групе A имају цветне пупољке на целој дужини тањих и дебљих гранчица.
Сорте групе B имају цветне пупољке на целој дужини тањих гранчица, а на дебљим, само на вршном делу.
Сорте групе C имају цветне пупољке само на вршном делу дебљих и тањих гранчица.
Специфичност бреске је у преносењу нове вегетативне масе на вршне делове грана. То настаје што, услед недовољне светлости или због изнурености гранчица, које се налазе на низем положају, изумире већи број мање развијених гранчица. Најчешће изумиру гранчице које су у претходној вегетацији имале плодове. Због изражених конкурентских односа међу гранчицама, редовно изумира мање развијене гранчице.
Бреска се, док је стабло младо, одликује врло бујним порастом. Ова особеност се може успешно искористити да се брже формира круна и да воћка раној пророди. То значи, да од примењеног система резидбе у младом узрасту, зависи и дужина трајања младалачке бесплодности. Мада је период бесплодности бреске врло кратак, он може орезивањем и да се продужи. То се дешава, када се од почетка примењује кратка резидба, која поспешује развој летораста.
Основни принцип којег се треба држати јесте, да се бреска у току формирања круне, дуже орезује. Доцније се скраћује: ако се дужина прве резидбе означи са индексом 100, у другој резидби треба да је 80, а у трећој 60. Уколико се стабло више оптерећује родом, утолико је резидба краћа. Сем тога, неопходно је да се остави и већи број секундарних грана.
Леторастима из претходне вегетације, уколико се не орезују, на доњем делу, пупољци остају неразвијени. Ако су орезани на 4–5 пупољака, из свих ће се развићи леторасти. Треба у сваком конкретном случају применити прикладну резидбу при чему се има на уму бујност стабла — бујнија стабла се дуже орезују. Слично се понашају и леторasti који су под оштријим углом. Из летораста под углом од 45°, пупољци се развијају целом дужином.

** Tehnika rезидбе бреске за рог **

Да поновимо: родни пупољци код бреске налазе се на једногодишњим гранчицама. Према томе, основано је да се резидбом постигне што више нових летораста који на себи чосе цветне пупољке. Ова околност намеше дру ју резидбу бреске него
Сл. 147 – Рост и неродне гранчице бржака: 1. комбинација бујолака (цветних и лисних) – А) један лист, Б) један цвет, Ц) један лист и један цвет, Д) два цвета, Е) два цвета и један лист, Ф) три цвета, Г) три листа, Х) два листа и један цвет, И) два цвета и два листа, Л) један лист и три цвета.
- 1. мешовита рода границица, 1а - мешовита дртавица са црвеним бујолаком у дрвету сврстано границица (пружење неродни граници), 1б - бујолак (црвени цвет и бујолак), 2 и 2а - крепко мајско букеље, 3. мало букеље мајско букеље, 4. (см) стубура бујолак, 5. глоговна границица, 6. прави букеље (сламаста) границица, 7. гогула букељака (сламаста) границица, 8. крече гогула букељака (сламаста) границица, 9. бибо у време границица.
што је она код других врста воћака. Јачина примењене резидбе зависи од сваког појединачног стабла, од његове животне снаге. Са старошћу стабла повећава се и количина вегетативне масе која се резидбом укланя. Тако на пример, код воћака, које тек почињу да рађају, укланя се од прошлогодишње вегетације 20 до 30%, а код старјих, (старих 10 до 12 година) може се уклонити и до 70% масе.

При резидби брескве води се рачуна о прирасти вегетативне масе у претходној вегетацији. Нема сумње, да на прираст утиче и старост стабла. У нормалним условима сматра се да брескова од 6 година треба да има једну трећину летораста чија је дужина 60–100 см, а старја стабла, једну трећину летораста дужине 40–80 см. Иако су ове вредности само оријентационе, ипак нам служе при одређивању начина орезивања брескве. Када је прираст у протеклој вегетацији испод наведених вредности, потребна је краћа резидба ради обновљавања вегетативне масе, и обрнuto.

Ако су млада стабла, најпре се изаберу продужнице основних грана. Ови леторasti се ретко прекраћују, осим да би се спречило издуживање основних грана у висину. При томе се оставља једна гранчица, (превремена) која се развија уплоће, ради равномерније расподеле развојних материја, које пристижу у вршини део основне гране. Осим тога, испод прекраћене гране треба на 15–20 см уклонити све леторасте.

На исти начин се поступа и са продужницама секундарних грана.

Дужа резидба брескве

Пошто се ореже примарне и секундарне гране, приступа се правој резидби на род. Она се састоји у одабирању мешовитих родних гранчица које се не орезују, изузев, ако су биле оштећене (лисе ванци, молац и слоично). При овоме се води рачуна да родне гранчице буду правилно распоређене на растојању 20 до 30 см једна од друге. За род се бирају довољно развијени леторasti, али не најразвијенији, ни они танки, јер и једни и други леторasti су недовољно сазрели и са мање резервних материја. Остале гране се у основи укланјају ради боље аерације и осветљавања, односно, оне се могу орезати врло кратко ради попуњавања евентуалних празника на скелетним гранама.

Непосредно на месту где је гранчица у основи орезана, у току вегетације се развија нов летораст, који се наредне године оставља да роди.

Гранчице, које су у претходној вегетацији донеле род, а имају у основи замену, сасвим се укланјају; ако немају замену, прекраћују се на неколико пупољака. Оваков систем резидбе показао је у неким земљама добре резултате, који се огледају у бољем квалитету плодова, дужем времену иссушивања, остваривању високих приноса и др. Ову резидбу препоручујемо тамо где су врло повољни земљишни услови – плодно земљиште уз евентуално наводњавање.
Краиште резидба бреске

Бреске за род могу да се орезују и на други начин – прекраћивањем родних граница. Основни принцип при овој резидби је у томе, што се поред родне границе оставља и њена замена. То се ради да би се наредне године обезбедио довољан број нових летораста који се остављају да донесу род. Практично, резидба прекраћивањем родних граница изводи се тако, што се настоји да се остављају леторасти за род, ближе основних грана. Они се орезују на 8—15 пупољака, у зависности од виталности стабла, сорте и жељене количине приноса. У непосредној близини овог летораста, чак ако су на истом родном дрвету, доњи летораст се орезује ради замене 2—3 пупољака, а горњи на 8—15 пупољака. Наредне године се сасвим уклања граница која је претходне године донела род. Ова резидба је доста слична резидби винограда. Њено извођење није заметно. Сматра се, да је она прилагодила за старија стабла, мање витална и у мање повољним условима исхране и влажности, и тамо је препоручујемо.

Сорте бреске, код којих су цветни пупољци при врху родне границе, не смеју кратко да се орезују, односно, родне границе се не прекраћују.
Сл. 149 – Крајња резиња – резиња са прекраћивањем родних гранича
Сл. 149 – Схема резиббе: змиском резибом, орезана су два прошилорачивања лејторасета (1) дуже је орезан (А) који шрећа да донесе рог и краће (Б) ради замене. У вакву вегетацију исхи лејторасет (1) донеће рог и два лејторасета, ради замене (2) лејторасета који је донео рог. Лејторасет на рошој зрани (3) орезује се при емемеци и што: горњи на десејак цвећних јуђолака, а дони на 2-3 цвећна јуђолака (А и Б). У вегетацији, мешовита граница ослањена за рог (А) донеће Јлодове, а краћко орезано (Б) имаће два лејторасета. Ово се виже на рошој дрвећу (4). Приказан је исхи еринци на рошом дрвећу (5 и 6).

Сл. 150 – Крајња рошна граница (мајско буквиче) (1) и крајња граница (2) са два развијена лисна јуђолака (6). Родне границе имају цвећне јуђолаке (ц). Резиббе: Кој се примењују дуга резиббе, родне границе (1) се укапају. Оне нису косници рога. Родна границе (2) јакође се резибом укапа, осим ако се жели развијање нових лејторасета из лисних јуђолака. У њом случају се орезују у Б1. При крајњој резибби границе се не орезују.

Резиббе бреске у вегетацији (зелена резибба)

Осим зреле резиббе у току вегетације изводи се и резибба која се именује као „зелена резибба“. Практичан значај зелене резиббе огледа се углавном у следећем:
– регулише се вегетација и посепштује развитак граница у доњем делу основних грана, како ове не би остале празне;
– укапањем једног дела и једног броја летораста, појачава се притисак сокова у остављени део грана и граница, па је у току вегетације и исхрана бода; добија...
се више хранљивих материја које чине леторасте отпорнијим према нижим температурама;

– исправљају се неке грешке учињене зимском резидбом и омогућује се утицање на стварање родних гранчица по жељи;

– избегава се појава некрозе;
– омогућује се економичније извођење зреле резидбе.

Време извођења ове резидбе је различито и зависи од сваког појединачног случаја.

1. Одмах по кретању вегетације, чим прође опасност од позних пролећних мразева треба почети зелену резидбу. Зеленом резидбом се отклањају грешке учињене зрелом резидбом и одстрањују мразом оштећене гране и границе.

2. Када леторасти достигну дужину 10–20 cm, треба их проредити, и уклонити и све оне, који се налазе с унутрашње стране основних грана.

3. Када леторасти, који се развију из пуцаја основних и секундарних грана, достигну дужину 50–60 cm, врши се скраћивање ластара – продужница основних и секундарних грана. Тиме се спрећава да бреске „побегну” увис и подстиче развој пуцаја на доњем делу развијеног ластара. Прекраћивање се изводи у неколико наврата, што зависи од поменутих чинилаца.

Зелена резидба има велики практичан значај, али може имати и негативне последице. Ако се изведе у право време и уклони се све оно што омета нормалан развој воћке у току вегетације, нема бојазни да ће негативно утицати.
Сл. 152 – Мешовите рогне границе са цветним и листним вулазцима.

Резулта: При крајкој резулту Мариовића граница (1) се орезе у тачки A1 односно у A2, ако је потrebно да се замени нека граница наредне године.

При дугој резулту се мешовите границе (2) не орезују, остављају се на распоношу 25–30 см. Према развијености стабла, за умерен рог се ослања 100–120 граница на стаблу.
Сл. 153 – Танке (сламасте) родне граничне са појединачним цвећним љусполцима

Резијуба: При дугој резијуби се орезују у основи, (шреба их уклоњава). При краткој
резијуби орезаји у A_1.
Резициа шљиве за рог

Шљива се раније орезивала само док траје формирање круне. Међутим, експериментима је доказано да се њоме може остварити за око 30 до 50% већи принос у односу на неорезана стабла.

Сл. 154 – Родне гранчице шљиве Јожедаче: (А) једногодишња родна гранчица, (Б) крајко родно дрво развијено из мајског букетића, (Ц) мајски букетић

Код шљиве круна може бити: густа – компактна, или ретка – са мање грана. Представник компактне круне је сорта Јожедача, а ретке, стеалеј (степле). Између ових крајности су могући прелази. Родне гранчице шљиве су једногодишње на дрвету
неједнаке старости. По дужини су кратке и дугачке. Кратке су од 2–10 cm. Ту се убрајају и мајске китице. Дуге родне гранчице су око 25–30 cm. Целом њиховом дужином или у доњем делу су цветни пунољци.

Кратке гранчице, мајске китице су на леторастима из прошле вегетације.

Дуге родне гранчице су леторасти из терминалних пунољака или са развијених летораста који су имали повољнији режим исхране.

Европске сорте шљива имају цветне пунољке на дужим родним гранчицама. У сваком цветном пунољку је 1–3 зачетака цвета, а развијају се два плода, често само један.

Сл. 155 – Родне гранчице шљиве стјени (стјениаста): (А) неродна гранчица, (Б) једногодишња родна гранчица, цветни пунољци у основи (Д и Е) – мајски буклети и (Ц) родно дрво с мајским буклетићима.
Родност једних и других родних гранчица је условљена чиниоцима средине и условима успевања у вегетацији. Њихов биолошки потенцијал родности са старошћу опада и зато се резидбом регулише њихов број по јединици гране у круни (основне и др.). У одсуству резидбе, мајски букетићи изумирају и гране оголавају. То је уочљиво после њихове четврте–пете године старости.

Шљиве у роду редовно орезивати. У многим случајевима потребна је слаба резидба, односно проређивање старијих кратких родних гранчица и мањих младих гранчица. Висеће гране се скраћују на једну од усправнијих бочних граћана ради чувања облика. Врхне гране, младе родне воћке треба да имају 30–60 cm годишњег пораста. Старије воћци се обезбеђују најмање 25 cm новог пораста, сваке године. Оголене дебље гране, обавезно треба да се уклоне.

Шљиве, као и сорте трешње, имају склоност ка настављању новог пораста, већином на врху прошлогодишњег летораста. Под теретом рода, могуће је ломљење грана. Зато, кад се зна да ће воћка прородити, треба је краће орезивати. Осим регулисања родности у текущој вегетацији, овом резидбом се доприноси и јачем подклијањању воћке уопште.

Сл. 156 – Шаблоњове добаца које је круна нераштала неговања. Ради боље осветлености уклонена је резидбом у основи, одогена грана (а) и (б) и друга грана у (в). Шабло је (а) пре резидбе и (в) после резидбе (в).
Резиђба кајсије за рог

Има аутора који сматрају да кајсију није потребно орезивати. За такву тврдњу нема научне основе. У неким земљама се она орезује врло слично брескви. Због тога се не испољавају никаква нежељена дејства.

Кајсија је угрожена апоплексијом. То је утицало да се њено гајење прилагоди спречавању апоплексије. У том циљу је и њено калемљење, ради производње садница, на већој висини.

Кајсија има сличне родне граннице као бресква. То су једногодишње родне граннице, на родном дрвету старијем од две године. Родне граннице су кратке и дугачке.

Сл. 157 – Родне граннице кајсије: (A) мајски букетићи, (B) крашке родне граннице са цветним носницама у основи, (C) родна гранчација из унутрашњости круне, у вршном делу су цветни букетићи, (D) често појављују као појам кајсије, ове граннице нису носници рога, (E) једна од ипак, (F) дебље мешовите родне граннице су још мајских букетићи, носници рога, (Ф) дебље мешовите родне граннице најчешће су носници рога код мајских стабала.
У круни кајсије има највише мајских букетића, са неједнаким бројем цветних пупољака, од по једног цветног и лисног пупољка до десет цветних пупољака и једним лисним на врху. Дуже родне граничнице имају више цветних пупољака, што зависи од дужине родне граничнице. Ове родне граничнице у великом проценту учествују у остваривању рода. Разликују се танке, средње и дебеле. Танке су мало продуктивне и краћег века. Дебле граничнице такође су мање продуктивне, јер немају много цветних пупољака. У родне граничнице су сврстане и превремене код којих су цветни пупољци при врху. Обично су се развиле у текућој вегетацији и при врху се развијају у две. На овим родним граничцима формира се мало плода. На слици су приказане поменуте категорије родних граничница.

Резидбом кајсије се регулише заступљеност појединих категорија родних граничница. Век трајања појединих граничница варира. Танке родне граничнице брзо изумиру. Уколико су у густој круни са слабим осветљењем, оне уопште не донесу род. Мајски

Сл. 158 — Граничница (1) сидара једну годину, граничница (2) гdeo означен са (А) две године и са (Б) три године. Граничница — редом дрво (3) чешир године. У овом случају већ се примењује одумирање мајских букетића (А)
букетићи су кратког века до 4–5 година. И ова категорија родних гранчица пре изумира ако се по топографији налази при мање повољним светлосним условима. Средње развијене родне гранчице су распоређене у периферном делу круне, оне доносе род и у наредној вегетацији се на њима трансформису друге категорије родних гранчица.

Иако нису носиоци значајнијег рода, на дугачким и дебљим родним гранчицама се формирају мајски букетићи и дуже родне гранчице. Уколико се орезу дуже у основи се формирају мајски букетићи у вршном делу краће и дуже једногодишње родне гранчице.

Приказана категорије родних гранчица су заступљене у круни кајсије без обзира о којој се круни ради. Резидба стабала се изводи тако, што се узимају у обзир сви чиниоци који на њу утичу. То значи, прво се оцењује окуларно, општа виталност. Ако је прираст летораста прошле године незнатан, (око 10 cm) резидба мора бити краћа (уклања се око 80% прошлогодишњег прираста), средњи – око 30 cm, резидба по правилу треба да омогући равнотежу између приноса и нове вегетативне масе. Резидбом се тада уклања приближно око 30% прошлогодишње вегетативне масе и најзад – при прирасту преко 50%, резидбом се уклони око 20% вегетативне масе из прошле године.

Орезивање кајсије у току лета допринело је – у неким регионима кајсије – у бившем СССР–у, повећању приноса. Ово је допривело повећању оптпорности према мразевима и доцијем отварању цветних пупољака на гранчицама развијеним после резидбе. Ова резидба има утицаја на почетак формирања цветних пупољака. Цветни пупољци почињу да се формирају доције, доције ступају у период зимског мироњања, па се и доције развијају у цветове. Најбоље време за обављање ове резидбе је од 20. маја до 20. јуна, што зависи од подручја у коме се кајсија налази. Њему се скраћују бујнији летораста из текуће вегетације.

Сл. 159 – Детаљ примењене резидбе скарањивањем дебљих грана, на млађим стаблима (а) и старијим (б). У ова случаја резидбом је изазвано обављање вегетативне масе и шиме повећан биолошки и посевнијај родности
Резултат: 1а: родна грана 1 орезана у А.

Резултат трешње за рог

Морфолошко-физиолошке особине

По морфолошким и физиолошким особинама трешња се разликује од неких врста воћака. Те разлике се обележавају у надземном делу и кореновом мрежи.

Код ње је природна, претежно пирамидална круна. Гране се раздвајају много, па је круна ретка. Та околност имала је утицај да се прихвати од многих стручњака, да трешњу не треба орезивати. У круни су заступљене родне граничне, највише мајску букетићи разне старости. Њихова заступљеност је просечно око 53,6% до 91,3% (Булатовић, 1970). Родне су и једногодишњи леторасти. У једном цветном пупољку скоро као правило важи да има четири цвета. Проценат оплодње, односно, до бербе развијених плодова је врло променљив и креће се од 0 до 60%. Велики проценат цветова опада, и до 95%. Из једног цветног пупољка најчешће настају два плода, могуће је и по четири. Цветни пупољци су груписани и кад се отворе у цветове, декоративно делују. Родност се смањује са старошћу родних граница. Број цветова је мањи код мајских китица старих од 4–5 година. Са дужином границе повећава се број лисних пупољака, а смањује број цветних пупољака.

Број цветних пупољака, у зависности од дужине летораста, види се из датих података:
<table>
<thead>
<tr>
<th>дужина једногодишњег прираста (cm)</th>
<th>цветодних пупољака (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>74,1</td>
</tr>
<tr>
<td>6-10</td>
<td>66,1</td>
</tr>
<tr>
<td>11-15</td>
<td>58,7</td>
</tr>
<tr>
<td>16-20</td>
<td>58,1</td>
</tr>
<tr>
<td>21-25</td>
<td>48,2</td>
</tr>
<tr>
<td>26-30</td>
<td>40,3</td>
</tr>
<tr>
<td>31-35</td>
<td>41,2</td>
</tr>
<tr>
<td>35-40</td>
<td>34,9</td>
</tr>
<tr>
<td>41-45</td>
<td>28,4</td>
</tr>
</tbody>
</table>

На границима од 5 cm, у једном примеру је било 157 цветодних пупољака на дужном метру и даље, на 20–25 cm, 27 цветодних пупољака, и на 42 cm, 8 цветодних пупољака.

Оголавање основних грана настаје због неједнаког односна између лисних и цветодних пупољака. Само је једна трећина лисних пупољака по јединици дужине границе. За изградњу цветодних пупољака, цветова и плодова утрошће се велике количине хранljivih материја што исцрпљује стабло и доводи до оголавања основних грана и преношења активног дела по периферији круне.

Доскора се сматрало да је резидб трешње сувишна, па чак и штетна. У том погледу су мишљења подвојена, јер је физиологија резидбе трешње недовољно изучена, а њена техника мало разрађена. Штетност резидбе неки виду у појави смолоточине. Marshall, препоручује резидбу трешње не само ради повећања приноса него и ради обнове круне. Вербовоj је резидбом петнаестогодишњих стабала трешње постигao повећање приноса за 21,5%, док је на старјим стаблима постигao и веће приносе.

Резидба трешње доприноси повећању приноса с тим, ако се нередовно изводи долази у првој години до смањења приноса, у другој години се изједначају с контролом и у трећој, било је повећање приноса један и по пут (Sedaw). Према Jankowskom са старшћу родност опада, али се резидбом повећава.

![Са. 161 – Рогне границе трешње – мајски букети неједнаке сједостни]
Трешња у физиолошком процесу изазваном резидбом на исти начин се понаша као и друге врсте воћака. Промене изазване резидбом испољавају се не само у приносу и квалитету плодова, већ и у вегетативном прирасту. Велики број летораста развија се из терминалних пупољака мајских букетића. Уколико је резидба краћа, више се ових летораста развија.

Сл. 162 – Рогна граница (1) на којој је означен са (А) део из арошле вегетације и са (Б) део у другој години са цвећовима, са (Ц) део шири Ђорђе и (Д) део чврсти Ђорђе. После чврсти Ђорђе на мајски букетићи јачи њу да одумиру – урођују се.
2. Рогне границе на леторастима из арошле вегетације (А) слабоубијене сорбе, (Б) средње буње и (Ц) буње сорбе.
 На базалном делу летораста из текуще вегетације често се формирају цветни пуопацци. У наредној години се на леторастима из претходне вегетације почињу да формирају мајски букетићи. Према томе се резидбом обнавља вегетативна маса и на њој репродуктивни органи на новоформираним мајским букетићима. На тај начин се спречава оголавање дебљих грана, а тиме се регулише стабилност принос. Напомиње се да неким сортама (лионска рана) почињу рано да изумире родне гранчице на дебљим гранама. Ове сорте треба орезивати уклањајући старије родно дрво.

Са старошћу гране, одумиру мајски букетићи. На њима се такође смањује број цветних пуопацака, и цветова. После неколико година (6–7) грана постаје оголена. Само понеки дужи мајски букетић остаје, ако су повољни услови испрани и осветлености. Родно дрво, чим се прореди мајским букетићима више од 50%, треба обновити резидбом. Оно се орезује кратко, чак је могуће и на мајски букетић. Стварајући резидбом повољнији режим испрани, из његовог лисног пуопацка развија се дужи или краћи летораст као основа за нове родне гранчице. Поред ових летораста још се развија и један број летораста из спавајућих пуопацака. На овај се начин изводи основна резидба трешње која се понавља.

Код старијих стабала резидба се обавља у више варијанти: орезе се потпуно (код изнурених стабала) или делимично (код мање изнурених стабала) прираст из прошле вегетације и даље, прираст за последње две или три године. Делимично изведен резидба на овај начин неће умањити принос у текућој вегетацији.

Резидба више и мареле за род

Вишња и марела су воћке које се рано нису орезивале. То и данас многи практикују, нако је резидба корисна и код ових воћака. Физиолошке основе за правилну резидбу врло су сличне код вишње и мареле као и код трешње. Трансформација и формирање родних гранчица је иста. Разлике се јављају у проценту оплођених цветова и до краја развиjenih плодова.

Извођење резидбе више и мареле за род је на исти начин као и код трешње.
Сл. 164 – Розне гранчице вишње: мајски бужедићи
неједнако сажране (а) вишегодишња розна гранча
ца

трогодишњи гео и д–е: четворогодишњи гео. А – тачка где је обаљена резибу бре ири
године.
Резиба: Треба обавити резибу гране 1а у тачкама А1 и А2
РЕЗИДБА ВОЂАКА СА ЈЕЗГРАСТИМ ПЛОДОВИМА

Вођке са језграстим плодовима: орах, лешник, бадем и кестен, иако је човек њихове плодове употребљавао од најранјих дана, нису биле на одговарајући начин проучаване. То потврђује чињеница да су ове воћке недефинисане у погледу проучавања.

Ова група воћака по низу морфолошко-физиолошких карактеристика се разликује од других воћака. Поред тога се разликују између себе. Важније су разлике у репродуктивним органима. Осим бадема остале воћке ове групе имају разлучене мушке и женске цветове. Оне су једнодоме биљке. Мушки цветови су поређани на вретену и чине ресу, женски су на краткој дршци. Детаљније о разликама у оквиру сваке ове врсте. За резидбу је значајно познавање топографије и грађе цвета ових воћака.

РЕЗИДБА ОРАХА ЗА РОГ

Морфолошке и физиолошке особине ораха

Супротно ранијем, дуго одржаваном схватању да резидба ораха није потребна, у новије време се на основу резултата добијених у огледима у Француском центру орашарства — Греноблу, препоручује систематска резидба. Резидбом се огњава уредна родност и знатно већи приноси. Она је чак пресудна за бујност и успешан развој стабла, као и за родност у будућности. Правилно изведена резидба стабала, укључена резидба стабала, укључена с уравновешеном љубрењем огњава максималне приносе сваке године. Треба избегавати јаку — кратку резидбу док су стабла бујнија. Пошто је орах по својој биолошкој природи склон огњавању, односно принос вегетацији на вршини део грана, резидбом се утиче на развој стабала. Сеча се непродуктивни огњени део грана, па су гране равномерно обрасле новом вегетативном масом која на вршном делу носи плодове. Принос је у директном односу с бројем нових летораста. Женски цветови су на врху летораста који су се због прекраћивања у прошлости години развили из пупољака, који би остали неразвијени да није било резидбе.

Због тога ће, ако је више летораста бити више плодова. Више летораста се развије и кад се резидбом гране скарају, из дела који остаје, активирају се пупољци у леторасте.

Код ораха, резидба се изводи у складу с бујном коре, старом стаблу и општом виталношћу. Она мора да омогући бољу осветљеност.

Репродуктивни органи се налазе различити. Они су и на неједнако старој родној граници. Мушки цвет је на прошлогодишњој граници, а женски на врху продуктивних летораста из текуще вегетации. Због тога се плодови ораха налазе по периферији круне. Код неких корака летораст се још јављају на стране (1–2). Ове
Сл. 166 – Родна граница ораха: 1–(A) женски цветен на лейкорасну из шекуће вегетације.
су сорте по правилу родније. Врло је важно да се топографија репродуктивних органа познаје, како би резидбажа ораха била правилно изведена.

Техника извођења резидбе ораха за род треба да спречи огољавање дебљих грана. То се постиже резидбом тањих или дебљих грана. Орах има изражену моћ регенерације. Под повољним условима се активирају спавајући пуполци. Основне гране и гране курине на тај начин не огољавају. Свакако да ову резидбу треба прилагодити узрасту. Врло је значајно да се спречи издуживање грана. На бујним стаблима, то је у млађем узрасту, леторасти у једној вегетацији могу достићи и више од 1 m. На тако развијеном леторасту наредне године, из вршног дела развија се неколико развијених летораста, леторасти који се развијају испод ових су мање бујни и на доњем делу пупољци остaju u латентном стању, и тај део је огољен. То се спречава правилном резидбом.

Дужина на коју се гранчица орезује мора да је у сразмери опште виталности. Код старијих стабала ораха резидбом се уклања и један броj старијих грана и гранчица. Неке се гранчице у основи орезују, док се друге преводе на гранчицу која наставља као продужница.

Једногодишње гранчице по периферији круне се не орезују, оне су носиоци рода.

Како је код ораха ретка круна, нема потребе да се темељна резидба изводи сваке године. Мање интервенције се морају изводити.

Зелена резидба ораха је готово непозната. Ова резидба доприноси бољем и бржем разграњавању и тако спречава огољавање и преношење вегетације по периферији круне.

У вегетацији, према нашим резултатима, зеленом резидбом се остварује боље разграњавање, нарочито у млађем узрасту, Не треба дозволити да се леторасти развију и преко 100 cm, ако се ожужу боље се разграњавају, нема појаве никаквих нежељених последица, а
већа је родност, скоро потпуна замена зимске резидбе, смањују се трошкови производње и др.

На стаблима ораха где је примењена зелена резидба постигуто је 30–40% више нових летораста у односу на неорезани летораст. То значи, толико је повећан биолошки потенцијал родности орезаних летораста.

Зелена резидба се изводи кад леторасти достигну дужину око 40–50 cm. После јуна није препоручљиво њено извођење у свим срединама. У другој половини вегетације, ако се зелена резидба изводи, може доћи до продужења вегетације и до недовољног сазревања летораста.

Резидба лешника за рој

Резидбом се регулише равнотежа између вегетативне и генеративне активности. После десетак година од садње на сталном месту, лешник постепено почиње да смањује виталност, што врло често доводи до нередовне родности. Било је већ о томе речи да се репродуктивни органи налазе на једногодишњим гранчицама и да је њихов број у корелацији са дужином, то значи да та околност намешта предузимање мера којима ће се осигурати довољан број и дужина летораста. У та сврху се препоручује поред других мера и знамачки изведене резидбе. Према многим ауторима најбоље се принос постиже у оним случајевима кад су гранчице дуже од 15 cm. Тако су Painter и Hartman (1958) утврдили да су стабла с дужином граница од 17 до 24 cm дала 5 пута већи принос од стабала са дужином граница од 8 до 16 cm, а ова су имала више плодова за 6 пута, од стабала код којих су границе биле испод 7 cm. Сматра се да је добра равнотежа, ако је код стабала старих 7–8 година дужина граница од 15 до 20 cm, односно код стабала старих 15–20 година 15 cm, и код старјих од 20 година, 10 cm.

Дужина граница – летораста се узима као критеријум у оцењивању виталности стабала у појединим периодима. Не треба губити из вида да је лешник хелиофит и да на принос велики утицај има осветљеност.

Сл. 168 – Родна граница лешника: (a) мужки цвећови и (b) женски цвећ (кломеруза)

У САД – Pointer и Hartman (1958) наводе да сорта барцелона има границе 16,25 – 23,75 см, на којима се формира 89,7% плодова. Није утврђен процент празних плодова у зависности од дужине граница.

У Јужној Француској су изучаване сорте: боливијеров, шпански дуги и родни керпанд у по гледу заступљености броја плодова на граници до 10 см и од 15 до 40 см. Било је највише плодова на границама од 15–40 см. Аутори, који су ово изучавали препоручују да се примешују савремене мере у производњи, којима се подстиче пораст граница.

Највише цветних пунољака формира се при врху и по периферији круне, а то су најбоље осветљени делови. Стога се има на уму да се пра вилно изврши проређивање круне, нарочито унутра шњег дела. У Орегону се практикује сваке пете године интензивна резидба, одстранује се и до 50% круне. Правилно изведена резидба, а то значи довољно интензивна сваке године, доприносит континуираном порасту летораста око 15–20 см, бољо оплодњи, већем приносу и бољем квалитету плодова.
Таб. 51 – Дужина летораста из мешовитих и лисних (вегетативних) пупољака (cm)

<table>
<thead>
<tr>
<th>сорта</th>
<th>положај летораста</th>
<th>дужина летораста из пупољака</th>
<th>мешовитих</th>
<th>вегетативних</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>вршни</td>
<td>5,48</td>
<td>9,70</td>
<td></td>
</tr>
<tr>
<td>1. шпански дуги</td>
<td>средњи</td>
<td>4,27</td>
<td>6,04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>базални</td>
<td>3,83</td>
<td>1,81</td>
<td></td>
</tr>
<tr>
<td>2. боливијеров</td>
<td>вршни</td>
<td>6,74</td>
<td>17,62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>средњи</td>
<td>10,75</td>
<td>8,82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>базални</td>
<td>5,00</td>
<td>10,56</td>
<td></td>
</tr>
</tbody>
</table>

Таб. 52 – Процентуално учешће броја плодова по цвастима

<table>
<thead>
<tr>
<th>сорта</th>
<th>плодова у цвастима</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. боливијеров</td>
<td></td>
<td>50</td>
<td>36</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. косфорд</td>
<td></td>
<td>20</td>
<td>31</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. ламберт филберт</td>
<td></td>
<td>25</td>
<td>31</td>
<td>26</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4. халски шин</td>
<td></td>
<td>59</td>
<td>30</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. римски</td>
<td></td>
<td>22</td>
<td>37</td>
<td>22</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Таб. 53 – Утицај дужине летораста на масу и број плодова у ражвици

<table>
<thead>
<tr>
<th>дужина летораста (cm)</th>
<th>број плодова у ражвици</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>грама</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2,5</td>
<td></td>
<td>3,06</td>
<td>2,85</td>
<td>1,87</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2,6–5,0</td>
<td></td>
<td>3,61</td>
<td>3,38</td>
<td>3,10</td>
<td>3,20</td>
<td>2,70</td>
<td>--</td>
</tr>
<tr>
<td>5,1–7,5</td>
<td></td>
<td>3,76</td>
<td>3,55</td>
<td>3,35</td>
<td>3,20</td>
<td>3,07</td>
<td>2,54</td>
</tr>
<tr>
<td>7,6–10,0</td>
<td></td>
<td>4,24</td>
<td>3,63</td>
<td>3,42</td>
<td>3,37</td>
<td>3,37</td>
<td>3,08</td>
</tr>
<tr>
<td>10,1–12,5</td>
<td></td>
<td>4,36</td>
<td>3,87</td>
<td>3,70</td>
<td>3,59</td>
<td>3,55</td>
<td>3,40</td>
</tr>
</tbody>
</table>

Сматрамо да је нужно да се резидба обавља сваке године, ако не сваке године. Онда сваке друге или треће. Најбоље је да се орезивање врши одмах после опадања лишћа, али водити рачуна да се само јако развијене границице скраћују. Из практичних
разлога се препоручује да се резидба изводи у фази цветања женских цветова, када се види и њихова заступљеност.

 Као мерило виталности стабла, а исто и као критеријум за извођење резидбе, поред окуларне процене о величини прираста, може да послужи и концентрација важнијих хранива ућелијском соку. Сматра се да се не јављају симптоми недостатка или вишка при концентрацији N – 1,91% до 2,31%; P₂O₅ – 0,14% до 0,22% и K₂O – 0,9% до 1,0%. Ово нису резултати за наше услове, због тога их треба узети као оријентацију.

Сл. 171 – Рези обнове вегетативне и рециркулације мисе код лешника,
имајући у угару (1) орезаи у (A). Доле иста драна (1) пос利物
резида
Резидба бадема за рог

Резидба бадема се мање препоручује. Међутим, бадем се по својој биолошкој природи приближава брескви. Његове су, родне, прошлого године границе и најчешће, са доношењем рода на њима се формирају кратки букетићи, који после неколико година изумиру. Развијеније гране огољевају, јер се родно дрво на њима суши и тако се преноси нова вегетативна маса у вршини део грана. Уочавајући ову појаву, пракса је наметнула обрађање пажње на резидбу ради правилнијег и равномернијег задржавања родног дрвета по целој дужини танћих и дебљих грана и граница. Данас се ова помоћничка мера широко примењује у комерцијалним плантажама бадема било да се изводи сваке године или повремено.

Резидба се обавља претежно ручно, комбиновано са машинама и ручно, и уз помоћ пнеуматских маказа. Родне границе се не прекраћују већ се пререпују, и у зависности од опште оптерећености цветом, остави се одређени број родних граница. С обзиром да је бадем воћка коју често могу да угрозе позни пролећни мразеви, увек је
боље да се остави већи број родних грацница него што је потребно, да се добије планирани принос. За планирање приноса треба познавати количину развијених пло-дова у процену цветова - просечно за бадем то је око 15%. Овај се проценат мења по сортама, годинама и услед деловања других чинилаца: примењене технологије, зашти-тите, старости стабла и др.

Резидба бадема је значајан чинилац у регулисању редовне родности као квалитета плодова, па је треба свакако изводити.

Родне граничне бадема су: мајски букетићи, једногодишње родне граничве од 5 до 20 см, мешовите родне граничве 20–30 см, и више годишње кратко дрво. Носиоци рода су мешовите родне граничве. Мешовите родне граничве у укупном приносу доносе род 24,8% и даље, двогодишње – 51,5%, трогодишње – 19,5% и четворогодишње – 4,2%. То значи, да са старошћу родне граничве опада принос.

На одређени начин то треба да буде критеријум за извођење резидбе стабала бадема у роду. Мешовите родне граничве су у ствари и најразвијеније граничве, налазе се по периферији. Уколико је прираст ових граничева испод 15–20 см, потребно је да се и део гране, на којој су и друге категорије родних граничева, орезе до неке граничве, која ће заменити орезану грану. Овом резидбом дођи ће и до активирања једног броја лисних пунољака у нову вегетативну масу, па и нове родне граничве. Правилно изведена

Сл. 173 – Родне граничве бадема (лево) и једна неродна граничва (десно)
резидба бадема сваке године обезбеђује најмање једину тржишну нових мешовитих родних гранцица.

Остале категорије родних гранцица незнатно учествују у доношењу рода. Одумирање мајских букетића, једногодишњих кратких родних гранцица и старијег родног дрвета знатно се убрзава погоршањем режима исхране, светлости и др. Тиме се објашњава и преношење активне вегетативне масе на вршине део основних грана. Родне гранцице се по правилу не скраћују. Скраћују се код младих стабала, кад се жели њихово разграњавање и спречавање преношења стварања вегетативне масе у вршине делове грана.

Резидба кестена за род

Резидба у циљу регулисања родности кестена се мало, и уопште не примењује. Кестен се тек уводи у ширу културу, па се тек и искуства о гајењу ове воћке стичу. Резидба кестена треба да је редовна помотежника мера. Она доприноси пре свега бољем обрастању основних грана, односно спречавању преношења вегетације на вршине део основних грана и уопште, на периферију круне. Активни део круне су леторасти из текуће вегетације, и само су они са лишћем. Кад се ова физиолошка особина узме у обзир, сагледава се први значај резидбе као регулатора размештаја гранцица по целој дужини основне гране. Њено редовно извођење доприноси да се круна мање развије, да је више лишћа најактивнији део круне, и да су принос стабилнији и бољег квалитета. То доприноси и смањењу растојања стабала у плантажи.

Практично извођење резидбе се састоји у прекраћивању појединих старијих грана или њиховом уклањању до основе.

Као и обично води се рачуна да се старија грана преводи на гранчицу, која ће да настави орезану грану. Пошто су родне гранцице по периферији круне, резидбом их не треба скраћивати. Њиховим скраћивањем би се и репродуктивни органи углочили, а то би имало за последицу смањен принос.

РЕЗИДБА ВОЋАКА СА ЈАГОДАСТИМ ПЛОДОВИМА

Досадашњи напори у обнови воћарства на савременим основама, нарочито после 1959. године, нису били подједнаки код свих врста воћака. Воћкама с јагодастим плодовима, у које се убрајају: јагода, малина, рибица, боровица, огрозд, купина и актинидија, посебно је недовољно пажње. Гајење ових врста воћака још је незнатно, па је и производња овог воћа дефинитарна. Њему не могу да се подмире потребе у нашој земљи, а да и не говоримо о могућностима за извоз.

У оквиру ове групе воћака, поједине врсте по морфолошким и физиолошким особинама се разликују. Тако на пример, код јагоде се надземни део сваке године природно обновља, малина доноси род на леторастима из претходне вегетације и после
бербе они изумиру, што значи да надземни део има две вегетације. Остале врсте су као и друге воћке.

С обзиром на морфологију и њихову наследну основу и резидба воћака с јагодастим плодовима је знатно упрощенија. Нема потребе, а код неких врста (малина, купина) ни могућности да им се формира круна. Њихов хабитус је једноставан жбун.

Ове воћке рани пророде, због тога није строго подељена резидба за облик круне и за род. То и чини резидбу јагодастог воћа лакше изводљивом него код других воћака.

Резидба малине

Малине се гаје или као грм – жбун, или у облику шпалира. При узгоју као грм није потребна арматура, односно наслоњ. За шпалирско гајење потребна је арматура која се састоји од стубова и жице. Стубови се постављају на растојању 3 до 5 м. То су обично танви стубови (10 см у пречнику), дужине 2,20 до 2,30 м.

Прва резидба малине је у првој вегетацији после садње на сталном месту. Тек засадене саднице се орезују 15–20 см од површине. У току вегетације саднице се не орезују и нема потребе да се врши интервенција резидбом.

Карактеристично је за малину да јој надземни део живи само две године. Изданак се развија у првој години, а род доноси у другој години. По обављеној бери он се осуши. Летораст су најчешћи на средњем делу. Само неке сорте имају на врховима летораста по који плод. Осим тога, малина даје велики број изданака. Ово треба знати због тога да би се резидба изведа правацно јер те особености одређују начин орезивања малине.

С обзиром на велики број изданака који трају само две године одређује се и број који је нужан за принос идуће године.

У првој години по садњи избија мали број изданака, а у наредној години избија њих више, који се у почетку вегетацију проређују. Проређивање зелених ластара има за циљ да повећа пораст њих, који се остављају да донесу род идуће године.

Овом приликом могу се остављати леторасти и за производњу садница (ако се врши производња садница). Оставља се онолико летораста колико се сматра да је довољно за обезбеђење принос. Колико ће летораста остати зависи од бујности сорте, положаја и плодности земљишта, као и од система узгоја и размака садње. При већем размаку може се оставити већи број изданака у сваком жбуну.

Као што се види, ми смо обавили само проређивање жбун малине и уклонили један број летораста и све осушене леторасте, који су донели род, уколико нису уклањени после бербе плодова. Са овим још није завршена резидба. Потребно је да се остављени леторасти прекрате на одређену висину. Висина прекраћивања ластара зависи од сорте, бујности, примене агротехнике, здравственог стана, оштећења од мраза и сл. Прекраћивање износи просечно 80 до 120 см.
Један од начина повећања приноса је и повећање броја родних ластара по јединици површине, који се при резидби остављају.
Слично малини се орезује и купица.

Слика 174 – Резидба малине: садница се орезује на око 25–30 cm (1), резидба у јошку вегетације (поље бере) (2), резидба у другој вегетацији (3), леилиран (а, б, ц и г) су родни и остављају се за раз у наредној години. Жбун у вегетацији (4)

Резидба рибизле

Рибизла је вишегодишња биљка (15–20 година), жбунастог изгледа. Карактерише се великом снагом борбора и изразитом родношћу. Рађа на прошлогодишњим леторастима, те их треба проређивати; цветни пунољци се диференцирају у јулу. Самополудина је, отпорна према болестима (штеточинама и мразу, издржки и испод –30℃)
Одмах после сађења обавља се прва резидба рибизле. Она се изводи у пролеће и то прекраћивањем садница на 4–6 пунољака. Из ових пунољака у току вегетације развије се леторасти, који се другим резидбом орезују на неколико пунољака, да се жбун више разграњује. У трећој години сви једногодишњи леторасти су родни. Треба напоменути да у једном жбуну треба постепено обнављати гране, старите од 4 до 5 година обавезно се уклањају резидбом. При извођењу резидбе, треба првенствено уклонити леторасти средњег дела жбуна, као и гране које су сувише близу земље. Треба настојати
да у жбуну буде увек обиље једногодишњих летораста. На тај начин је обезбеђена редовна висока родност.

На двогодишњим родним границима се формирају кратке родне граничне. Оне су кратког века, 3–4 године. Њиховим изумирањем, грана оглођева, на вршном делу се преноси вегетативна маса са слабо развијеним леторастима и недовољно родним. У доњем делу се формирају спавајући пупољци.

Оплоди се велики процент цветова. У једном огледу слободном оплодњом било је оплођено 100% према 59% контролисаном оплодњом (Maria Lucka, 1964).

Сл. 175 – Обликовање и резиба црне рибизле у три године. Приликома је означено где се границе орезују.
Резиђа огород

Огород је жбуна осредње величине. Дана се на хиљаде сорти огорода, тако да је тешко упознати и најважније сорте, јер готово свака земља где се гаји огород има свој сортимент.

Најприкладнији начин узгоја је жбуна са или без дебла. Ради украса, могу му се дати и други облици – у виду ниског или високог дебла или пак неке фигуре. Одговара му систем „ограде“, јер се тако постижу и високи приноси. По овом систему треба поставити арматуру од стубова и жице. Вертикално растојање између жице је 30 см, а 25 см од земље треба поставити прву жицу.

Сл. 177 – Огород: аре резиђбе (A), јесене резиђбе (B)
Посађени ограод даће наредне године нове изданке. Следеће две године треба вршити проређивање. Оставља се 10–20 грана. После 6 година треба заменити гране јер постају мање продуктивне. Проређивање се обавља постепено. Код жбунова који су проређивани у односу на жбунове где је било прекраћивање летораста, био је већи принос за 67,5%.

Резидба боровнице

Жбунаста боровница се сади на растојању 1,2 до 1,5 м у реду, и 2,5 до 3 м између редова. За обезбеђено унакрсно опрашивање које даје боље резултате, треба подизати засаде од најмање две сорте.

Боровница почниње да рађа од друге године после садења на сталном месту, а пуну родност наступа после шест године. На добром земљишту и при осталим повољним условима у првих шест година, могу се постићи следећи приноси: у другој години 50 kg; у трећој 200; четвртој 2000; петој 4000 и шестој години око 6000 kg плодова по хектару.

Родне границе боровнице су једногодишње, различите дужине на старијем родном дрвету. Резидбом се родне границе не прекраћују јер су им цветни пупољци при врху. Према наводима, старије родног дрвета обнављају се родне границе. Старија стабла се јаче орезују. То је истовремено подмлађивање стабала боровнице.

Планинска боровница се не орезује.

Боровница се код нас врло мало гаји, па су и искуства са овом врстом воћака скромна.

Резидба актинидије за рог

Актинидија је вишегодишња биљка, чији је век до 40 година. Она припада повијушкама, то је лијана из фамилије Actinidiaceae.

Ова воћка рано почиње да доноси рог. Родни су леторasti из претходне године. Цветови су функционално једнолокни на посебним биљкама. То значи да постоје биљке са женским и биљке са мушким цветовима. У плантажи актинидије се, због тога, ради оплодње мора налазити 8–10% мушких биљака. Фаза цветања је у мају, а плодови сазревају у октобру. Плод је бобица до 100 грама.

Актинидија се гаји уз притку, у шпалеру и по систему перголе. У Новом Зеланду је гаје на растојању 5 m између редова и 6 m између биљака у реду. У Калифорнiji је растојање 7–8 x 6 m, а у Француској, 5 m x 6 m. Растојање зависи пре свега од начина на који се актинидија гаји. За појединачне биљке у плантажи постављају се притке 1,7–2 m висине. За остале начине потребан је наслон као за винову лозу.

Резидба за рог актинидије почиње док још траје формирање облика. Правилно формиран облик треба да има родне чворове на секундарним гранама, рас-
поређеним нанезменично на 30–35 cm. Колико ће бити родних чворова зависи од опште виталности биљке. Сваки родни чвор има родне гранчице. Ове гранчице се орезују на осам пуполака. У вегетацији са зеленом резидбом летораст са родом прекратити на 6–7 листова после крајњег плода.

Наредна зимска резидба се изводи прекраћивањем прошлогодишњих гранчица које су донеле род, на половину. Нови леторasti на резидбом остављеном делу се орезују на лук, као и претходне године. Овај се поступак обнавља 3–4 године, после тога у основи се орезује један чвор ради његове обнове.

Врло је значајна зелена резидба, а изводи се у 2–3 наврата у вегетацији. Прва је непосредно после кретања вегетације. Њоме се уклањају сви непотребни леторasti из текуће вегетације, који на неки начин ометају развој летораста који су потребни.

Слика 178 – Схема резидбе акционице: орезана родна грана на 8–10 пуполака (1) иста родна грана (2) у вегетацији, при чему се желе граности арбе да се орезе у вегетацији, у паредној вегетацији (3). Обнова родне граначе (4) односно замена родне гране (3)
После завршеног цветања треба извршити проређивање летораста и оставити само оне који у наредној години треба да донесу род. Овом приликом врши се прекраћивање летораста из текуће вегетације са граница које доносе род. Леторasti се прекрате на 6–8 листова од крајњег плода.

Йош се препоручује, до краја вегетације да се уклоне сви леторасти из текуће вегетације, који немају функције за наредни род.

Код актинидије се формира релативно мало цветова, али се посредством пчела оплоди велики процент – 90%. Пчеле, не само што повећавају процент заметних плодова, већ доприносе и бољем квалитету. Код сорте хајвард са пчелама, било је у укупном приносу 77% плодова од 80–120 грама, према свега 3%, без пчела.

Сл. 179 – Дешањ орезаног етабла јабуке
МИНЕРАЛНА ИСХРАНА ВОЂАКА
(ЂУБРЕЊЕ ВОЂАКА)

За ђубрење вођака се зна, од како је човек почео да се бави вођарством. Према томе, то је врло стара мера која се у вођарству примењује. Иако је она одавно позната, још нису довољно и сигурно разјашњени многи процеси, нарочито улога хранљивих елемената, начин њиховог искоришћавања и функција коју они врше.

Ђубрење представља основну агротехничку меру, која има за циљ повећање приноса и побољшање квалитета плодова пружањем минералне исхране вођкама. Њиме се поправљају особине земљишта, а утиче и на припремљеност вођака да издраже ниске температуре, као и већу отпорност на сушу, болести и штеточине.

 Вођке су вишегодишње и већином развијене биљке, које за растење и плодоношење траже велике количине минералних елемената. Неопходни елементи (биогени) су: (C) угљен, (O) кисеоник, (H) водоник, (N) азот, (S) сулфур, (P) фосфор, (K) калијум, (Ca) калцијум, (Mg) магнезијум; микроелементи – (Fe) гвожђе, (B) бор, (Zn) цинк, (Mn) манган, (Mo) молибден, (Cu) бакар и (Cl) хлор.

Сви наведени елементи се не налазе у вођкама у подједнаким количинама, па су подељени на марако и микроелементе. Разлике у количинама, односно у садржају, не говоре и о њиховом значају. Обе групе елемената су значајне.

Из ваздуха и воде вођке користе: C, H и O, а из земљишта остале елементе. Корен прима растворене минералне материје путем дифузије, осмозе и контактне измене јона. Биолошка општа коренових длачица је селективан пропустљива. Она лако пропушта воду, ако друге супстамце теже, или никако. За примање минералних супстанци из земљишта није значајна само њихова количина већ и однос. Утврђено је да постоји вишак калијума ако је мало азота, и при још мањој обезбеђености азотом, повећава се упијање фосфора. За упијање минералних супстанци значајна је и pH вредност. Вођке се, у погледу ове вредности, различито понашају.

МАКРОЕЛЕМЕНТИ И ЊИХОВА УЛОГА

Azot (N). — Азот улази у састав белачевина (око 16%), аминокиселина, фосфатида, хлорофила, алкалонда и хормона. Он је саставни део протоплазме. То је један од најзначајнијих чинилаца који регулишу вегетацију и плодоношење вођака.

Вишак азота у земљишту испољава се на вођкама бујним порастом, продужењем вегетације у јесен и смањеном отпорношћу органа на ниске негативне температуре. Вођке, које оскудевају азотом, одликују се сразмерно ситним и бледозеленим
лишћем. Лишће опада превремено. Плодови су ситни и пошег квалитета. Смањује се прираст летораста и опште виталности.

Фосфор (P). — Ово је врло значајан елемен. Улази у састав сложених беланчевина и низа фермената и витамина. Има важну улогу у фотосинтези и дисању. Помаже формирање цветних пунољака и боље сазревање плета и плодова. Недостаци фосфора се тешко уочавају пошто се он налази у готово свим земљиштима. Значи недостатак фосфора слични су знацима недостатка азота.

Калијум (K). — Калијум се нагомилава у ткиву које расте. Његова улога је у правилној деоби хелија, синтези угљених хидрата, беланчевина и хлорофилла. Повољно утиче на крупноћу плодова, боју и количину шећера. Воћке троше калијум у приближним количинама као и азот. Симптоми недостатка калијума исподавају се на лишћу, које се суши по ободу. Изумирање почиње од врха листа. Услед недостатка калијума, слабије се развија и корен.

Сумидор (S). — Саставни је део беланчевина. Има га у свим земљиштима у довољним количинама. Налази се у многим ђубривима и пестицидима, па се посебно не додаје.

Магнезијум (Mg). — Саставни је део хлорофилла. Активира ферменте и учествује у метаболизму угљених хидрата. Недостатак магнезијума исподава се у виду хлорозе која се на лишћу шири од централног нерва према периферији. Може да доведе до опадања лишћа.

Калијум (Ca). — У облику калијум-пектата учествује у изградњи хелијске опине. Од њега зависи чуврстоћа плодова. Приписује му се улога при трансформацији угљених хидрата. Везује оксалну киселину. Недостатак калијума изазива смолоточину. Вишак калијума доводи до физиолошких поремећаја праћених променом боје лишћа — хлороза.

МИКРОЕЛЕМЕНТИ И ЊИХОВА УЛОГА

Иако воћке за свој нормалан развој троше веома мале, тешко мерљиве количине микроелемената, (Fe, B, Mn, Zn, Cu и Mo), нису ретко случајеви да се јавља и недостатак тих елемената, услед чега могу настати слабији или јачи поремећаји, односно физиолошке болести. У таквим случајевима воћкама се морају давати микроелементи који им недостају. Микроелементи су значајни исто као и макроелементи. Њих воћке користе у малим количинама (0,00001 до 0,001% свеже материје). Они делују као регулатори у процесима размене материја и протицања енергије.

Бор (B). — Бор спада међу најзначајније микроелементе. Његова је улога вишеструка: помаже процесе оплодње, побољшава квалитет плодова и омогућава нормалан пораст летораста.
Недостајаћих бора испољава се типичним симптомима: ситно лишиће – розете, нарочито код јабуки и крушке. Овај недостатак се отклања употребом боракса или борне киселине на различите начине. Обично се препоручује по 25 до 45 kg боракса по 1 ha, али се указује и на токсичност ових супстанција када се налазе у земљишту у већој количини него што је потребно (боракси и борати садрже 10,5 до 11,3% бора). Токсичност бора се може свести на мању меру применом већих доза азотних љубрива. Препоручује се да се на киселим земљиштима употреби за јабуке: 114 g боракса на свако десетогодишње стабло; 230 g за стабло од 10 до 20 година; 450 g за стабло старије од 20 година. Кад се примењује борна киселина, дозе треба да износе 2-3 поменутих количина. Ове материје се помешају с финим песком или ситном земљом и рано у пролеће пажљиво и равномерно растуре по површини. На алкалним земљиштима, нарочито при већим воденим талозима, на овај начин се обезбеђују задовољавајући успеси. Због тога треба обавити два прскања раствором јединења бора у концентрацији 0,30 kg на 100 литара воде: прво прскање – кад пупољци набубре, а друго – нешто доције. Ми смо постигли боље резултате додавањем бора преко лишића.

Гвожђе (Fe). – Није саставни део хлорофилата, али је неопходно за његову синтезу. Улази у састав неких фермената. Има важну улогу у процесима дисања и фотосинтезе.

Недостајаћи гвожђа се лако уочава по врло јакој хлорози лишића и успешино се отклања употребом зелене галице. У последње време препоручује се гвожђе-сулфат као мање токсичан. Хлороза се још увек отклања на тај начин што се у мање рупе у стаблу, направљене обичним бургијама, стављају мале количине неког јединења гвожђа, на пример, гвожђе-сулфата. Долада је то и најефикасније средство против хлорозе вођака. Хлороза се може унеколико ублажити гајењем неких узродаца, као што су детелина и луцерка. Међутим, луцерка може бити шкодљива за воће.

Гвожђе се може уносити и директно у земљиште – у истим облицима и под условом да земљиште није сувише алкалне реакције. Гвожђе се може давати преко лицића, нарочито у првом периоду вегетације. Ипак, многи стручњаци тврде да је најефикасније давати гвожђе преко отвора на стаблу. При томе се дубина отвора саобраћава пречнику стабла: за стабло пречника 5 до 30 cm, дубине је 5 cm; за стабло пречника преко 32 cm, дубина рупе је 7,5 cm. У првом случају се у отвор стави 1 грам јединења (гвожђе-цитрата или сулфата), у другом случају 2 g.

Прскање лицића ради отклањања хлорозе, по једноставности употребе и могућности комбиновања с инсектицидима и фунгицидима, представља велико преимућство, али још није постигнута довољна ефикасаност, иако се почело примењивати још почетком овог века.

Манган (Mn). – Регулише оксидоредукционе процесе, убрава транспорт асимилатива и делује позитивно на фотосинтезу. Манган помаже и асимилатији азота
Сл. 180 – Симптоми недостаја: K, Mg, Zn и B
из земљишта. Има сличну улогу као и гвожђе у изградњи хлорофил. У недостатку мангана лишће мења боју, оно је прошарано.

Недостатак мангана надокнађује се у облику MnSO₄ на ова три начина: (1) растурањем у чврстом или раствореном стању по површини земљишта, испод круне воћака; (2) прскањем лишћа 1%-тним раствором MnSO₄ с додатком 1%-тног раствора креча и непшто казеина (ради појачања лепљивости); (3) стављањем мангани сулфата у отворе на стаблу (кад је земљиште алкално или неутрално). Раствор мангани сулфата може се мешати с неким инсектицидом или фунгицидом и ту мешавину давати воћкама преко лишћа.

Бакар (Cu). – Повећава способност ткива да упија воду. Састојак је фермента, помаже процесу фотосинтезе, биосинтезу белачевина и аминокиселина. Ретко се запажа недостатак бакра. Први симптоми су карактеристични по деловима листова који се витопере, суше и касније отпадају.

Недостатак бакра ретко се кад примећује, јер се воћке често прскају бакарним препаратима при сузбијању брљних болести. Али, ако се и поред тога констатује да вршно лишће на леторастима испорава некротичне знако, затим се савија навише и почиње отпадати од врха ка основи, онда треба приступити прскању младог лишћа јачом концентрацијом плавог камена (0,6 kg на 100 литара воде).

Цинк (Zn). – Неопходан је за синтезу аминокиселина и активирање многих фермента. Учествује у биосинтези ауксине.

Недостатак цинка отклања се на различите начине: растурањем једињења цинка (углавном сулфата) по површини земљишта; прскањем воћака растворима цинк–сулфата у току зимског мировања; прскањем лишћа истог једињења у току вегетације; задржавањем неког цинковог предмета у стаблу (до слојева младог ткива дрвета); стављањем цинк–сулфата у отворе на стаблу. Препоручује се растурање 450 до 550 kg цинк–сулфата по хектару сваке пете године, али се при томе ово ђубриво не сме мешати с обичним минералним ђубривима да се не би умањио ефекат цинка. Међутим, прихрањивање воћака цинком преко земљишта може бити потпуно неефикасано, чак и при употреби врло високих доза, од 2 до 2,5 kg по стаблу, те је у том погледу потребна велика опрезност. Код бресака, кајсија, шљива и јабука најбољи успех се постиже раствором цинк–сулфата у току зимског мировања, пре почетка вегетације. Ако су поремећаји услед недостатка цинка јаки, (сусед се врхови летораста) препоручује се јача концентрација цинк–сулфата (6 kg на 100 литара воде); ако су повреде слабије – 3 kg на 100 литара; а ако су врло слабе – 1,2 kg на 100 литара воде.

Молибден (Mo). – Има улогу у регулисању нитрата и фиксацији азота.
ВРСТЕ ЂУБРИВА

У воћарској пракси се користе: органска, минерална и микробиолошка, односно бактеријална ђубрива.

ОРГАНСКА ЂУБРИВА

Ова се ђубрива зову и потпуна, јер садрже све хранљиве супстанце потребне за исхрану воћака. Осим тога, она су извор разне микрофлоре значајне за поправку биолошких особина земљишта. У ова се ђубрива убраја: стојњак, тресет и зелениш (ђубрење гајењем биљака за заоравање).

Стабанак је по квалитету неједнак и зависи од којих домаћих животиња потиче. Најбољи је стојњак од оваца и коња, мање је вредан од говеда и свиња. Добро згогрели стојњак садржи:

- азота (N) 0,50%
- калијума (K2O)
- фосфора (P2O5) 0,21%
- калијума (CaO) 0,50%
- магнезијума (MgO) 0,18% и
- суве материје 0,18%

У њему се налазе и микроселементи, али у знатно мањим количинама. Дејство стојнака траје 3–5 година. У првој години се искористи око 50%, у другој око 30% и у осталим 20%.

Компост је сиромашније органско ђубриво. То су скупљени отпади органског порекла, остављени да ферментирају. Компост садржи око 0,4% азота, 0,2% фосфора и, 0,3% калијума и око 3,8% калијума.

Зеленишно ђубриво (зелениш) у ствари представља гајење биљака које производе велику вегетативну масу која се заорава. О томе је било речи у поглављу о одржавању земљишта у воћњацима.

Глистенак – Lumbrikultura

У новије време се користи једна врста хумуса названа глистенак. То је производ глиста (измет).

Овај хумус је најбоље органско ђубриво за употребу у пољопривреди, шумарству и цвећарству.

Употребљава се око 250 g по стаблу.

Према анализи једне холандске фирме, (CBB Bio Consult Deventer) ова врста хумуса садржи:
- Органске материје 44,00%
- Воде 58,52%
- Азота 1,73%
- Фосфора 1,42%
- Калијума 1,44%
- Калцијума 6,74%
- Магnezијума 0,98%

Може да се користи у чврстом и течном стању. Поред ових ђубрива користи се јаки тресет, осока, фекалије и сл.

МИНЕРАЛНА ЂУБРИВА

Минерална ђубрива се називају још вештачким и допунским. Она садрже један или више биогених елемената. Деле се на проста и сложена, физиолошки кисела, базна и неутрална. Према садржају активне супстанце деле се на азотна, фосфорна и калијумова.

АЗОТНА ЂУБРИВА

Калцијум - амонијум нитрације је најважније азотно ђубриво које се продаје под именом КАН или нитромонозал. Садржи 21% азота (половина у нитратном, половина у амонијачном облику). У њему има 33,4% CaO. Препоручује се за кисела земљишта.

Амонијум сулфат је са 21% азота у амонијачном облику, спорије делује, кисео је. Препоручује се за базична и неутрална земљишта.

Калцијум-нитрат садржи 16–17% азота у нитратном облику. Физиолошки је базан, брзо делује. Ово ђубриво погодно је за прикрашивање.

Амонијум нитрат има 34% (по половину у амонијачном и нитратном облику). Физиолошки базно делује.

Карбамид (уреа) је концентровано ђубриво са 46% азота. Делује брзо. Физиолошки је базно.

ФОСФОРНА ЂУБРИВА

Суверфосфат садржи 16–18% P₂O₅ и физиолошки је кисело ђубриво, које се теже раствара.

Томасово брашно је барно ђубриво са 16–18% P₂O₅, 7–10% CaO и 6–8% FeO. Теже се раствара.

Троструки суверфосфат садржи 42–48% P₂O₅. То је високо концентровано ђубриво.
КАЛИЈУМОВА ЂУБРИВА

Калијум-суђаи је физиолошки неутраплан ђубриво. Има 48–52% К₂О. Калијум-карбонат садржи око 60% калијума. Популација-кал садржи 26–30% K₂O и 25–28% MgSO₄. Физиолошки је неутраплан ђубриво.

Калијумова 60% је калијум хлорид са 58–62% K₂O. Поред ових постоје и низ других калијумових ђубрива.

КАЛЦИЈУМОВА (КРЕЧНА ЂУБРИВА)

Кречњак је природни материјал са 70–90% CaCO₃. Употребљава се у виду трака.

Живи (їечени) креч добија се печењем креча на 800-1000°C. У течном CaCO₃ износи 90-95% и врло је хигроскопан.

Сајерација му ђ добија се као споредни произвог при производњи ћебера. Просечно садржи 42–45% воде, 20–25% CaO и око 15% органске материје.

БАКТЕРИЈАЛНА (МИКРОБИОЛОШКА) ЂУБРИВА

У новије време употребљавају се и специјална бактеријална ђубрива у виду различитих препараата који представљају чисте културе одређених бактерија. Користан утицај ових ђубрива на развитак коре условљен је појачањем фиксирања азота у земљишту.

Од бактеријалних препараата најпознатији су и најраспрострањенији "азотен" ("азотобактерин") и "нитратин". Први се налази у облику сувог прашка и представља чисту културу азотобактера на песку. Препоручује се обично 3–5 kg по хектару. Међутим, у воћарству се још не располага добровољним искуством да би се добила тачна оцене њихове ефикасности.

Постигнути резултати су добри код третирања расада јагода препаратом "азотен". Овај препарат се употребљава на једноставан начин: направи се водена суспензија, у којој се жиле сејанца држе 1–2 часа, па се потом саде као и нормално.

ЂУБРЕЊЕ ВОЂАКА КОМПЛЕКСНИМ ЂУБРИВИМА

Комплексна минерална ђубрива садрже два или три хранљива састојка (азот–N, фосфор–P и калијум–K) неопходна билкама.

Добра особина ових ђубрива је у томе што су лако растворљива. Нарочито је драгоцено то што је фосфор растворљив у води, било да се налази у двојним или
тројним комплексним ђубрилим. Комплексна ђубрила са фосфором растворљивим у води, имају скоро универзалну примену: са истим успехом се могу користити на киселим, неутралним и алкалним земљиштима. Особина комплексних ђубрила, да се лако растварају, посебно је значајна за наше типове земљишта и наше поднебље. Пошто су суште прилично честе, потпуна растворљивост ових ђубрила гаранција је да ће и у сушним годинама имати добро дејство.

Производе се и комбинације са истим количинама хранљивих елемената као што су: 8:8:8; 10:10:10; 14:14:14; 17:17:17 или већим учешћем азота 17:8:9, 16:8:16, 18:6:6. Веома је значајно у којем се облику налазе поједини хранљиви елементи у сложеним ђубрилим. За основно ђубрење боље је да се азот налази у амонијачном облику, јер дуже делује, а мање се испира, фосфор, растворљив у води даје боље резултате. Калијум је бољи ако се налази у облику сулфата или нитрата.

Мешана ђубрила се састоје од два или више појединичних ђубрила. Сва се ђубрила не могу мешати. Тако нпр. не могу се мешати: КАН са амонијум сулфатом и калијум нитратом. Амонијум сулфат са калијум сулфатом, калијум нитрат са амонијум сулфатом, калијум нитрат са амонијум сулфатом, карбонидом и суперфосфат.

Суперфосфат са калијум нитратом, карбонидом и томасовим брашном.

ФАКТОРИ КОЈИ УТИЧУ НА УСВАЈАЊЕМИНЕРАЛНИХ ЕЛЕМЕНАТА

Проблем усвавања минералних елемената мора се сматрати с физиолошког становишта уз учешће надземног и подземног дела воћака.

Ефикасност искоришћавања хранива од стране воћака може се окрахтери-сати:

- садржајем одређених хранива у јединици суве материје воћке;
- изношењем минералних елемената од стране воћака по јединици површине;

- односом појединих елемената који су усвојени.
Богатство и плодност земљишта утиче на реаговање усајања унесених минералних елемената. Свакако да је усајање ових елемената боље на сиромашнијем земљишту.

Одатно је познато да врсте воћа, па и сорте, имају специфично понашање које долази до пуног изражавају и у њиховој исхрани. Због тога су и наведени показатељи различити.

Температура утиче на све физиолошке, биохемијске и друге процесе код вилица, па и на усајање јона, односно ефекат минералних јубрива. Сви се јони не усајају при истим температурама.

Установљено је да се при температури између 10° и 12° прво усајају јони фосфора, затим калијума, па тек азота и калијума. Ансорбиција јона је најутилитизована између 15° и 25°. Уколико је температура око 25°, апсорбиција је за калијум, у односу на температуру око 13° већа 3–4 пута, за нитратни облик азота 14 пута, а за фосфор и калијум 4 пута.

У светлу ових података треба тражити и објашњење за различите ефекте од минералне исхране вилица, попут се током године температуре земљишта меня, а оно и усајање Јона. Извездан је да је најболе усајање јона при температури од 7 до 21°C. Усајање јона престаје на 32°C јер је активност корена минимальна.

При оптималним температурама усајање јона је брже пошто се узрива синтеза белечевина и других једињена у чијем саставу учествују усвојени јони. Јони на тај начин ослобађају место и на њихова места долазе нови јони из спољне средине.

С повећањем температуре повећава се дисање, што доводи до повећања органских киселина. Заступљеност органских киселина изнад одређене количине је штетна, али ту штетност унетрализује калијум јер се његови јони тада брже усајају.

Алкална реакција земљишта – pH изнад 7, обично је прашена великом садржајем (Ca) калијума и доводи врло често до блокирања усајања (K) калијума, (Mg) магнезијума, (Na) бора, (Zn) цинка и (Fe) гвожђа.

Често се антагонистички понашају N: P, N: K, K: Mg, Fe: Mn, Zn: Mg и P: Zn. Кад се поремети повољан однос, долази до сложених поремећаја и тешких последица у исхрани вилица.

Данас је добро проучен утицај pH вредности на усајање појединих елемената. За највећи број вилица оптимална вредност pH између 5,5 и 7 (таб. 54).
Таб. 54 — Вредности pH и искоришћавање хранљивих елемената

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>до 7</td>
<td>6–8</td>
</tr>
<tr>
<td>B</td>
<td>N</td>
</tr>
<tr>
<td>Cu</td>
<td>P</td>
</tr>
<tr>
<td>Mn</td>
<td>K</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
</tr>
</tbody>
</table>

На усвајање јона и ефикасност минералне исхране утичу: начин одржавања земљишта, микрофлора, обезбеђеност водом, аeração и др.

ПОТРЕБЕ ВОЋАКА ЗА ПОЈЕДИНИМ ХРАНИВИМА

Постизање високих приноса је условљено претежно режимом исхране. Велике количине хранива се плодовима, изградњом нових органа и ткива, износе из земље. Постоје разлике међу воћкама у погледу осиромашавања земљишта хранљивим елементима.

Таб. 55 — Количина хранљивих елемената коју воћке годишње из земљишта изнесу (u kg)

<table>
<thead>
<tr>
<th>врста воћака</th>
<th>N</th>
<th>P2O5</th>
<th>K2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>јабука</td>
<td>57,7</td>
<td>15,7</td>
<td>61,6</td>
</tr>
<tr>
<td>крушка</td>
<td>33,0</td>
<td>7,8</td>
<td>37,0</td>
</tr>
<tr>
<td>дуња</td>
<td>50,4</td>
<td>17,4</td>
<td>63,8</td>
</tr>
<tr>
<td>бресква</td>
<td>83,5</td>
<td>20,2</td>
<td>80,7</td>
</tr>
<tr>
<td>шљива</td>
<td>33,0</td>
<td>9,5</td>
<td>42,6</td>
</tr>
</tbody>
</table>

Воћке иносе из земљишта највише калијума, а сразмерно, најмање фосфора. Воћке реагују на азотно ђубриво, јер га у земљишту редовно нема довољно; на калијум реагују на лаким земљиштима, а на фосфор, кад се гаје на слабо бујним подлогама.

Неједнако су заступљени поједини елементи у деловима, односно органима јабуке што се види из доње табеле.

Само су фосфор, калијум, бакар и бор испод 50% заступљени у лишћу, док су сви остали елементи изнад ове вредности. Интересантно је истаћи да фосфор учествује у свим деловима подједнако, што није случај са осталим елементима.
Таб. 56 – Процентуална заступљеност микро и макроелемената у неким деловима јабуке (Rogers, 1952)

<table>
<thead>
<tr>
<th>орган</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>MgO</th>
<th>Fe</th>
<th>Ca</th>
<th>Zn</th>
<th>Mn</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>плод</td>
<td>23</td>
<td>33</td>
<td>43</td>
<td>2</td>
<td>10</td>
<td>15</td>
<td>43</td>
<td>16</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>дрво</td>
<td>23</td>
<td>33</td>
<td>14</td>
<td>43</td>
<td>18</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>лишће</td>
<td>34</td>
<td>33</td>
<td>43</td>
<td>55</td>
<td>72</td>
<td>64</td>
<td>38</td>
<td>68</td>
<td>68</td>
<td>46</td>
</tr>
</tbody>
</table>

ОДРЕЂИВАЊЕ НОРМИ ЂУБРИВА

Ђубрење воћака треба усагласити са њиховим потребама. Врло је тешко одредити количину ђубрива за минералну исхрану воћака. Ђубрење мора да је у складу са особинама земљишта, климом, начином гајења воћака, жељеним приносом и његовим квалитетом, особинама ђубрива и општом технологијом.

Норме ђубрења воћака не могу се шаблонирати. Да би се приближно тачно одредили норме ђубрива, треба узети више категорија. Узима се у обзир плодност земљишта, узраст и виталност воћке, принос у претходној години, планирани принос, могућност наводњавања, примењени степен резидбе и сл. Одређивање норми ђубрива је могуће и на основу хранљивих елемената изнесених у претходној години, додајући томе нове количине које ће бити изнете, као и количине потребне за изградњу нове вегетативне масе.

Одавно је позната и метода, која се заснива на концентрацији хранива у ћелијама листа, тзв. фолијарна анализа. Анализом лишћа се долази до резултата о заступљености појединих хранива у њему. То је уточњавање стања исхране. У неким земљама утврђени су стандарди за минималне, оптималне и максимальне вредности хранљивих материја у лишћу.

Таб. 57 – Садржај азота у лишћу неких сорти јабука

<table>
<thead>
<tr>
<th>сорта</th>
<th>пре плодоношења</th>
<th>почиста родност</th>
<th>пуна родност</th>
</tr>
</thead>
<tbody>
<tr>
<td>златни делишес,</td>
<td>2,4-2,6</td>
<td>2,0-2,2</td>
<td>1,8-2,0</td>
</tr>
<tr>
<td>макингтон, спартан</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>црвени делишес и др.</td>
<td>2,4-2,6</td>
<td>2,0-2,4</td>
<td>1,8-2,2+</td>
</tr>
<tr>
<td>црвени делишес (спер типови), смпайер</td>
<td>2,4-2,6</td>
<td>2,2-2,4</td>
<td>2,2-2,4+</td>
</tr>
</tbody>
</table>

+ За услове са дужом вегетацијом и где плодови могу да буду обојенији
Таб. 58 – Количина макроелемената које се годишње изнесу са плодовима јабуке и крушка у kg/ha

<table>
<thead>
<tr>
<th>врста и сорта</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>јабука</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>црвени делишес</td>
<td>20,6</td>
<td>6,4</td>
<td>56,5</td>
<td>4,4</td>
<td>2,2</td>
</tr>
<tr>
<td>златни делишес</td>
<td>21,2</td>
<td>4,0</td>
<td>119,6</td>
<td>4,4</td>
<td>3,7</td>
</tr>
<tr>
<td>хокс оранж</td>
<td>10,4</td>
<td>3,1</td>
<td>33,6</td>
<td>1,2</td>
<td>1,8</td>
</tr>
<tr>
<td>крушка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>дацис</td>
<td>10,1</td>
<td>1,6</td>
<td>18,7</td>
<td>1,8</td>
<td>1,8</td>
</tr>
</tbody>
</table>

ФОЛИЈАРНА АНАЛИЗА КОД ВОЂАКА У ЦИЉУ ОДРЕЂИВАЊА НОРМИ ЂУБРИВА

Фолијарном анализом се утврђује тренутно стање тј. концентрација јона елемената у ћелијском соку листа вођака. Она даје резултате који означавају:
- мањак хранива,
- садржај испод нормале,
- садржај изнад нормале и
- вишак хранива.

Резултати фолијарне анализе од посебног су значаја за израчунавање табеларног индекса (J). Овај се индекс израчунава по формули

\[J = \frac{x}{s} \cdot 100, \text{ где je} \]

\[x \] = садржај хранива утврђен анализом у листу,

\[s \] = стандардна вредност хранива утврђена за сваку врсту, чак и сорту вођака.

Из следећих примера види се како се врши обрачун.

1. Пример обрачуна (N) у листу вишње
 Анализом је утврђено, \(x = 2,3\% \); \(N = 2,8\% - N \)

\[J = \frac{x}{s} \cdot 100 = \frac{2,3}{2,8} \cdot 100 = 72\% \] односно недостаје 28% јединица (100 - 72 = 28).

Норму ђубрива, која је уобичајена треба повећати за 28%. Уколико се овим обрачуном добија вредnost табеларног индекса већа од 100, за ту већу вредност, норму ђубрива треба смањити.
2. Пример обрадуна (K) у листу вишње

Садржај (K) у листу је 1,18% – (K)
стандардна вредност за вишњу је 1,50%. Табеларни индекс је

\[J = \frac{x}{s} \cdot 100 = \frac{1,18}{1,50} \cdot 100 = 79\% \text{ или } (100 - 79 = 21\%) \]

Недостаје 21% односно, јединица за колико процената треба повећати норму ђубрива. Уколико је табеларни индекс изнад 100, за ту вредност треба смањити норму ђубрива.

3. Пример обрадуна за (P):

Садржај (P) у листу је 0,19% а стандард је 0,22%. Табеларни индекс је:

\[J = \frac{x}{s} \cdot 100 = \frac{0,19}{0,22} \cdot 100 = 86\% \text{ или } (100 - 86 = 14\%) \]

За 14% се повећава норма ђубрива. Ако је ова вредност изнад 100, за толико се смањује норма ђубрива.

Табл. 59 – Стандардне вредности елемената у листу ниских воћака (Stils and Reid, 1995)

<table>
<thead>
<tr>
<th>елемент</th>
<th>врста воћака</th>
<th>садржај елемената – стандард (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>а) неродна млада стабла јабуке и крушка</td>
<td>2,4–2,6</td>
</tr>
<tr>
<td></td>
<td>б) јабука и крушка у почетној фази родности</td>
<td>2,2–2,4</td>
</tr>
<tr>
<td></td>
<td>в) јабука и крушка у фази шарка плода</td>
<td>1,2–2,2</td>
</tr>
<tr>
<td></td>
<td>г) јабука и крушка, фаза зрелости плодова</td>
<td>2,2–2,4</td>
</tr>
<tr>
<td>N</td>
<td>д) трешња, вишња, шљиви и касија</td>
<td>2,4–3,4</td>
</tr>
<tr>
<td>N</td>
<td>ћ) бресква</td>
<td>3,0–4,0</td>
</tr>
<tr>
<td>P</td>
<td>е) две врсте воћака у роду</td>
<td>0,13–0,33</td>
</tr>
<tr>
<td>K</td>
<td>ж) све врсте воћака у роду</td>
<td>1,35–1,85</td>
</tr>
<tr>
<td>ниво заступљености</td>
<td>%</td>
<td>ppm</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>ниво заступљености</td>
<td>%</td>
<td>ppm</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>K</td>
</tr>
<tr>
<td>Шљушник</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.8</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Орах</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>2.8</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Пекан</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>2.8</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Баламе</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Објашњење: 1 – испод нормале; 2 – нормалан; 3 – изнад нормале; 4 – висок
За одређивање хранљивих елемената у стаблу воћака, узима се њихов садржај у лишућу, са гранчица из текуће вегетације. Веома је важно, да се приликом прикупљања узора за анализу, поступа на исти начин при сваком узимању узора. Лишуће за анализу се узима са средњег дела летораста и то 60–70 дана после прецветавања. Лишуће узето за анализу после овог рока, имаће мање вредности, односно ако се врши анализи лишућа пре поменутог рока или ако се у року узима младо лишуће, добивени резултати биће нереални, показиваће веће вредности. У једном и у другом случају су резултати нетачни.

Код резултата анализе треба имати на уму да постоје разлике између сората, затим у оквиру исте сорте, од старости стабла и разлике у намењеној употреби плодова.

На пример, количина азота (N) у лишућу, у нивоу од 2,4 до 2,6 или више, може бити довољна да обезбеди одговарајући пораст и развијеност младих стабала јабуке. Количине 2,2–2,4% су довољне за стабла у почетку родности, при томе се обезбеђује и пораст и квалитет плодова. Стабла у пуној родности захтевују мање азота, (чије количине зависе од сорте: сорта златни делишес 1,8–2,0% и 2,2–2,4%, спартан, емпареј, делишес и њихови мутанти).

Што се азота тиче, на његов мањи садржај у лишућу утичу: недостатак важности у земљишту услед недовољних падавина или слабијег наводњавања, закоровљене површине између редова и сл. Важан чинилац је и оштећеност стабла, дебла и корена. Повреде ове врсте значајно утичу на апсорпцију воде а самим тим и на трансплазацију азота, изазивајући мањи садржај азота у лишућу. Садржај азота у лишућу је у корелацији са приносом по стаблу, мањи приноси утичу и на мањи садржај азота у лишућу. Нижи садржај у лишућу је последица „разблајивања“ азота или његове дистрибуције на повећани вегетативни пораст. Повећана концентрација азота у лишућу стабала са великим приносом, значи смањење вегетативног пораста.

На заступљеност азота у лишућу утиче и заступљеност: бакра, чинка и неких других, који ограничавају вегетативни пораст што повећава концентрацију азота у лишућу. Под таквим условима, додавање азота неће утичати на повећање пораста, шта више, може довести до још израженијих симптома недостатка елемената од којих зависи ограничен пораст.

Ако је пораст гранчица у прошлости вегетације износио, код јабука 15–20 cm за „спер“ типове, односно 20–25 cm за остали сорте, сматра се да је задовољавајући садржај азота.

Одређивање количина хранива као и њиховог односа методом фолијарне анализе, захтева комбиновање анализе и других делова воћке као и то што се узима у обзир прошлодневни принос, услови гајења, примена технологије, начин производње, висина приноса и др. Узимањем свих чинилаца, направи се програм за комбинацију и тако се одређује норма и однос хранива. У последње време користе се и такве
компјутерске методе којима се прецизно одредеју норме хранива, у ствари, воћке се хране, јер им се даје онолико хранива колико им је потребно.

Проблем минералне исхране воћака у последње две деценије је знатно изменењен, тако да се већ утиче на исхрану одговарајућег органа с посебном наменом, фаворизујући исхрану појединих органа у одређеним фазама њиховог развоја. На пример, треба успорити пораст вегетативне масе у почетку вегетације да би се плодови боље развијали. Иначе, у том периоду су вегетативна маса и пораст плодова у конкурентском односу. Из овога се види и сасвим нов прилаз за одређивање појединих хранива воћака.

Осим тога, увек се мора водити рачун у које се сврхе уносе хранива и у које време. Ради боље оптималне, довољне количине азота треба да има воћка у фази цветања, то значи да је обавезно уношење овог хранива око 3–4 недеље преочекиваног цветања, итд. Најчешће, воћке одређена хранива депонују у поједине органе и по потреби их користе. Ово је очигледно као се посматра динамика азота по месецима. Најмање је азота у органима воћке у вегетацији.

НЕКИ ОД НАЧИНА ЗА ОДРЕЂИВАЊЕ НОРМИ ЂУБРИВА

Врло је значајно да се правилно одреде количине хранива које треба дати воћкама на један од могућих начина.

Ево неколико начина за одређивање норми хранива, који нису много комплексовани и успешно се могу применити:

– одређивање потреба слободном проценом прираста, изгледом лишћа, приносума и сл.;
– одређивање потреба на основу изношења хранива приносом. Овако израчунатој количини треба додати и количине уграђене у ткиво (ове могу изношити и до 60%);
– анализу земљишта је поуздан показатељ обезбеђености земљишта важним елементима.

Обрачунатим количинама – нормама, увек се додаје и један процент више због тога, што се унесена норма сасвим не искористи. На коефицијент искоришћавања делује велики број чинилаца.

ВРЕМЕ ЂУБРЕЊА ВОЂЊАКА

С обзиром на различите услове, случајеве и потребе, ђубрење се примењује у јесен, у пролеће и у току лета. Јесене и пролећне ђубрење практикује се у воћарству од давине, док се летње ђубрење препоручује у новиње време у виду чешћег прихрањивања воћака.
Таб. 61 – Количине јединичних ђубрива потребне за одређени садржај активне матрице у сложеним ђубривима (за 1 тону производа)

<table>
<thead>
<tr>
<th>% активних материја у сировини</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>250</td>
<td>312</td>
<td>375</td>
<td>437</td>
<td>500</td>
<td>562</td>
<td>625</td>
<td>687</td>
<td>750</td>
<td>812</td>
<td>875</td>
<td>937</td>
</tr>
<tr>
<td>17</td>
<td>235</td>
<td>295</td>
<td>353</td>
<td>412</td>
<td>471</td>
<td>530</td>
<td>588</td>
<td>648</td>
<td>706</td>
<td>775</td>
<td>824</td>
<td>883</td>
</tr>
<tr>
<td>18</td>
<td>222</td>
<td>277</td>
<td>333</td>
<td>388</td>
<td>444</td>
<td>499</td>
<td>556</td>
<td>601</td>
<td>667</td>
<td>721</td>
<td>778</td>
<td>832</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>550</td>
<td>600</td>
<td>650</td>
<td>700</td>
<td>750</td>
</tr>
<tr>
<td>21</td>
<td>190</td>
<td>237</td>
<td>286</td>
<td>332</td>
<td>381</td>
<td>427</td>
<td>376</td>
<td>523</td>
<td>571</td>
<td>618</td>
<td>667</td>
<td>713</td>
</tr>
<tr>
<td>30</td>
<td>133</td>
<td>167</td>
<td>200</td>
<td>233</td>
<td>267</td>
<td>300</td>
<td>333</td>
<td>367</td>
<td>400</td>
<td>433</td>
<td>466</td>
<td>500</td>
</tr>
<tr>
<td>33</td>
<td>121</td>
<td>151</td>
<td>182</td>
<td>212</td>
<td>242</td>
<td>272</td>
<td>302</td>
<td>333</td>
<td>263</td>
<td>394</td>
<td>425</td>
<td>455</td>
</tr>
<tr>
<td>35</td>
<td>114</td>
<td>143</td>
<td>171</td>
<td>200</td>
<td>228</td>
<td>257</td>
<td>285</td>
<td>315</td>
<td>343</td>
<td>372</td>
<td>400</td>
<td>428</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>175</td>
<td>200</td>
<td>225</td>
<td>250</td>
<td>275</td>
<td>300</td>
<td>325</td>
<td>350</td>
<td>375</td>
</tr>
<tr>
<td>42</td>
<td>95</td>
<td>119</td>
<td>143</td>
<td>167</td>
<td>190</td>
<td>214</td>
<td>238</td>
<td>262</td>
<td>286</td>
<td>310</td>
<td>333</td>
<td>257</td>
</tr>
<tr>
<td>45</td>
<td>89</td>
<td>111</td>
<td>133</td>
<td>155</td>
<td>178</td>
<td>200</td>
<td>222</td>
<td>244</td>
<td>266</td>
<td>289</td>
<td>312</td>
<td>333</td>
</tr>
<tr>
<td>46</td>
<td>87</td>
<td>109</td>
<td>130</td>
<td>152</td>
<td>174</td>
<td>196</td>
<td>217</td>
<td>239</td>
<td>261</td>
<td>282</td>
<td>304</td>
<td>325</td>
</tr>
<tr>
<td>48</td>
<td>84</td>
<td>105</td>
<td>126</td>
<td>147</td>
<td>168</td>
<td>189</td>
<td>210</td>
<td>231</td>
<td>252</td>
<td>273</td>
<td>244</td>
<td>315</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>160</td>
<td>180</td>
<td>200</td>
<td>220</td>
<td>240</td>
<td>260</td>
<td>280</td>
<td>300</td>
</tr>
<tr>
<td>58</td>
<td>69</td>
<td>86</td>
<td>103</td>
<td>120</td>
<td>138</td>
<td>155</td>
<td>172</td>
<td>190</td>
<td>207</td>
<td>224</td>
<td>242</td>
<td>259</td>
</tr>
<tr>
<td>60</td>
<td>67</td>
<td>83</td>
<td>100</td>
<td>117</td>
<td>133</td>
<td>150</td>
<td>167</td>
<td>183</td>
<td>200</td>
<td>217</td>
<td>233</td>
<td>250</td>
</tr>
</tbody>
</table>
Јесене ђубрење се највише примењује кад су у питању теже растворљива фосфорна и калијумова ђубрива. С већим количинама азотних ђубрива, оно најчешће има и неке неповољне последице: нитрати се могу у претераној мери испратити, нарочито при обилијим воденим талозима, а може се умањити и отпорност воћака према мразевима. Међутим, у сувим јуних пределима до испирања нитрата не долази чак ни на псковитим земљиштима.

Пролећно ђубрење такође има значаја с обзиром на услове средине, особине ђубрива и стање воћака. Оно се намење као неопходно и корисно, нарочито при вишекратном ђубрењу воћака. Обавља се на неколико недеља пре цветања. У пролеће се ђубри азотним ђубривима.

Летње ђубрење делује врло корисно на развитак плодова и образовање цветних пупољака. Међутим, оно се мора опрезно применити. Ако се изврши доциње — крајем лета и почетком јесени — њиме се може изазвати друго растење летораста, што умањује отпорност воћака према мразевима. То зависи највише од бујности, роdnosti и времена завршетка вегетације као наследне особености. Ипак га треба применити код воћака јако оптерећених родом и склоних наизменичном рајању, јер се тада омогућује образовање већег броја цветних пупољака и ублажује наизменично рајање.

Прихрањивањем се воћкама пружају потребни минерални елементи током читаве вегетације, а не само у јесен и у пролеће, као што се највише практикује. Прихрањивање воћака може бити успешно само азотним ђубривима, јер су она растворљива и покретљива па лакше пролазе у алкално пролазе у алкално. Разумљиво је да је то могуће само при оптималној влажности земљишта.

Младе неродне воћке прихрањују се у три рока ради обезбеђења доброг прираштава и развитка кружне: рано у пролеће; у почетку растења летораста и при најинтензивнијем растењу летораста. Али, ако су воћке бујне а услови средине омогућују дуже трајање вегетације, треба прихрањивање није потребно.

Коптичање воћке треба прихрањивати рано у пролеће, у почетку растења летораста и после бербе. У свим овим случајевима, најчешће се употребљава азотно ђубриво (40 kg активне материје по хектару).

НАЧИНИ ЋУБРЕЊА ВОЂАКА

Воћке се могу ђубрити на различите начине. Препоручују се они који имају највећу ефикасност.

Корисност ђубрења воћака зависи много и од начина пружања ђубриза воћкама. Начин ђубрења, односно поступак којим се потребни минерални елементи стављају воћкама на располагање, зависиће: од врсте ђубрива (органска или минерална, чврста или течна, директна или индиректна, непопутна или попутна, растворљива или нерастворљива, проста, сложена или мешовита); затим, од особине земљишта и његове
површине (ледина или углар); од особености корена у вези са врстом и узрастом воћака; климатских услова; циљева који се желе постићи, итд.

У том погледу нарочито јак утицај имају неједнака покретљивост појединих елемената у земљишту и дубина кореновог система воћака, који при том захвата и велику ширину. Кретање појединих елемената је врло неједнако и зависи од низа чинилаца, као што су: природа ђубрива и особености елемената, физичке особине земљишта, итд. Утврђено је да су азотна ђубрива, а од њих нарочито нитратна, веома покретљива и подложна испирању, док се калијумова и фосфорна одликују тешком покретљивошћу, јер се фосфор и калијум обично фиксирају у слоју у који се унесу.

Сл. 181 – Начини уношења ђубрива: (1) расипач минералних ђубрива, (2) инжекцијом, (3) геозондиранjem, (4) наношењем жрскањем, (5) исто у крову у руђе и бранзици
С обзиром на изложене особености ђубрива и воћака као вишегодишњих биљака, посебно се обраћа пажња на циљеве који се желе постићи ђубрењем. С тим у вези треба разликовати:
- ђубрење приликом сађења воћака,
- ђубрење ради одржавања воћака,
- ђубрење ради регенерације воћака,
- ђубрење воћака у селекцији и
- ђубрење воћака у воћним расадницима.

Према томе, примењују се и одговарајући начини уношења ђубрива у земљиште: дубоко заоравање пре подизања воћњака, а приликом сађења воћака изнад и испод жила; затрпавање ђубрива око младих воћака; стављање ђубрива у рупе и кружне канали (испод воћака); стављање ђубрива у браздице између редова воћака; растурање ђубрива машинално – расипачима у пантелјике и заоравање; растурање ђубрива по целој површини и заоравање.

Течна ђубрива се могу давати на следеће начине:
- разливашем по површини земљишта или сипањем у рупе и браздице око воћака,
- помоћу различитих убризгача и сонди под притиском,
- стављањем ђубрива у воду за наводњавање,
- сипањем раствора у косе отворе на стаблу,
- убризгавањем раствора под кору, односно у ткиво најмањег дрвета и
- прскањем лишћа воћака.

Сл. 182 – Инјекција ђубрива течним
На ове начине могу се успешно давати различита минерална ђубрива, а од давнина је овако уношена осока у разбlagenом стању.
Исхрана воћака преко листа је савремени начин интервенције у случајевима кад воћке показују симптome недостатка неких елемената. Недостатак микроселемената може изазвати низ неповољних последица уколико се благовремено не интервенише. Примена фолиарне исхране, комбинована са третирањем против болести и штеточина, може лако и брзо да отклони последице због недостатка ових елемената.
Земљишту најчешће недостају бор и гвожђе, чији се симптоми брзо уочавају. Ови симптоми могу да се појаве током целе вегетације. Заједно са третирањем заштитним средствима може се комбиновати и третирање за фолиарну исхрану (Wuxal, Folifertil, Fertigal и др. у концентрацијама које су назначене на сваком омоту са упутством за употребу).
 Воћке се обезбеђују микроелементима у различитим облицима: у праху, кристалу или таблетама. Количина препарата и начин употребе дају се у упутству које се добија уз препарат.

ЗАШТИТА РАДНИКА ПРИ РАДУ СА МИНЕРАЛНИМ ЂУБРИВИМА

Заштита радника при раду са минералним ђубривима регулисана је Правилником о заштити на раду у пољопривреди. У чл. 92 овог правилника предвиђено је да се ђубрива чувавују у папирнатим и пластичним врећама у слоју до 2 м. Ако су ђубрива расута, морају се чувати на даскама 15–20 см подигнутим од патоса у посебним складиштима.
Ако су у расутом стању, ђубрива се превозе покривена до складишта да се не растуре.
Радници морају претходно да се упознају с начином руковања ђубривима, њиховим особинама и мерама заштите.
Постоје посебни прописи којима се регулише контрола квалитета вештачких ђубрива.
НАВОДЊАВАЊЕ ВОЂАКА

Још у античко доба људи су знали за благотворно дејство воде на биљке, те су је обилато користили. Интензивна производња све се више ослања на наводњавање као значајан чинилац у остваривању високих приноса. Оно је у аридним и семиаридним подручјима неопходно. Данас се највише наводњавају воћњаци у САД – Калифорнија, Италији, северној Африци, СССР–у и др. У Југославији се последњих година наводњавању поклања више пажње. Изграђени су велики системи за наводњавање пољопривредних култура међу које спадају и воћке, као што је Дунав–Тиса–Дунав и много других мањих система.

ОДРЕЂИВАЊЕ ПОТРЕБНИХ КОЛИЧИНА ВОДЕ

Воћке троше део капиларне воде између тачке вењења и еквивалентне влажности. За њихов нормалан развој потребно је да имају довољне количине лако приступачне воде. При томе се поставља проблем: када и колико воде треба дати? На ово питање се може одговорити након испитивања количине годишњег падавина и равномерности њихове дистрибуције током године.

Низ чинилаца утиче на количину потрошње воде од стране воћака. У овоме је највећи утицај врсте, па чак и сорте. Поред тога утичу и други фактори: температура, светlost, правац, трајање и брзина ветра, влажност ваздуха и земљишта, режим исхране, реакција земљишног раствора и др.

Постоји више начина за утврђивање потреба за водом. Већ је било речи о једном по методи Иванова. Поред њега, да поменемо још и метод Blaney Criddlea. И овај метод заснива на подацима о климатским чиниоцима. По овој методи потребно је да се узму подаци о температуре, дужини трајања дана, приступачној влажности у земљишту, затим се за одређену врсту воћака узима коефицијент, који је више емпиријски – за наше услове је од 0,6 до 1 вредност евалуације и месечни конзумни фактор, који представља производ вишегодишње просечне месечне температуре и процента дужине трајања дана у години.

У прорачуну се од добијене месечне потрошње одузима количина талога која тог месеца падне и вредност која остане, представља недостатак воде који треба додати.

Дефицит воде се може одредити и гравиметријски, применом тензиометра, електричном отпорношћу, или на неки други начин. Који ће се поступак употребити зависи од многих околности које одређују стручњак мелиоратор у сарадњи с помологом.
ВРЕМЕ НАВОДЊАВАЊА

Нарочито је важно да се примени заливање у критичном периоду, који се код воћака јавља просечно четири пута у току вегетације, и то: после прецветавања, после „јунског” отпадања плодова, у периоду шарка летњег воћа и двадесетак дана пре престанка других вегетација. Ови се периоди подуправају са сушним периодом током јуна, јула и августа.

НАЧИНИ НАВОДЊАВАЊА

У воћарској пракси су познати многи начини наводњавања. Посебно истичемо наводњавање: натапањем, инфилтрацијом – подземно, кишнењем и наводњавање кап по кап.

ПОВРШИНСКО НАВОДЊАВАЊЕ

Ово је најстарији начин наводњавања и не може се приминити у свим случајевима. Вода се распоређује тако да се натапа цела површина или се изводи у браздама, које у виду прстена обухватају свако стабло појединачно или групу стабала. Овај начин има доста недостатака. Ако је натопљена цела површина, тада долази до неравномерног распоређивања воде и често до прекомерног влагења што погоршава структуру земљишта; врло су велики губици воде путем евалорације, отежана је обрада и употреба механизације; не може се применити на површинама оштријег рељефа и за његово извођење су потребне велике количине воде.

НАВОДЊАВАЊЕ ИНФИЛТРАЦИЈОМ – ПОДЗЕМНО НАВОДЊАВАЊЕ

Ово наводњавање се карактерише тиме што се вода доводи у ризосферу мрежом подземних цеви. Осим за наводњавање, ове цеви могу, у извесним случајевима, да служе и за одводњавање. У томе се огледа могућност двоструког регулисања земљишне влажности. Наводњавање инфилтрацијом је релативно скупо, али је врло ефикасно и нису потребне велике количине воде. Њиме се не квари структура земљишта.

НАВОДЊАВАЊЕ ОРОШАВАЊЕМ

Орошавање или кишнење („вештачка киша”) примењује се већ од почетка двадесетог века. Доста је расширено у разним варијантама. У односу на његову примену у специфичним условима има ове предности: може да се примењује и на површинама
са оштетим рељефом и неуједначеном топографијом, није неопходна претходна при-
према земљишта за његову примену, економично је у погледу количине воде, јер су
потребне мале количине, брзо се постављају цеви, обезбеђује уједначен доток воде. Овај
начин има и недостатке: при јачем ветру вода се нерационално троши и неравномерно
је влажење, могућа су оштећења на лишићу, губици воде евапотранспирацијом су знатни,
а појачава их висока температура и мала релативна влажност ваздуха.

Овај систем може бити: а) покретан – кад се све цеви преносе, б) полустацио-
наран – кад су дозволе цеви закопане или фиксирани по површини, док се латералне
цеви са распрскивачима преносе, в) стационаран – кад су сви делови фиксирани. Овај
начин орошавања је најскупић, али и најбољи. Предности су му: могућа је контрола
земљишне влажности, могућа је борба против пролећних мразева, може се користити
за примену хербицида и ђубрење течен ђубривима. Кад се користи у борби против
нишких негативних температура, потребно је да притисак у распрскивачима буде око 4
атмосфере, а интензитет кишења 2 mm/h. После употребе систем треба исушити.

При коришћењу овог система за примену пестицида, такође је потребан
притисак у распрскивачима 3–4 атмосфере. Осими предности које у томе пружа, његова
употреба за примену пестицида је ограничена јер постоји бојазан од корозије, као и од
контаминације.

Сл. 183 — Распрскивач за вештачку кишу у функцији

Примена ђубрења употребом система за наводњавање може бити од посебног
значаја и за наше прилике. Овај метод даје добре резултате у неким земљама. Њиме се
врши добра дистрибуција хранива на наводњаваној површини. Пре примене ђубрења
потребно је да систем ради извесно време, како би се земљиште наквасило. Исто тако,
после употребе система за наношење одређених количина хранива нужно је да се систем
испера, на тај начин, што ће се оставити да ради око један сат. Тиме се одстранују евентуалне корозивне материје и спира лишће и плод.

НАВОДЊАВАЊЕ КАПИМА

Овај метод је разрађен тек 1962. (Blac) и прилагођен је аридним и семиаридним условима. Принцип наводњавања капима је у примењивању воде и хранива у одговарајућим количинама. За ово су потребне мале количине воде са одређеним количинама хранива. Губици воде евалуатирацијом се смањују за преко 50%. Употреба капалица омогuћује континуирано влажности земљишта и оне обезбеђују равномерно капање воде, ради одржавања оптималне влажности у ризосферном слоју. У односу на друге начине наводњавања, њима се повећава родност, утиче на крупиоћу плодова, убрза зрење, побољшава квалитет плодова, постиже бујнији пораст, потребне су знатно мање количине воде за наводњавање, постиже се уштеђа у мануелном раду при наводњавању, ђубрењу, одржавању и руковођењу системом, јер је могућа потпуна ауто-матизација.

![Слика 184 - Површинско наводњавање вољака](image)

Систем кап по кап састоји се од три основна дела:
1. систем за филтрацију;
2. систем полипиленских цеви за дистрибуцију воде разних профила;
3. капалице којима се регулише снабдевање сваке вољке појединачно.

Да би се постигао потпуни успех, сви делови морају бити добро постављени уз примену одговарајућих инструмената.
Систем за филтрацију

Нормално функционисање целог система зависи од чистоће воде која се користи за наводњавање. Вода мора да је максимално чиста, што се постиже њеним филтрирањем.

Инсталирање система састоји се у постављању главних и споредних цеви за које су везана пластична прева на којима су постављене капалице. Капалице се постављају на одговарајућем растојању у зависности од размака воћака. Пластична прева са капалицама постављају се у једном или два реда дуж једног реда, као и у облику прстена око сваке воћке. Ова прева су покретна и не представљају сметњу за употребу машина у процесу производње.

![Diagram](image)

Са. 185 – Наводњавање воћака системом кай до кай: 1 – Јововина прева; 2 – капалице; 3 – ћев развођник; 4 – коншире влажениа

Број капалица је одређен према максималним потребама воћака за водом, и то у критичном месецу. Узимају се у обзир и педолошке особености земљишта, као и врста воћака.

- Латерално кретање воде износи у земљиштима:
 - Лаким - 60 cm, површина квашења $4,8 \text{ m}^2$
 - Средње тешким - 120 cm, површина квашења $9,6 \text{ m}^2$
 - Тешким - 180 cm, површина квашења $14,4 \text{ m}^2$
- Латерално (хоризонтално) кретање воде представља пречник квашеног круга.
Број капалица по стаблу одређује се из однога површине коју треба наквасити ради снабдевања корена воћке водом и површине круга коју кваси капалица. То се може изразити математички овако:

$$N_{dr} = \frac{S_1}{S}$$

N_{dr} = број капалица;
S_1 = процент квасења од површине пројекције круга;
S = површина коју кваси једна капалица; она се израчунава по формулама:

$$S = \pi r^2$$

где је r = полупречник круга који одговара латералном крстању воде у зависности од особина земљишта.

Пример:
Ако је средње лако земљиште ($r = 1,2 \text{ m}$)

$$S = \pi r^2 = 1,2^2 \times 3,14 = 4,5 \text{ m}^2$$

Пројекција круга једног стабла је при размаку $3 \text{ m} \times 4 \text{ m} = 12 \text{ m}^2$.

Од ове површине треба да се кваси 80%.

$$S_1 = \frac{12 \times 50}{100} = 9,6 \text{ m}^2$$

Број капалица је (N_{dr}) = $\frac{S_1}{S} = \frac{9,6}{4,5} = 2,01$; заокругљено на 2.

Континуиран приток

Континуиран приток је кад се вода доводи свих 24 часа. Израчунава се по формулама:

$$q = \frac{\text{ETRn} \times 10.000}{30 \times 24 \times 3.600} \text{ I / sek. / h}$$

ETRn = дефицит воде у најкритичнијем месецу;
30 = дана/месец;
24 = час/дан;
3.600 = секунди/час;
10.000 = m^2/ha.

Од већег је значаја редуковани континуиран приток (q_r).

$$q_r = q \cdot t$$

q = стални континуиран приток;
t = оперативно време (16 часова на 24 часа или 12/24, односно 8/24).
Број заливања
Број заливања је одређен изразом:

\[N_w = \frac{\text{реална свапотранснпирација}}{\text{лако приступачна вода у земљишту}} \]

Интервал заливања.
Он се добија из односа броја дана у месецу и броја заливања

\[T = \frac{30}{N_w} \]
где је: \(T \) = интервал; \(30 \) = дана; \(N_w \) = број заливања.

Волумен заливања (Q). Овај се показатељ добија множењем укупне заливне површине (S) са континуираним протоком (q).

\[Q = S \cdot q \]

ВОДА И ЊЕНА СВОЈСТВА ЗА НАВОДЊАВАЊЕ
За наводњавање се не може користити свака вода. Њу ваља претходно испитати. Вода која садржи растворљиве штетне супстанције није за наводњавање. Не сме се употребити ни вода која има растворљивих соли – посебно хлорида. Осим тога, ако је pH вредност воде ниска (с киселом реакцијом), такође није за коришћење. Није препоручљиво да се употребљава ни сувише хладна вода за наводњавање.
ОДРЖАВАЊЕ И ИСКОРИШЋАЊЕ ЗЕМЉИШТА У ВОЂЊАЦИМА

Одржавање земљишта у вођњацима треба да је у складу са еколошким оквиром и биолошком природом сваке воћке, уз поштовање принципа економичности. Оно треба да одржава најповољнији режим влажности земљишта. У савременој воћарској производњи са применом наводњавања воћака, одржавање земљишта у засадима воћака нема такав значај као у оном случају, када наводњавање није могуће. Такође и годишње падавине упућују, не само на то како да се земљиште у плантажи одржава већ, и његов значај. Ако се у аридним подручјима наводњавање уопште не може примењивати, тада је врло велики значај начина одржавања влагности земљишта. Обрада земљишта је једини начин да се обезбеђују богатије резерве земљишне влаге и тиме спречи неповољно дејство супе.

У складу са специфичним утицајем начина одржавања земљишта на колебање земљишне влаге, количину нитрата и теплотни режим земљишта, као и биолошке особине врсте и сорте воћака, затим својства земљишта, рељефа и места, може се успешно одредити како да се најбоље обрађује земљиште на датој плантажи.

Сл. 186 – Јесене орање у воћњаку дойиноси бојем конзерирању влаге
Пошто се по јединици површине воћњака налази велика лисна површина, губе се значајне кoličine воде, што посебно указује да је одржавање најповољнијег режима влажности у земљишту чинилац о којем се мора водити рачуна.

Регулисање влажности у земљишту зависи од начина одржавања његове површине. Одржавање земљишта у младим засадима воћака треба тако подесити да се воћкама створе оптимални услови за њихов пораст и да се побољшају физичке, хемијске и биолошке особине земљишта. Због тога земљиште у воћњацима мора да представља предмет редовног старања, како би се обезбедили услови за функцију корена воћака.

Најчешће се земљиште у воћњацима одржава трајно или повремено на ове начине: турдућим ударом, задављење, гајењем узорци, гајењем биљака за зеленишно ђубрење, комбиновано два или више њемућих начина.

Са. 187 – Травокосача је прилагођена да коси траву до самох садаба и да га не побрежује.
Таб. 62 – Утицај начина одржавања земљишта на родност и вегетативни прираст јабуке у % – (ледина 100%)

<table>
<thead>
<tr>
<th>показатељи</th>
<th>ледина</th>
<th>јалови угар</th>
<th>угар са покров. култур.</th>
<th>поврће</th>
<th>страна жита</th>
</tr>
</thead>
<tbody>
<tr>
<td>принос по стаблу просечно за 4 године</td>
<td>100</td>
<td>394</td>
<td>394</td>
<td>337</td>
<td>163</td>
</tr>
<tr>
<td>просечни прираст граница на две основе гране</td>
<td>100</td>
<td>410</td>
<td>389</td>
<td>325</td>
<td>153</td>
</tr>
<tr>
<td>просечно повећање стабла (за девет година просек)</td>
<td>100</td>
<td>335</td>
<td>364</td>
<td>271</td>
<td>146</td>
</tr>
<tr>
<td>величина круне (стабло 8 година)</td>
<td>100</td>
<td>148</td>
<td>142</td>
<td>134</td>
<td>112</td>
</tr>
<tr>
<td>- пречник</td>
<td>100</td>
<td>172</td>
<td>178</td>
<td>156</td>
<td>117</td>
</tr>
<tr>
<td>- висина</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

У младим воћњацима земљиште се често користи за гајење неких ратарских усева, што није случај у старијим засадима.

ЈАЛОВИ УГАР

Јалови угар или чиста обрада земљишта је чест начин одржавања земљишта у старијим засадима. Овај начин је у младим засадима практично изузетак. Преимућества јаловог угара су у томе што: уништава коров, побољшава особине земљишта, посвећује рад микроорганизама и др. Не препоручује се на површинама са оштријим рељефом, јер може да погорша структуру земљишта, може да дође до повреда жиле корена, стварања неравне површине воћњака (ако се стално оре на исти начин) и најзад, може да угиче на квалитет плодова зимских сорти воћњака. Плодови су мање обојени и лошије се чувавају ако се земљиште обрађује до касно у јесен.

Ради улаживања неповољног дејства јаловог угара у воћњацима, повремено се врши краткотрајно заледињавање земљишта. Утврђено је да се структура земљишта побољша гајењем грамине (Gramineae) и легуминоза (Leguminosa) уз ђубрење фосфорним и калијумовим ђубривима.

ЗАЛЕДИЊЕНО ЗЕМЉИШТЕ

Овај начин одржавања земљишта препоручује се у случајевима у којима се воћњак може наводњавати. Површина у воћњаку у том случају, искоришћава се за
производју сена; ледина се препоручује и на теренима са оштрим рељефом; ако се засад налази у хумидном подручју, такође се може препоручити ледина.

Али залеђено земљиште је много боље ако се комбинује с јаловим угаром: било да се између редова оставља узана пантљика под травним покривачем, а јалови угар у правцу редова — односно ред воћака је на пантљици у виду јаловог угара, а наредни међупростор одржава се као ледина. После 3–4 године ови начини одржавања земљишта се смењују — ледина се разорава, црни угар се затрављује и тако се ова два начина смењују.

Сл. 188 – Роботина сипањица обрађује земљиште до самих стабала

ГАЈЕНЕ УЗРОДИЦА

Треба строго водити рачун о томе како се младе јабуке развијају. Узродице нипошто не смеју неповољно утицати на пораст и развој воћака. Ево начела којих се треба придржавати.

Као узродице се препоручују: салата, спанаћ, купус, парадајз, паприка, краставци, цвекла, шаргарена, кромпир, пасуљ, соја, грашак и др. Ове биљке немају исте потребе за светлопшћу. Најбоље подносе засењивање: краставци, диња, плави патлишан, паприка, рани кромпир, грашак, црни лук и купус.
Сл. 189 – И овако се земљиште у воћњаку одржава: штава између рекова која се коси, а у љукарна с воћкама, корови се сузбијају хербицидима

Узима се као правило да од узрода, које захтевају доста воде треба бирати оне, чији плодови рано сазревају, а од познатих сорти гајити оне којима је потребно мање воде.

Јасно је да узродац износе из земљишта знатне количине хранљивих материја, о чему ваља водити рачуна при одређивању норми ђубрива.

ГАЈЕЊЕ БИЉАКА ЗА ЗЕЛЕНИШНО ЂУБРЕЊЕ

Зеленишно ђубрење је нарочито погодан начин одржавања земљишта тамо где се оскудева у стањању. Гајењем биљака за зеленишно ђубрење и њиховим заоравањем могу се надокнадити органске материје које недостају земљишту. На овај начин се уносе и важнија хранива (N, P, K и Ca). Заоравањем биљака за зеленишно ђубрење, повећава се плодност и побољшава структура земљишта.

Заоравање биљака за зеленишно ђубрење треба извршити благовремено. Биљке, посеђане с јесен, заоравају се почетком маја, односно половином лета, ако су посеђане с пролећа. Заоравају се дискосним плугом или ротофрезом.
Таб. 63. – Важније биљке за зеленишно ђubreње и услови за њихово успевање

<table>
<thead>
<tr>
<th>врста биљака</th>
<th>Врста земљишта</th>
<th>pH</th>
<th>клима</th>
</tr>
</thead>
<tbody>
<tr>
<td>плева лутана</td>
<td>песковито, до писковито иловаче</td>
<td>кисело до умерено кисело</td>
<td>умерено топла вл. ваздуха</td>
</tr>
<tr>
<td>бела лутана</td>
<td>писковито, до тешке иловаче</td>
<td>умерено кисело</td>
<td>суша</td>
</tr>
<tr>
<td>инкаринатска детелина</td>
<td>писковито иловаче</td>
<td>нутрално</td>
<td>блага зима</td>
</tr>
<tr>
<td>бела детелина</td>
<td>сва земљишта</td>
<td>нутрално</td>
<td>благо влажна</td>
</tr>
<tr>
<td>шведска детелина</td>
<td>хумусни песак до тешке иловаче</td>
<td>алкалино</td>
<td>прохладна</td>
</tr>
<tr>
<td>жута детелина</td>
<td>писковито, до писковито песка иловаче</td>
<td>слабо алкалино</td>
<td>влажна</td>
</tr>
<tr>
<td>середела</td>
<td>дубока и влажна иловача</td>
<td>слабо алкалино</td>
<td>топла</td>
</tr>
<tr>
<td>црни грашак</td>
<td>дубока и влажна иловача</td>
<td>алкалино</td>
<td>влажна средоземна</td>
</tr>
<tr>
<td>летња и маљава гршцица</td>
<td>влажна, до јаке иловаче</td>
<td>слабо алкалино</td>
<td>умерено влажна</td>
</tr>
<tr>
<td>уљана репица</td>
<td>писковито иловача, до иловаче</td>
<td>алкалино</td>
<td>прохладна средоземна</td>
</tr>
<tr>
<td>репица</td>
<td>писковито иловача, до иловаче</td>
<td>нутрално</td>
<td>блага зима, влажна</td>
</tr>
<tr>
<td>озима репица</td>
<td>свежа хумусна иловача</td>
<td>алкалино</td>
<td>слабо влажна сушчана и топла</td>
</tr>
<tr>
<td>слачница</td>
<td>писковито песак, до иловаче</td>
<td>умерено кисело</td>
<td>умерено влажна</td>
</tr>
<tr>
<td>фасцилия</td>
<td>сва земљишта</td>
<td>алкалино</td>
<td>прохладна влажна</td>
</tr>
<tr>
<td>раг</td>
<td>сва земљишта</td>
<td>кисело</td>
<td></td>
</tr>
</tbody>
</table>

ЗАСТИРАЊЕ ЗЕМЉИШТА

Многобројне су користи од застирања земљишта, међу којима се нарочито истиче чување земљишне влаге и повећање плодности земљишта. У младим засадима заистира се само кружна површина око воћака, али не до дебла, већ се оставља незаштићено 50 до 100 cm у пречнику непосредно око дебла, због мишева. Сем тога, може се застријети ред воћака у виду пантлина, ширине око 2 m, где се такође не застрије земљиште непосредно око воћака. За ове сврхе у последње време се препоручују: црни полиетиленски филм, плева, лишће из шуме, натрула слама и сено, пасуљевина, стабљике сушокрета, струготина, комина, ситно пруће, поздер од конопља и пана, дивља и питаума трска, рогоз, напрат и сл.
Дебљина застирача зависи од употребљеног материјала и креће се око 10 до 20 cm. И количина застирача варира: за воћку, од 1 до 4 године потребно је око 20 kg материјала. Овако се земљиште у јабучњацима одржава лакше на мањим површинама, док је у плантажама застирање практично неизводљиво.

Сл. 190 – Одржавање земљишта у облику јавовода уђара

ПОКРИВАЊЕ ПОВРШИНЕ ПЛАСТИЧНИМ МАТЕРИЈАЛИМА

Покривање површине у засадима има за циљ да спречи испаравање воде и развој корова. За ово се користи пластична фолија, којом се покрива површина дуж редова, која иначе остати необрађена – око 1,5–2 m с једне и друге стране. Пре покривања, површина мора да се обради. Фолија остати око три године, а затим се поставља нова. Овај начин борбе против корова је прикладан за мање засаде и воћњаке с већим бројем садница по хектару.
БОРБА ПРОТИВ КОРОВА ПРИМЕНОМ ХЕРБИЦИДА

У тежњи да се што више смање тропшкови производње, у неким земљама се све више шире примена хербицида за уништавање корова, било на целој површини, било само дуж редова.

Користе се: касарон, грамоксон, симазин и др. Симазином раствореним у води прска се одређена површина. Он се рано примењује на одређеној површини у засадима јабуке, крушка и дуње, али само у старијим засадима.

Грамоксоном се прска коров и уништавају сви биљни делови с којима дође у додир, при чему се води рачуна да се не оптете воћке. Прска се по мирном времену.

Касарон је гранулиран хербицид који се употребљава рано у пролеће на одређеној површини. Може се примењивати код свих воћака, било да се растура испод воћака, било по целој површини.

Обрачун количине хербицида за повершину која се третира, врши се по формулама:

\[X = \frac{\hat{ST} \times D}{RR} \]

где је:

- \(X \) = количина хербицида
- \(\hat{ST} \) = ширина повершине која се третира
- \(RR \) = растојање између редова
- \(D \) = доза препарата по ha

Пример: \(\hat{ST} = 2 \text{ m}; \ RR = 5 \text{ m} \) и \(D = 10 \text{ kg} \)

\[X = \frac{2 \times 10}{5} = 4 \text{ kg} \]

Напомиње се да су у промету бројни хербициди са неједнаком токсичности. Произвођачи штампају на омоту упутство о њиховој примени.

СИСТЕМАТИЗАЦИЈА ХЕРБИЦИДА ПО НАЧИНУ УПОТРЕБЕ

A. са водом:
 1. прави раствори,
 2. емулзиони концентрати,
 3. суспензије.

B. без воде:
 1. грануле,
 2. прашак (може да се кваси).

Грануларне формације се састоје од активне материје и инертног носача (млевене кукурузне тупуке или вермикулит).
ХЕРБИЦИДИ КОЈИ СЕ КОРИСТЕ ПРЕ НИЦАЊА КОРОВА

Симазин

Може да се набави у виду гранула, прашка и суспензија. Примењује се како у расадницима тако и у засадима. Делује преко корена. Испољио је врло слабо контактно дејство на лишиће па се може успешно примењивати прскањем. Уништава корове тако што омета процес фотосинтезе.

Количина од 2,25 до 4,5 kg/ha активне супстанце је довољна да се уништи већина једногодишњих и вишегодишњих корова и да се обезбеди продужна заштита од 2, па и више месеци. У зависности од локалитета, ефикасан је током читаве године изузев на снегу и за време јаких суша. У сезони, Симазин се мора применити пре него што дође до ницања корова, лок примена током стадијума мировања у већим дозама, може да уништи корове који су се развили у рано пролеће као и неке вишегодишње траве.

Да би се постигао широк спектар деловања на једногодишње корове, Симазин се често комбинује са неким другим преемергентним, као и са постемергентним хербицидима.

Експериментални резултати показују да су млада, неродна стабла пекана, леске и кестена толерантна на Симазин.

Атразин

У продаји се јавља у виду праха и суспензије. Сличан је Симазину, само што се боље раствара, ефикаснији је на већ изненадиме корове како једногодишње тако и вишегодишње, у земљишту се мало задржава. Дрвенасте биљке, нарочито када су младе, мање су толерантне на Атразин него на Симазин, тако да се Симазин више користи у засадима језграстог воћа. Има контактно дејство.

Диурон

Може се наћи у виду праха. Ефикасан је у дозама од 1,12 до 4,5 kg/ha активне материје током дужег периода и има широк спектар дејства на једногодишње и вишегодишње корове који се развијају из семена. Диурон се тренутно препоручује за употребу у засадима ораха и у засадима пекана чија је старост најмање 3 године, и за засаде макадамског ораха. Као и Атразин и Диурон је контактни хербицид те се приликом прскања мора водити рачуна да је млад усмерен ка земљишту и да, што је могуће мање, долази у додир са крвном стабла. Као и Симазин, Диурон може да се примени било када, током сезоне.

Дихлорбенил

Овај се хербицид јавља као прах и у виду гранула. Користи се у расадницима и засадима језграстих воћа.

Да би се младе саднице заштитиле од општења, примењује се најмање 6 месеци после садње пекана, или најмање 4 недеље након садње другог садног материјала.
Дихлорбенил је првенствено преемергентан хербицид, мада успешно уништава и већ изнекле корове, успостављене током хладног периода у сезони. Ефективан је само када се грануле растури у позну јесен или у зиму, а ако се примењује касније у сезони, обавезно је плиико култивирање, како би се инкорпорирао у земљиште, уз наводњавање. Грануларна форма дихлорбенила је мање непостоянна и може бити ефикаснија од прашкесте форме.

Примена дихлорбенила у дози од 4,5–6,75 kg/ha активне материје, у току периода мрзлања – успешно делује на већ успостављене вишегодишње корове. Дихлорбенил има широк спектар деловања и на једногодишње корове. Ако је правилно унесен у земљиште, Дихлорбенил се задржава и успешно супротставља коровима током неколико месеци, те може у наредној години да изазове оштећења.

Диносеб

Познат је још под именом динитро и јавља се као уљани раствор или као амично со (динитро амин) растворљива у води.

Овај препарат динитро – уљани раствор је регистрован за примену током периода мрзлања и то у родним засадима језграстог воћа и за примену према потреби, у неким неродним засадима. Диносеб је успешно примењиван у многим расадницима древастих врста биљака. Међутим, када се примењује у младом засаду леске, може да оштети кору младих стабала нарочито ако је засад млади од 4 године. Динитро – уљани раствор је контактни хербицид са преемергентном активношћу у зависности од дозе. Динитро–амин тј. водени раствор се користи за уништавање једногодишњих корова и задржава се у земљишту 1–2 месеца. Једногодишњи широколисни корови се могу контролисати током дужег временског периода што није случај са другим травама.

Доза за динитро–амин је 13,5 kg/ha активне супстанце, док је доза за динитро–уљани раствор нешто мања.

Да би се избегла оштећења круне, Диносеб се примењује у виду гранула, а ако се прска, онда млаз треба усмерити ка земљи, а притисак треба да је релативно низак. Ефикасност деловања му се повећава уколико након примене хербицида следи киша, или ако се примењује наводњавање. Култивирање уништава ефикасност овог хербицида. Диносеб је отрован и потребна је изузетна пажња приликом његовог мешања и примене, како не би дошло до његовог удисања или било каквог контакта преко коже.

ЕРТС

Јавља се у виду гранула и емулзија (концентрован). Тренутно је једини емулзиони концентрат регистрован за примену у засадима бадема и ораха.

Уништава једногодишње и вишегодишње корове у периоду од 6–10 недеља. Испарљив је и лако се деградира те се број губи са земљине површине, нарочито на влажним земљиштима. У пракси се уноси у земљиште (10 cm) култивацијом, или наводњавањем непосредно по растурању. Понекад се примењује кроз систем за наводњавање.
Найроламид

Овај хербицид је у виду гранула и у виду праха (WP). Регистрован је за примену у расадницима и у засадима (одмах након садње). Количина од 4.5 94 kg/ha активне супстанце је довољна да успешно контролише већину једногодишњих усколисних и широколисних корова током 3-4 месеца. Неки широколисни корови су отпорни на Найроламид, па ради боље ефикасности овај хербицид се меша са Симазином. Најефикаснији је када се примењује у позну јесен или рано пролеће. Ако се примењује током лета и то по површини земљишта, врло се брзо распада – сунчано и топло време убрзавају његово распадање.

DCPA

Он је у промету у виду гранула и праха. Користи се у расадницима као и у тек подигнутим засадима ораха и кестена. DCPA нема контактну активност. Примењује се у дози од 9 до 13.5 kg/ha активне материије. Задржава активност у земљишту 2-3 месеца током топле сезоне. Делује на многе усколисне као и на неке широколисне корове, да би му се ефикасност повећала, успешно се примењује у комбинацији са Симазином.

Трифлуралин

Јавља се у виду гранула и емулзионих концентрати и може се користити у расадницима многима дрвеначким врстама маку којима су кестен, орах, црни орах, бадем. Трифлуралин је врло испарљив хербицид и врло брзо нестаје са површине земљишта, уколико се одмах не унесе у земљиште плитком култивацијом или наводњавањем. Врло често се користи за третирање земљишта пре садње. Примењује се у дози од 0,56 до 4,5 kg/ha активне материије. Уништава већину усколисних и неке широколисне корове. Мање дозе се примењују на песковитом земљишту, у одмах се унесе у земљиште, док се веће количине примењују површински (без уношења у земљиште). Уколико је инкорпориран у земљиште, задржава активност и успешно контролише осетљиве корове током читаве сезоне.

Норфлуразон

Јавља се као прах. Недавно је регистрован за употребу у засадима леске и ораха. Количина од 4,5 kg/ha активне материије може да обезбеди контролу великог спектра усколисних и широколисних једногодишњих корова, као и неких више
годишњих корова током читаве сезоне. Поколо се декомпонује на површини земљишта тако да се показао најефикаснијим када се примењује у позну јесен или током зиме, када може да се унесе у земљиште захваљујући падавинама. Механичка инкорпорација хербицида је такође ефикасна у случају недостатка падавина или наводњавања. Норфлуразон може имати контактно дејство те му је примена усмерена директно на земљиште. Делује као инхибитор на пигменте биљака изазивајући хлорозу.
ПОСТЕМЕРГЕНТНИ ХЕРБИЦИДИ
(ХЕРБИЦИДИ КОЈИ СЕ ПРИМЕЊУЈУ НА РАЗВИЈЕНИМ КОРОВСКИМ БИЉКАМА)

Пара夸特 (Paraquat)

Параquat је у води растворљива течност. Регистрован је за употребу у родним и неродним засадима језгростог воћа као и у расадницима. Параquat је „хемијска мотика“ – делује контактно и не оставља никакав фитотоксичан резидуум у земљишту. Примењује се у дози од 0,56 до 2,25 kg/ha активне материје. Делује врло брзо на једногодишње као и на многе вишегодишње корове. Параquat се брзо инактивира у земљишту, поготово где има доста органске материје и глине. Широки спектар дрвенастих биљака се показао толерантним на параquat.

Листови корова се прскају тако да се обезбеди њихово потпуно влажење и обично је довољно 0,56–1,12 kg на 378 литара, односно од 150 до 300 g/100 литара. Мале границе, као и кора дебла, ако је зелена, могу бити оштећени параquatом. Тестови су показали да се овим хербицидом, сем корова, могу уништавати и издаци око стабала, без бојазни да ће се стабла оштетити. Параquat је врло отрован па постоји опасност од контакта са њим било инхибирањем, било преко коже.

Успеншно се меша са премергентним хербицидима, као што су Симазин или Диuron, за уништавање већ успостављених корова и њихово даље ништање. Комбинација Параквата и Симазина је нарочито успешна за примену око младих, тек засадених стабала. У тим случајевима прска се у дијаметру од 1,5 до 2 м око стабала. За прављење раствора се узима око 1 капића (супена) Параквата и 2–3 капића Симазина 80 W, на 3,78 литара воде. Уколико има нарочито много корова, концентрација Симазина може да се повећа, с тим да се не користи и сувише много ове компоненте.

Коровска уља

Постоји неколико типова укључујући и дизел уље, који су примењивани у борби са коровом плитког корена по воћњацима. Ова тзв. коровска уља су изузетак, што се тиче прописа о резидуалној толеранцији и могу да се користе у засадима језгростог воћа. Приликом примене треба избегавати контакт са стаблима, како не би дошло до озеледа. Често се меша са Диносебом, како би им се појачало дејство. За потпуну контролу корова мора се приступити вишепретраној примени током сезоне.

Амизирол

Користи се по расадницима. Мешавина Амитрола и Симазина и то у количини од 1,12 kg према 3,37 kg/ha позната под називом „Амизин“ (Amizine) се успешно користи по расадницима дрвенастог биља.
Амиртол се може наћи у виду прашка растворљивог у води и као водени раствор садржи компоненту Амиртол плас Амонијум-тиоцијан (Амиртол–Т). Амиртол–Т је ефикаснији од самог Амиртола на неке вишегодишње корове. У концентрацији од 2,25 до 4,5 kg/ha активне супстанце, Амиртол и Амиртол–Т су ефикасни у сузбињању многих једногодишњих и вишегодишњих корова.

Амиртол применавају на неколико недеља пре садње није неповољно деловао на саднице. Примену Амиртола у тек подигнутом засаду треба одложити за наредну сезону. Амиртол је системички хербицид и преноси се од прскања листова кроз читаву биљку. У земљи се задржава кратко време. Међутим, у већој концентрацији, може да општети и коренов систем младих стабала. Типичан симптом је слаб пораст летораста.

Делапон
Привустчан је у виду растворљивих соли калијума или магнезијума. Користи се за уништавање једногодишњих и вишегодишњих корова у засадима ораха и за површине његу под једном квадратом. Делапон је систематичан хербицид и има врло кратко резидуално дејство у земљишту. Да би се обезбедило продужно, резидуално дејство, често се меша са Симазином.

Глифосет (Раундай)
Привустчан је у виду вodenог раствора. Ово је систематички хербицид. Ефикасан је у дози од 1,12 до 4,5 kg/ha активне супстанце. Погодан је за сузбињање већине једногодишњих и вишегодишњих корова дубоког корена, као и многих жбунастих врста, ако се примени у одговарајућој фази њиховог пораста. Неки широколисни корови су нарочито осетљиви на овај хербицид у фази цветања, или чак и касније.
Листопадне, дрвенесте биљке су нарочито осетљиве на Глифосет у позној сезони, када се врши пораст успорава, а с обзиром на повољну земљишну влажност, коренов систем и дале расте.
Као и Паракват и Глифосет или Руандап нема резидуални ефекат у земљишту, тако да се многе биљке могу слободно садити само један дан након третирања земљишта. Глифосет може да општети лишће, међутим, нема неповољног утицаја на зрелу кору дебла.
Хербициде треба примењивати према приложеном упутству које је дужан да приложи произвођач.

ЗАШТИТА ОД ГЛОДАРА
Полски мишеви, волухранце и зечеви наносе груба иштење младим стаблима воћа. Ова су општеваче чешћа на вегетативним подлогама. Зечеви љушт
кору са дебла и тањих грана, док остали глодари оштећују коренов врат и корен, тј. скидају кору око кореновог врата и гризу тање жиле и жилице корена, што доводи до потпунах угниса стабла. Врло је важно да се редовно врши преглед стабла. Стабла која заостају у порасту треба пажљиво прегледати.

Против мишева и волухарица борба се води постављањем мамаца. Мамце могу да се купе готови или да се направе. За справљање мамаца треба прокуваре зривље (најчешће шпенице) ради спречавања клијања, а затим, према упутству, помешати са цинкусулфидом. Цинкусулфид је јак отров, те треба бити обазрив. Мамце поставити у претходно направљен каналу уз воћницу, затим капном нанети мамац у каналу, а потом покрити земљом. По завршетку послу, посуду у којој је био мамац, капику којом је наношен мамац, амбалажу и др., дубоко закопати како би се избегле непожељне последице.

За сузбијање мишева и волухарица обавља се прскање целе површине препаратима: токсафеном или ендрином. Ово третирање изводи се касно у јесен. Могу се постављати и патроне које испуштају отровне гасове.

У борби против зечева је најбоље да се цео воћник огради плетеном жицом. На мањим површинама могуће је да се појединачно заштити свако стабло. За то се употребљава различит материјал којим се увија свако стабло. Препарати кунитекс и арбопин показали су се успешни. Њима се премазују дебла.

Сл. 191 – Защита младих сибабала од глодара: свеђог кучета и зечева
ОСНОВНА ЗНАЊА О ЗАШТИТИ ВОЂАКА

НАЧИНИ ЗАШТИТЕ ВОЂАКА

У заштити вођака од штеточина и проузроковача разних обољења примењује се низ мера, које се могу груписати у превентивне и тераутутске.

Са. 192 – Најчешће штеточине јабуке: 1. јабуксин црв (Carposapsa pomonella); 2. Јабуксин мољац (Hypomoneta malinellus); 3. цвећњеж јабуке (Anthomus pomorum); 4. јабукина оса (Hoplocampa testudinea)
ПРЕВЕНТИВНЕ МЕРЕ

У превентивне мере се убрајају земљишта, агротехника и садни материјал.
Земљиште. – Сађење на одговарајућем земљишту, незарараженом и у сваком погледу новојном. Најмање 4–5 год. не садити после крчења старог воћњака.

Агрохимика. — Применом савремене аграрне и помотехничке јачине воћке и њихову отпорност, стварањем повољних услова за развој и родност.

Садни материјал. — Избор здравог садног материјала и отпорних сорти воћака. Не набављати саднице од нерегистрованог производача.

Сл. 194 — Најчешће болести и штедочине крушка: 9. крушки цвећог (Anthonomus pyri); 10. крушки листа бува (Psylla pyricola); 11. крушки оса (Hoplocampa brevis); 12. чапава красилавост (Venturia pirina); 13. рђа крушка (Gymnosporangium sabinae)
ТЕРАПЕУТСКЕ МЕРЕ

Терапеутске мере су: механичке, биолошке и хемијске.
У механичке мере спада: скупљање и уништавање инсеката, биљака међу-
домаћинама и биљних остатака.
Биолошке мере обухватају коришћење паразита предатора, који уништавају
штетне инсекте.
Хемијским мерама се предвиђа примена хемијских средстава – пестицида.
Данас основни и најефикаснији вид заштите.

Таб. 64 – Избор апаратуре према величини засада у зависности од норме и потребне
брзине прскања

<table>
<thead>
<tr>
<th>врста прскалине</th>
<th>норма прскања за 1 дан</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Осредње развајене)</td>
</tr>
<tr>
<td></td>
<td>стабла – просечно)</td>
</tr>
<tr>
<td>леђна прскалица</td>
<td>30–40</td>
</tr>
<tr>
<td>леђни орошивац</td>
<td>80–100</td>
</tr>
<tr>
<td>запружна моторна прскалица (200–300 литара)</td>
<td>300–400</td>
</tr>
<tr>
<td>ручна превозна прскалица</td>
<td>100–150</td>
</tr>
<tr>
<td>тракторска мотор. прскалица (600–800 литара)</td>
<td>500–700</td>
</tr>
<tr>
<td>тракторски орошивац (600–1,000 литара)</td>
<td>2,000–3,000</td>
</tr>
</tbody>
</table>

Таб. 65 – Степен отровности пестицида и ознаке на паковању

<table>
<thead>
<tr>
<th>група и отровност</th>
<th>боја на паковању</th>
<th>знах</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>слова</td>
<td>подлога</td>
</tr>
<tr>
<td>I–најопаснији</td>
<td>бела</td>
<td>црна</td>
</tr>
<tr>
<td>II –опасни</td>
<td>црвена</td>
<td>бела</td>
</tr>
<tr>
<td>III –мање опасни</td>
<td>црна</td>
<td>жута</td>
</tr>
<tr>
<td>IV –најмање опасни</td>
<td>плава</td>
<td>бела</td>
</tr>
</tbody>
</table>

ОБЛИЦИ У КОЈИМА ПРЕПАРАТИ ДОЛАЗЕ У ПРОМЕТ И ЊИХОВЕ ОЗНАКЕ

Течни препарати (концентрати) за емулију, који са водом дају бегу емулзију.
Ознака EC и Е.
Течни препарати за раствор, који су растворљиви у води. Ознака SC.
Прашива за суспензију или растворљива прашива, која са водом дају суспензију. Ознака WP или S.
Прашива за отопину или растворљива прашива. Ознака SP.
Прашива за запрашивање. Ознака P.
Микрогрануле за расипање по земљишту—тлу. Ознака MG ili G.
Пестицидна ђубрива — минерална ђубрива са угађеним пестицидима.
Кристали — плави камен, модра галица и сл.
Затровани мамци, спрејеви, пасте и сл.

Сл. 195— Најчешће штетничке крушка: 14. кукавича суза (Melacosoma neustria); 15. жу-
шойроба (Eupeodes chrysorrhoea); 16. савијач лисица-смоковац (Laspeyresia pirivora);
17. мали мразовац (Cheimatobia brumata)
Сл. 196 – Најчешће болести и штетноштине зрна и вишње: 18. руйнчавост и лишћа зрна (Clasterosporium carpophilum); 19. ровни вишњи (Aphis pomi); 20. шумога блога (Monilia laxa); 21. црна оса зрнога рођака (Eriocampoides limacina); 22. зрнова муха (Rhagoletis cerasi); 23. вишњишна лисна оса

МЕРЕЊЕ ПРЕПАРАТА ЗА ТРЕТИРАЊЕ – ПРСКАЊЕ

У табелама су дате прерачунате количине препарата које треба користити да се постигне жељена концентрација при различитој величини резервоара, односно количини течности.
Одмеравање самог препарата при припреми раствора обавља се стакленим мезурама запремине 10–25 ml (изградираним), а нека средства имају на бочици поклопац са ознакама за мерење количине 10–20 ml. Оријентације ради, наводимо да:
- 1 ml садржи обично 20 до 30 капи средства,
- у кафену кашичицу стане до 2 ml,
- у чашну кашицу стане 4–6 ml,
- у обичну супену кашику стане 11–13 ml.

Сл. 197 – Најчешће болести и штетачине шљиве: 24. шљивина урна оса (Hoplocampa minuta); 25. шљивин урн-смитаоач (Grapholytha funebrana); 26. рођач шљиве (Taphrina pruni); 27. миљиниша ваши на шљиви (Eulecanium corni); 27-а. шрулеж сушени језгрова шљиве (Monilia fructigena, M. laxa)
Кашика употребљена за одмеравање не сме се касније употребљавати у друге сврхе. Средства у облику прашива мере се на специјалној ваги.

Сл. 198 – Најчешће штампоначе шљиве и брестке: 28. калифорнијска штампонача виш (Aspidiotus perniciosus); 29. крвава виш (Eriosoma lanigerum); 30. лисне виш (Aphis sp.); 31. брестки савица (Grapholitha moesta), који се убушу у врх садничног, услед чега се овај савица и суши; 32. глине (preggjevi, рвуси)
Сл. 199 – Ране болеси воћака: 33. молци минерци (Leucoptera scitella); 34. јевени воћни шук (Panonychus ulmi); 35. ковчевоили миса (Taphrina deformans); 36. Јењалница (Sphaerotheca panosa var. persicae)

НАБАВКА И ИЗБОР ПРЕПАРАТА ЗА ЗАШТИТУ ВОЋАКА

Избор препарата зависи од болести и штеточине која се сузбија, врсте и сорте воћака, типа апарате и временских прилика. О томе се треба консултовати и са
ствручњаком за заштиту. Препоручљиво је куповати препарате који се могу мешати у циљу уштеде у прскању. Набавити их довољно и благовремено за целу сезону. Потребна количина препарата прорачунава се на основу концентрације у којој се користи. За ове препарате узети и количину чорбе потребну за једно прскање по стаблу или хектару.

Сл. 200 — Болесни ораха, јадове, малине и др.: 37. ћегавост лисиња ораха (Gnomonion leptostylis); 39. сушање избојака малине (Didymella appplanata); 40. малинска буба (Byturus tomentosus); 41. башенски буке зола на јадови (Arion hortensis); 42. савијач лисиња јадова; 43. јадови и малинин цветај рику (Anthonomus rubi); ларва, инсекти и поштење на брдама.
ПОСТУПАК ПРИЛИКОМ ПРСКАЊА

- Препарате чувајте у просторијама намењеним само за то, пошто су отровни (најчешће) и морају бити одвојени од хране за људе и стоку. Чорбу спремати само у посудама за ту сврху, при чему треба заштитити руке и лице, а посебним наочарима, и очи. Ако су препарати јаче отровни, користити маску. Амбалажу од препарата дубље закопати. За време прскања не сме се пушити.

- У случају симптома тревања, (клонулост, повраћање, несвестица, отежано дисање, знојење и дрхтање) одмах се обратити лекару.

- На паковању сваког препарата дато је упутство о употреби, чувању и последњем року употребе пред бербу (кареци), које обавезно треба прочитати и према њему се управљати.

- У литератури се често препоручује – наводи више препарата за сузбијање нске штеточине или болести. Треба знати да се од препоручених користи један, а више

Сл. 201 — Шарка на лисју и јлоју код Јожедаче
(Virus prunus 7)
них је наведено да би произвођач у недостатку једног на тржишту, могао да набави и користи неки други, истог дејства.
- Прскање увек почиње од врха према основи круне.
- Зимским прскањем стабла треба окупати.
- Прскање је најбоље када се распршена течност наноси с једне и друге стране листа.
- После завршеног прскања, опрати коришћену апаратуру, на безбедно место склонити амбалажу, свући и средини радно одело и други прибор и добро опрати руке и лице; по могућству и окупати се.

Таб. 66 – Оријентационе количине течности за третирање воћака

<table>
<thead>
<tr>
<th>висина стабла или начин примене</th>
<th>количина течности</th>
</tr>
</thead>
<tbody>
<tr>
<td>ниска стабла</td>
<td>0,5-3,0 лит./стablo</td>
</tr>
<tr>
<td>средње висока стабла</td>
<td>3-10 "</td>
</tr>
<tr>
<td>висока стабла</td>
<td>10-30 "</td>
</tr>
<tr>
<td>за расипање</td>
<td>1.000-3.000 лит./ha</td>
</tr>
<tr>
<td>ручним замаглањем</td>
<td>6-10 лит./ha</td>
</tr>
<tr>
<td></td>
<td>100-200 см/стablo</td>
</tr>
</tbody>
</table>

Таб. 67 – Оријентационе количине течности према дебљини односно обиму дебла воћака

<table>
<thead>
<tr>
<th>доба прскања</th>
<th>обим дебла у см и литара по стаблу</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>зимско прскање</td>
<td>5</td>
</tr>
<tr>
<td>пролећно прскање</td>
<td>3</td>
</tr>
<tr>
<td>летње прскање</td>
<td>4</td>
</tr>
</tbody>
</table>

Таб. 68 – Обрачунате количине течности по стаблу, по методи Kirchner-a –
Висина круне (не дебло) x фактор који одговара пречнику круне

<table>
<thead>
<tr>
<th>пречник круне (м)</th>
<th>фактор</th>
<th>пречник круне (м)</th>
<th>фактор</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>1</td>
<td>9-10</td>
<td>3</td>
</tr>
<tr>
<td>3-4</td>
<td>1,5</td>
<td>11-12</td>
<td>3,5</td>
</tr>
<tr>
<td>5-6</td>
<td>2</td>
<td>13-14</td>
<td>4</td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таб. 69 – Израчунавање – количина препарата на 100 литара воде за различите утрошке течности по 1 ha

Таблица обрачунатих количина хемијских средстава

Кад је позната запремина резервоара прскалице и одређена концентрација течности за третирање, тада је за резервоар пун воде потребна следећа количина грама, односно см препарата:

<table>
<thead>
<tr>
<th>конц. у %</th>
<th>запремина резервоара прскалице литара</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>5</td>
</tr>
<tr>
<td>0,10</td>
<td>10</td>
</tr>
<tr>
<td>0,15</td>
<td>15</td>
</tr>
<tr>
<td>0,20</td>
<td>20</td>
</tr>
<tr>
<td>0,25</td>
<td>25</td>
</tr>
<tr>
<td>0,30</td>
<td>30</td>
</tr>
<tr>
<td>0,40</td>
<td>40</td>
</tr>
<tr>
<td>0,50</td>
<td>50</td>
</tr>
<tr>
<td>0,60</td>
<td>60</td>
</tr>
<tr>
<td>0,75</td>
<td>75</td>
</tr>
<tr>
<td>0,80</td>
<td>80</td>
</tr>
<tr>
<td>0,90</td>
<td>90</td>
</tr>
<tr>
<td>1,00</td>
<td>100</td>
</tr>
<tr>
<td>1,50</td>
<td>150</td>
</tr>
<tr>
<td>2,00</td>
<td>200</td>
</tr>
<tr>
<td>3,00</td>
<td>300</td>
</tr>
<tr>
<td>4,00</td>
<td>400</td>
</tr>
<tr>
<td>5,00</td>
<td>500</td>
</tr>
<tr>
<td>6,00</td>
<td>600</td>
</tr>
<tr>
<td>7,50</td>
<td>750</td>
</tr>
</tbody>
</table>
Кад је позната доза хемијског средства и утрошак течности за третирање по 1 ha, тада је потребно применити следећу концентрацију:

Таб. 70 – Утрошак течности за третирање по 1 ha у литрима

<table>
<thead>
<tr>
<th>Доза kg/ha</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1,000</th>
<th>1,200</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,24</td>
<td>0,240</td>
<td>0,120</td>
<td>0,080</td>
<td>0,060</td>
<td>0,050</td>
<td>0,040</td>
<td>0,035</td>
<td>0,030</td>
<td>0,027</td>
<td>0,024</td>
<td>0,020</td>
</tr>
<tr>
<td>0,30</td>
<td>0,300</td>
<td>0,150</td>
<td>0,100</td>
<td>0,075</td>
<td>0,060</td>
<td>0,050</td>
<td>0,043</td>
<td>0,038</td>
<td>0,033</td>
<td>0,030</td>
<td>0,025</td>
</tr>
<tr>
<td>0,40</td>
<td>0,400</td>
<td>0,200</td>
<td>0,133</td>
<td>0,100</td>
<td>0,080</td>
<td>0,067</td>
<td>0,055</td>
<td>0,050</td>
<td>0,040</td>
<td>0,040</td>
<td>0,033</td>
</tr>
<tr>
<td>0,50</td>
<td>0,500</td>
<td>0,250</td>
<td>0,166</td>
<td>0,125</td>
<td>0,100</td>
<td>0,083</td>
<td>0,071</td>
<td>0,062</td>
<td>0,055</td>
<td>0,050</td>
<td>0,042</td>
</tr>
<tr>
<td>0,60</td>
<td>0,600</td>
<td>0,300</td>
<td>0,200</td>
<td>0,150</td>
<td>0,120</td>
<td>0,100</td>
<td>0,086</td>
<td>0,076</td>
<td>0,066</td>
<td>0,060</td>
<td>0,050</td>
</tr>
<tr>
<td>0,70</td>
<td>0,700</td>
<td>0,350</td>
<td>0,233</td>
<td>0,175</td>
<td>0,140</td>
<td>0,117</td>
<td>0,100</td>
<td>0,093</td>
<td>0,078</td>
<td>0,070</td>
<td>0,058</td>
</tr>
<tr>
<td>0,80</td>
<td>0,800</td>
<td>0,400</td>
<td>0,266</td>
<td>0,200</td>
<td>0,160</td>
<td>0,133</td>
<td>0,114</td>
<td>0,100</td>
<td>0,080</td>
<td>0,080</td>
<td>0,067</td>
</tr>
<tr>
<td>0,90</td>
<td>0,900</td>
<td>0,450</td>
<td>0,300</td>
<td>0,225</td>
<td>0,180</td>
<td>0,150</td>
<td>0,130</td>
<td>0,112</td>
<td>0,100</td>
<td>0,090</td>
<td>0,075</td>
</tr>
<tr>
<td>1,00</td>
<td>1,000</td>
<td>0,500</td>
<td>0,333</td>
<td>0,250</td>
<td>0,200</td>
<td>0,167</td>
<td>0,143</td>
<td>0,125</td>
<td>0,111</td>
<td>0,100</td>
<td>0,083</td>
</tr>
<tr>
<td>1,20</td>
<td>1,200</td>
<td>0,600</td>
<td>0,400</td>
<td>0,300</td>
<td>0,240</td>
<td>0,200</td>
<td>0,170</td>
<td>0,150</td>
<td>0,133</td>
<td>0,120</td>
<td>0,100</td>
</tr>
<tr>
<td>1,50</td>
<td>1,500</td>
<td>0,750</td>
<td>0,500</td>
<td>0,375</td>
<td>0,300</td>
<td>0,250</td>
<td>0,214</td>
<td>0,187</td>
<td>0,167</td>
<td>0,150</td>
<td>0,125</td>
</tr>
<tr>
<td>2,00</td>
<td>2,000</td>
<td>1,000</td>
<td>0,667</td>
<td>0,500</td>
<td>0,400</td>
<td>0,333</td>
<td>0,286</td>
<td>0,250</td>
<td>0,222</td>
<td>0,200</td>
<td>0,167</td>
</tr>
<tr>
<td>2,50</td>
<td>2,500</td>
<td>1,250</td>
<td>0,833</td>
<td>0,625</td>
<td>0,500</td>
<td>0,471</td>
<td>0,357</td>
<td>0,312</td>
<td>0,278</td>
<td>0,250</td>
<td>0,208</td>
</tr>
<tr>
<td>3,00</td>
<td>3,000</td>
<td>1,500</td>
<td>1,000</td>
<td>0,750</td>
<td>0,600</td>
<td>0,500</td>
<td>0,429</td>
<td>0,375</td>
<td>0,333</td>
<td>0,300</td>
<td>0,250</td>
</tr>
<tr>
<td>4,00</td>
<td>4,000</td>
<td>2,000</td>
<td>1,333</td>
<td>1,000</td>
<td>0,800</td>
<td>0,667</td>
<td>0,571</td>
<td>0,500</td>
<td>0,444</td>
<td>0,400</td>
<td>0,333</td>
</tr>
<tr>
<td>5,00</td>
<td>5,000</td>
<td>2,500</td>
<td>1,667</td>
<td>1,250</td>
<td>1,000</td>
<td>0,833</td>
<td>0,714</td>
<td>0,625</td>
<td>0,556</td>
<td>0,500</td>
<td>0,417</td>
</tr>
<tr>
<td>6,00</td>
<td>6,000</td>
<td>3,000</td>
<td>2,000</td>
<td>1,500</td>
<td>1,200</td>
<td>1,000</td>
<td>0,857</td>
<td>0,750</td>
<td>0,667</td>
<td>0,600</td>
<td>0,500</td>
</tr>
<tr>
<td>8,00</td>
<td>8,000</td>
<td>4,000</td>
<td>2,667</td>
<td>2,000</td>
<td>1,600</td>
<td>1,333</td>
<td>1,143</td>
<td>1,000</td>
<td>0,889</td>
<td>0,800</td>
<td>0,667</td>
</tr>
<tr>
<td>10,00</td>
<td>10,000</td>
<td>5,000</td>
<td>3,333</td>
<td>2,500</td>
<td>2,000</td>
<td>1,667</td>
<td>1,429</td>
<td>1,250</td>
<td>1,111</td>
<td>1,000</td>
<td>0,833</td>
</tr>
<tr>
<td>12,00</td>
<td>12,000</td>
<td>6,000</td>
<td>4,000</td>
<td>3,000</td>
<td>2,400</td>
<td>2,000</td>
<td>1,714</td>
<td>1,500</td>
<td>1,333</td>
<td>1,200</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Ако је, на пример, пречник круне 5 m, а висина 3 m, потребна количина течности за третирање тог стабла износи 6 литара (висина круне 3 x фактор 2 који одговара пречнику круне од 5 m. Значи, висину круне множимо фактором који одговара пречнику дотичне круне.
ПОСТУПАК У СЛУЧАЈУ ТРОВАЊА ПЕСТИЦИДИМА

Значај трошана: главобоља, мучница, знојење, дрхтање, вртглацива, тешко дисање и болови у стомаку, а касније пролив (слузав или чак и крвав).
У лакшим случајевима позвати лекара, а у тежим – отрованог што пре колима пребацити у болницу или најближу здравствену станицу. При том понети лекару паковање или остатке пестицида који је коришћен, како би што пре установио о којем се отрову ради и шта треба предузети у лечењу.

ПРУЖАЊЕ ПРВЕ ПОМОЋИ У СЛУЧАЈУ ТРОВАЊА ПЕСТИЦИДИМА

– Тровање преко коже: одмах скинуте одећу и кожу што боље опрати топлом водом и сапуном.
– Тровање преко дисајних органа: отрованог изнети на свеж ваздух и добро га утопити. Одмах позвати лекара.
– Тровање преко органа за варење: што пре изазвати повраћање, да би се отров, док још није ресорбован, избацио. Повраћање се изазива давањем болеснику што више млаке воде (слане или сапуњаве) да попије. Поновити поступак више пута, док повраћени садржај постане бистар. Затим, дати за чишћење супену кашику горке соли у полу чаше топле воде, по могућству заједно са коштаним угљем.

ЗАШТИТА ПЧЕЛА ОД ТРОВАЊА ПЕСТИЦИДИМА

1. У доба цветања воћке, не треба примењивати пестициде који су отровни за пчеле, ако је то назначен у упутству за примену препарата.
2. Не загађивати појила пчела пестицидима.
3. Прскање пестицидима отровним за пчеле, обављати рано у јутро или пред вече, кад се пчеле врате са паше у кошницу.
4. Обавезно обавестити пчелара у околини (до 3 km) о времену прскања опасним пестицидима, како би пчеле уклонили из зоне прскања или постуали по прописима. Обавештење дати 2 дана пре прскања.
5. При набавци пестицида предност дати онима који су мање отровни за пчеле.
<table>
<thead>
<tr>
<th>Важније болести и штеточине</th>
<th>Оријентационо време јављања важнијих болести и штеточина</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Красибавост Јелова</td>
<td>Март</td>
</tr>
<tr>
<td>2. Сива фрулез Јелова</td>
<td></td>
</tr>
<tr>
<td>3. Јабучни смойавац</td>
<td></td>
</tr>
<tr>
<td>4. Вацр</td>
<td></td>
</tr>
<tr>
<td>5. Псиле (лисне буке)</td>
<td></td>
</tr>
<tr>
<td>6. Црвени Јаук</td>
<td></td>
</tr>
<tr>
<td>7. Јабучни моћац и мразовац</td>
<td></td>
</tr>
<tr>
<td>8. Јабучна оса</td>
<td></td>
</tr>
<tr>
<td>9. Савујачи</td>
<td></td>
</tr>
<tr>
<td>10. Разни смойавац</td>
<td></td>
</tr>
<tr>
<td>11. Секундарне штеточине</td>
<td></td>
</tr>
</tbody>
</table>

Фенофазе

Сл. 202 - Фенофазе развоја Јабуке у којима се обавља црпакање
<table>
<thead>
<tr>
<th>Важније болести и штеточине</th>
<th>Март</th>
<th>Април</th>
<th>Маж</th>
<th>Јун</th>
<th>Јул</th>
<th>Август</th>
<th>Септембар</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Красне болести штетича</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Сива болест штетича</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Крушки ишкошавац</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ваши</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Псиле (лисне буве)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Црвени Јаук</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Крушки ивац</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Крушкина оса</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Савијачи</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Разни разновоцени</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Секундарне штеточине</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Фенофазе

Сл. 203 - Фенофазе развоја кружке у којима се обавља ирсанање
<table>
<thead>
<tr>
<th>Важније болести и штеточине</th>
<th>Оријентационо време јављања важнијих болести и штеточина</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Фебр.</td>
</tr>
<tr>
<td>1. Ковричавост листа</td>
<td></td>
</tr>
<tr>
<td>2. Сива пуштрена Јелова</td>
<td></td>
</tr>
<tr>
<td>3. Пешезица</td>
<td></td>
</tr>
<tr>
<td>4. Ругачавост лиша</td>
<td></td>
</tr>
<tr>
<td>5. Чађава јеловасти лиша</td>
<td></td>
</tr>
<tr>
<td>6. Ваши и грење</td>
<td></td>
</tr>
<tr>
<td>7. Шиљакове ваши</td>
<td></td>
</tr>
<tr>
<td>8. Брескви смотавац</td>
<td></td>
</tr>
<tr>
<td>9. Смолошточина</td>
<td></td>
</tr>
</tbody>
</table>

Фенофазе

Сл. 204 - Фенофазе развоја бреске у којима се обавља брскање
<table>
<thead>
<tr>
<th>Важније болести и штеточине</th>
<th>Оријентационо време јављања важнијих болести и штеточина</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Март</td>
</tr>
<tr>
<td>1. Рујчавост лисића</td>
<td>-</td>
</tr>
<tr>
<td>2. Сива шрулежа Јлодова</td>
<td>-</td>
</tr>
<tr>
<td>3. Смокавци</td>
<td>-</td>
</tr>
<tr>
<td>4. Савијачи</td>
<td>-</td>
</tr>
<tr>
<td>5. Црњливост Јлодова</td>
<td>-</td>
</tr>
<tr>
<td>6. Гриње</td>
<td>-</td>
</tr>
</tbody>
</table>

Фенофазе

Сл. 205 - Фенофазе разнија кације у којима се обавља иреклане
<table>
<thead>
<tr>
<th>Важније болести и штеточине</th>
<th>Оријентационо време јављања важнијих болести и штеточина</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Фебр.</td>
</tr>
<tr>
<td>1. Руйнираштица</td>
<td></td>
</tr>
<tr>
<td>2. Сиви шрулеж и плодова</td>
<td></td>
</tr>
<tr>
<td>3. Рђа</td>
<td></td>
</tr>
<tr>
<td>4. Шљивин моћац и мразовац</td>
<td></td>
</tr>
<tr>
<td>5. Шљивина оса</td>
<td></td>
</tr>
<tr>
<td>6. Ваши</td>
<td></td>
</tr>
<tr>
<td>7. Грине</td>
<td></td>
</tr>
<tr>
<td>8. Црвенисти плодова шљиве</td>
<td></td>
</tr>
</tbody>
</table>

Фенофазе

Сл. 206 - Фенофазе развоја шљиве у којима се обавља јрскане
<table>
<thead>
<tr>
<th>Важније болести и штеточине</th>
<th>Оријентационо време јављања важнијих болести и штеточина</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Фебруар</td>
</tr>
<tr>
<td>1. Рујачавост лића</td>
<td></td>
</tr>
<tr>
<td>2. Сива шрулеж и одрода</td>
<td></td>
</tr>
<tr>
<td>3. Трешњин мразовац</td>
<td></td>
</tr>
<tr>
<td>4. Цврсти молац</td>
<td></td>
</tr>
<tr>
<td>5. Трешњина мува (циреливоси)</td>
<td></td>
</tr>
<tr>
<td>6. Ваши</td>
<td></td>
</tr>
</tbody>
</table>

Фенофазе

Сл. 207 - Фенофазе развоја шрешње и њени у којима се обавља прекиње
<table>
<thead>
<tr>
<th>Важније болести и штеточине</th>
<th>Оријентационо време јављања важнијих болести и штеточина</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Љубичаста љегавост</td>
<td>Април, Мај, Јун, Јул, Август, Септембар, Октобар</td>
</tr>
<tr>
<td>2. Грине</td>
<td></td>
</tr>
<tr>
<td>3. Црвени наук</td>
<td></td>
</tr>
<tr>
<td>4. Цвелојед</td>
<td></td>
</tr>
<tr>
<td>5. Смртавци</td>
<td></td>
</tr>
<tr>
<td>6. Сурлаши</td>
<td></td>
</tr>
</tbody>
</table>

Фенофазе

Сл. 208 - Фенофазе развоја јагоде у којима се обавља јефкиње
<table>
<thead>
<tr>
<th>Важније болести и штеточине</th>
<th>Оријентационо време јављања важнијих болести и штеточина</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Април</td>
</tr>
<tr>
<td>1. Љубичаста ђедавости</td>
<td></td>
</tr>
<tr>
<td>2. Атракноза</td>
<td></td>
</tr>
<tr>
<td>3. Лисна ђедавости (сејториоза)</td>
<td></td>
</tr>
<tr>
<td>4. Малина буба</td>
<td></td>
</tr>
<tr>
<td>5. Цвековјед</td>
<td></td>
</tr>
<tr>
<td>6. Ванич</td>
<td></td>
</tr>
<tr>
<td>7. Црвени ђаук</td>
<td></td>
</tr>
</tbody>
</table>

Фенофазе

Сл. 209 - Фенофазе развоја малине у којима ће обилазити прекршће
ОСТАЛЕ АГРОТЕХНИЧКЕ И ПОМОТЕХНИЧКО
МЕРЕ У ВОЂАРСТВУ

ПРЕКАЛЕМЉИВАЊЕ ВОЂАКА (ПРОМЕНА СОРТЕ
ПРЕКАЛЕМЉИВАЊЕМ)

Данашњу вођарску производњу карактеришу брзе промене, било кад је реч о научним достигнућима, било о стеченом искуству у практичној делатности. С тим у вези, нађеме се потреба, да се постојећа сорта замени другом, која по многим својствима више одговара, а да стабилно остане. То се постиже прекалемљивањем, које омогућује да се за најкраће време и са најмање трошкова реши питање замене сорте.

Најчешће се прекалемљују јабуке и крушке, мада се та мера примењује и код других вођака. Могу се прекалемљивати младе и старије вођке. Није препоручиво да се прекалемљују воћке чије гране на пресеку имају пречник већи од 10 cm.

Воћку треба претходно припремити за прекалемљивање. Припрема је следећа: у току зимског периода све се гране скрате, при чему се води рачуна да основне гране задрже првобитан положај — двоје гране се остављају дуже, а горње краће; пресек грана се освежи у моменту обављања прекалемљивања, а то је најчешће у фази почетка вегетације, непосредно пред цветање. Калемљење се обавља или на исечак, што има предности, или под кору. По ободу пресечене гране треба поставити на сваких 5-7 cm по једну калем-граничцу. За ово калемљење калем-граничце се скидају у току зиме и чувају, тако да до калемљења не крену. Најбоље је да се утране потпуним затрпавањем земљом. Кад се обави калемљење пресеци грана и калем-граничца се премажу калемарским воском.
Млађа стабла могу да се прекалеме и другим начинима калемљења. Све избојке испод места калемљења треба благовремено одстранити да се летораст из калем-граничице боље развијају. Пошто постоји опасност да ветар поломи калеме, препоручује се да се заштите везивањем летораста за штап, који је претходно причвршћен за прекалемљену грану. Резидбом треба оставити потребан број грана. Најчешће се оставља продужница и још две гране са стране продужнице (по једна са сваке стране).

ПОДМЛАЂИВАЊЕ ВОЂАКА

Правилно изведена резидба за подмлађивање вођака представља врло знаћајну помотехничку меру. Њоме се поправља виталност вођака, а тиме и родност, продужавајући век експлоатације.

Подмлађивање вођака се примењује:
а) кад престане растење периферних гранцица и поче њихово масовно утицање;
б) кад је услов смажене бујности због старости родности умањена;
в) кад је круна деформисана, поломљена, неправилна;
г) кад су основне гране сувише оголене, а вегетација се налази при њиховом самом врху и
д) у случају кад желимо да променимо сорту.

Приликом извођења подмлађивања треба да се води рачуна о пресецима грана. Гране се претходно скрате изнад места где ће прави пресек бити на око 40–50 cm. Да се не би одцепила грана, прво је треба са доње стране засечи, а затим са горње. Важан је и утврд под којим се гране се сплаћују. Скраћивање вршних грана је највећег, а доњих најмање, тако да подмлађивање вођака има утко који најниже гране заклапају са врхом, око 90–120°. Пресеци грана се премазују калемарским воском или битуменом, уз додатак лоја (200 грама лоја на 1.000 грама битума). У току вегетације развија се више летораста него што је за формирање круне потребно. Треба оставити само потребан број летораста за формирање жељеног облика круне, док се остали леторасти благовремено уклањају.

Све врсте вођака се могу подмлађивати, али је оно ипак најуспешније код вођака с јабучастим плодовима.

ЗАШТИТА ВОЂАКА ОД НИСКИХ НЕГАТИВНИХ ТЕМПЕРАТУРА – МРАЗЕВА

Активност вођака и у биолошком мировању не престаје. Она је знатно умањена због неповољних услова, а у првом реду услед ниских температура ваздуха и
земљишта. У периоду мировања – природном и принудном, ниске негативне температуре често оштећују воћке. Могу бити, потпуно или делимично оштећени: цветови, пупољци, гранични, дебље гране и ткива појединих делова круне као и делови корена.

Припрема воћака да издрже ниске температуре у зимском периоду почиње врло рано, још у току лета, кад се оне налазе у стању активног растења. Уколико воћка завршее на време вегетацију, оне у току зиме, без оштећења, могу да издрже врло ниске температуре. За време вегетације, ако није било довољно воде, воћке су у том случају на мраз осетљивије. За повећање отпорности према мразу неопходно је имати у виду, у одређеним периодима пораста воћака, утицај деловања различитих фактора. При томе до изражавају долази особеност не само врсте, већ и сорте исте врсте воћака.

Повећање отпорности воћака према ниским температурама остварује се селекцијом и стварањем нових отпорности сорта. Поред тога, отпорност воћака, може да се повећа и применом, у току гајења, низа одговарајућих поступака, који утичу на правец метаболизма. У томе се траже основни путеви за повећање отпорности воћака према штетном дејству мраза.

У периоду вегетације настају нове ћелије и формира се ново ткиво, које је осетљивије, у таквом физиолошком стању на ниске температуре. Прилагођавање воћака на неповољне услове тј. на издржавање ниских температура у зимском периоду, познато је и као каљење воћака. То је сложен процес који има физиолошки и биохемијски карактер. У току каљења воћака долази до промена у ћелијама. Због тога су воћке отпорније на мраз, уколико благовремено прођу фазу каљења. Ову појаву су многи физиологи склони да објасне смањивањем укупне количине воде и повећањем концентрације ћелијског сока.

Дуго је владало мишљење да оштећења од мраза настају због формирања леда који раскида ћелиске зидове. Показало се да је ово тумачење било нетачно, јер код неких биљака које су биле мразом оштећене није било раскиданих ћелија зидова, иако су били формирани кристали леда.

Према томе узрок оштећења настаје због промена у протоплазми, најчешће због њене коагуляције. Кристали леда, који се стварају у међућелијском простору делимично настају и од одузете воде из ћелија, те ћелијски сок постаје знатно концентрованији, а протоплазма водом постаје сиромашнија. Она се, услед тога, згрушава. Згрушавају се њене колоидне материје. После отапања ледених кристала, протоплазма губи пропуствљивост, што доводи до угњућа. Постоје и друга објашњења оштећења ткива појединих органа од мраза.

ЗАШТИТА ОД ПОЗНИХ (ПРОЛЕЋНИХ) МРАЗЕВА

Позни мразеви изазивају, најчешће, велике штете. Они се јављају непосредно пред фазу цветања или у самој фази, односно непосредно после ње. По правилу су отпорнији цветни пупољци него цветови, а цветови, него тек заметнути плодови.
У сукобу позних мразева примењују се две врсте мера борби. Једне су индиректне, а друге директне. У индиректне мере борбе спадају оне које се примењују много раније него што се воћњак подигне. Бирају се положаји на којима се позни мразеви не јављају. Поред тога, врши се избор отпорних врста воћака, а у оквиру појединих врста обраћа се пажња на гајење отпорних сорти. Треба обратити пажњу на избор отпорних подлога и деблатворача. На отпорност воћака на ниске негативне temperature, може се деловати и низом агро и помотехничких мера. Примењивати поједине мере које ће спречити бујан пораст летораста, позно завршавање вегетације, сувишно изнуравање родом, оштећење листа и сл. Треба усагласити примену појединих захтева са физиолошким стањем воћака да би издржале ниске temperature без оштећења.

Директне мере борбе против мразева су: успоравање фазе цветања, прскања кречним млеком и фитохормонима, димљењем, аниохемијском методом, температурном инверзијом, прскање воћака водом, загревањем и резидбом.

Успоравањем цветања, као мером у борби против пролећних мразева, каоипи благодетан изврши третирање, а temperature нису много испод нуле, могу да се добију задовољавајући резултати. Успоравање цветања врши се третирањем фитохормонима. Поред тога, оно се врши и хлађењем земљишта, применом обилијег заливања, које се изводи сваких 3–4 дана. Извођење ове мере је отежано, па се ређе примењује. Благовремено прскање кречним млеком цело воћке такође утича на успоравање цветања.

Сл. 211 – Заштита од ниских негативних температура димљењем
Димљење (засимљавање) је поступак који се релативно лako изводи. Њиме може да се ублажи температура од 0,5–1°C. Димна завеса спречава зрачење из земљишта и воћака. За стварање дима могу да се користе разни материјали: стајњак, слама, плева, отпади шапше, гума и сл. Врше се испитивања производње дима, индустријски, на бази извесних хемијских супстанција и у прикладноj амбалажи. Има изгледа да ће се у овим напорима успети. Материјал за сагоревање ради производње дима треба на време да се припреми и размести по воћиаку. Његово паљење треба организовати тако да се изнад воћака створи димна завеса, пре него што температура падне испод 0°C. У случају ветра, успех је незнатан. То је незгодна страна овог начина борбе против позних мразева.

Амфилармска мешовица заснива се на стварању вештачких облаока и ослобађању топлоте. У ниском лету авион избацује смесу хемијских супстанција (хлорополифенске и сене киселине са амонијаком). С воденом паром у ваздуху, ове супстанције формирају маглу и ослобађају топлоту (2–3°C). Успешно се примењује у велиkim плантажама.

Температурна инверзија се постиже надлетањем хеликоптера изнад воћака. Могуће је да се температура, ако су мање површине 4–5 ℃, повећа за око 2°C. Приликом извођења постоји извесне сметње техничке природе. На великим површинама тешко се постиже инверзија, а на мањим, примена хеликоптера није исплатива. Некад су у воћиаку постављани велики вентилатори којима се успешно обављала инверзија ваздуха. Свакако овај метод је погодан само за мање површине.

Заштита воћака у плантажи тешко би могло да се спроведе нако је то један од најсигурнијих начина борбе против позних мразева. Његова примена је ограничена
на мање засаде, јер је то скуп начин заштите. Потребно је око 100 пећи по ћа. За гориво се користи брикат, угљ или мазут. На мањим површинама за ову сврх могу да се употребе као пећи, бурал или веће козерве.

Вештачка киша — орошавање у борби против позних мразева представља физички процес, где вода прелази из течног у црвено стање, при чему се ослобађа топлота, то је екзотермичан процес.

Успех ова кве заштите од позних мразева зависи од времена извођења. Практички кретање температуре од површине до висине круне. Третирање почиње при 0°C. Некорисно је раније прескање, јер се лед не ствара. Није препоручујемо ни да се оно касније обави, јер неће имати ефекта пошто би се температура спустила нижи него што је могуће ублажити њено неповољно дејство. Док траје мраз, прескање се не прекиди. И ова мера борбе против позних мразева има ограничену примену. Тешко се нађу плантање које имају толико мрежу орошиваца да одједном сви раде и тако штите целу плантању од мраза. На подручју Јужног Тирола (Италија) постоје могућности да се велике површине под вођама, на овај начин штите. Вода се користи гравитацијом, због повољног пада и великих количина воде, а заштита од мраза на овај начин је могућа и врло успешна.

Резидба у борби против мразева има ограничену примену. Позната је резидба кајсије по Шиту. Овај аутор резидбом је успоставио хауз цветања код неких сорти кајсија. За десетак дана успорено је кретање, а тиме и опасност од позних мразева. Ипак, овај метод резидбе, по Шиту, не даје сваке године исте резултате, пошто је условљен одређеним физиолошким стањем, а он је по годинама променљив.

Резидба, која обезбеђује такву физиолошку равнотежу, да у границама има довољно угледних хидрата, повољно се одражава на издржљивост према ниским негативним температурама.

ПОСТУПАК С ВОЂКАМА ОШТЕЋЕНИМ ОД МРАЗА

У пролеће, пре него што се с резидбом отпочне, потребно је стабла вођака прегледати да би се утврдила оштећења од мраза. Оштећени делови имају промењену боју — тамно чоколадну. Изгубили су свежину. Посебно се обраћа пажња на боју путољака. Оштећени путољци лако се препознају. На пресеку, ако су им елементи оштећени, имају тамну боју. Уколико је само тучак оштећен, на попречном пресеку у средини се види црна тачка. То је измрзли тучак.

На пресеку дебљих грана оштећени део има, такође, тамну боју. Најостећенији је сржни део гране.

На оштећеним стаблима, гране и граничне треба да се орежу до неоштећеног дела. Јаче оштећена стабла треба боље неговати, побољшати режим исхране, заштите и др., да би се пре регенерисала.
ЗАШТИТА ДЕБЛА ВОЋАКА ОД МРАЗА

У засадима шљиве дебло је често оштећено мразом. Међутим, ако се у засадима примењује комплетна агrotehnика, ова оштећења су знатно мања.
Оштећења дебла настају у другој половини зиме, у фебруари и марта, а то при смењивању топлих дана хладним ноћима. Защита од ове врсте оштећења спроводи се крајем јануара, крчењем дебла и основе рамених грна. Кречном млеку се не сме додавати иловача или балега, јер то умањује белу боју, а тиме и заштитно дејство крчења.
Као врло погодно, показало се кречно млеко састављено од свежег негашеног креча, кухињске соли и сумпора у праху у сразмери 5:0,5:0,25.
Делови се могу претворити и у килограме.
Док се креч гаси додају се со и сумпор. Добијена смеса доцније се разређује на желењу густину. Лепљивост се повећава ако се маса остави да одстоји 4 до 6 дана после справляња.

ПРЕСАЂИВАЊЕ СТАРИЈИХ ВОЋАКА

Може бити много разлога због којих се намење потреба да се нека старија воћка премести с једног на друго место. Јабучарство, боље подносе пресађивање од других воћака. То значи, да је могуће да се старо стабло пресади и да на тај начин настави да расте и доноси род. Како се уређи? Најбоље је да се пресађивање старих стабала обавља од новембра до априла, под условом да нема мраза. Треба настожати да се обави што ранije у јесен. Ископа се рупа довољно широка и дубока, што зависи од величине стабла. По некад се копа рупа и до 2 метра широка и 70 сантиметара дубока, како би се извађена воћка могла несметано поставити.
Приликом копања рупе одваја се горњи слој земље, то је први ашов, на једну страну, а оста и земља на другу страну. При садњи земљу враћати обрнутим редом – прво површински слој, а затим осталу земљу.
При вађењу старије воћке, мора се пажљиво поступати. У кругу или квадрату око воћке, копа се ров – јарак широк 20–30 центиметара и дубок по потреби. При томе се жицел на које се најде, пажљиво и рацио пресеку. С порастом дубине јарка све се више поткопава воћка, при чему се води рачуна да се на жилама задржи земља. Кад се воћка овако поштова, корен са земљом се обложи сартијом или даскалом да би се грумен земље задржао на жилама. Овако припрећенова воћка може да се преноси само на кратко растојање већ и на удаљеност од више километара. Корен воћке с груменом земље треба да је у складу с њеном развијеном најсечи. Старије и развијеније воћке треба да имају већи грумен земље. Воћка се пажљиво поставља у припрећену рупу и затрпава земљом. По обављеној садњи, треба их добро залити водом.
Постоје и специјалне машине које се користе за вађење воћака и њихов транспорт.

Преусеђени старије воћке се орезују у пролеће, пре кретања вегетације. При-
менује се скраћивање свих грана, при чему се настоји да краја задржи првобитни облик.
Ако се све радње стручно обаве, онда ни успех неће изостати.

ХЛОРОЗА – УЗРОЦИ, НАЧИН СПРЕЧАВАЊА ПОЈАВЕ И ЛЕЧЕЊЕ

Први симптоми хлорозе, јављају се на лишћу воћака крајем јуна и почетком
јула, па и у августу, почетак од млађег ка старијем лишићу. Последица су: одсуство плода,
цветних пупољака, сушње врхова грана и цели воћака, после 4-5 године, (при
израженијој хлорози) уколико се не предузму енергичније мере лећења.

На појаву хлорозе делују, и то осетно, метеоролошки услови, те се из године
у годину јавља у различитом степену.

Главни узроки хлорозе. – Може их бити више, а најчешћи су: недостатак
усвојивог гвоздја, (Fe) неопходног за формирање хлорофиле; вишак калијума (Ca);
непогодне подлоге (J. nigra уместо J. regia); примена калијума на земљиштима већ
богатим овим елементом; коришћење ђубрива са доста калијума (Ca) на земљиштима
која га већ имају довољно; влажне зиме (асфиксција корена); хладно време у пролеће,
које не фаворизује добру исхрану ораха; смењивање врло влажних и сушних раздобља;
нагли прелаз их хладног у топло време у пролеће, чиме се изазива брза вегетација с
привременим дефиницијом у гвозђу; јака инсолнација од маја до августа; збијено илово
земљиште које задржава воду и изазива асфиксцију; сплаћење воћака у јајачо мери и
трулежницу услед лоше изхране, механичких повреда и сл.; обилна родност, која
посебно процењује потрошњу гвоздја (Fe); лоша обрада земљишта – дубље орање које
постећује корен или индукује дубљи развој жила у зони калијума итд.

Начини сузбијања хлорозе. У сузбијању хлорозе најважније су превентивне
mere, а ове се састоје у избегавању дубоког орања, јер оно изазива дубински развој
корена у спојевима са већим садржином калијума (Ca), забариване земљишта у току
зиме и дуже. Такође треба избегти неуравновешено уношење минералних материја у зону
коренове масе (дубина око 50 em) у којој има услова за појаву хлорозе итд.

За директно сузбијање хлорозе користи се хелат гвоздја – сексестрен 138. У
80% случајева његовом применим се отклања и најважна хлороза ораха. За сузбијање
хлорозе може се користити и гвозђев сулфат (зелена галица) с лимунским киселином.

У сваком случају ове препарате треба користити према упутству које даје
производач, односно, које је штампано на паковању.
БЕРБА И ЧУВАЊЕ ВОЋА

БЕРБА ВОЋА

Berba voća je завршни поступак у реализацији воћних плодова. То је једна од веома важних и одговорних технологских мера у низу мера до коначне реализације. Није довољно само плодове воћака произвести, већ их треба обрати у најповољнијем тренутку и на најбољи могући начин, како би се што дуже сачували и пред потрошаче изнели у најбољем стању. Ово је један од технологских поступака од кога у највећој мери зависи финансијски резултат производње воћа.

На квалитет и трајашност плодова утичу пре свега: време и брзина бербе, начин бербе и манипулација плодовима после бербе.

Сл. 213 – Класична берба плодова јабуке
ОДРЕЂИВАЊЕ ВРЕМЕНА БЕРБЕ

Одређивање времена бербе је врло значајно јер директно утиче на квалитет плодова, њихову транспортабилност и складишну способност. Зато је врло важно да се одреди оптималан рок бербе, за сваку врсту, у сваком вођику, да то не буде ни прерано ни прекасно. Превремена берба је штетна, јер плодови не постижу сортну величину, карактеристичну боју, ни оптималан квалитет. Закаснела берба такође није пожељна, јер долази до јачег отпадања плодова, механичких оштећења и њихове слабије складишне способности, условљене пренествено интензивијом транспирацијом и врло раним појављивањем физиолошких болести, понекад чак и на стаблу (горке пеге, јонатанове пеге, стаклавост плодова и др.).

Да би се спречиле последице преране, односно прекасне бербе, у пракси се користи већи број метода за одређивање степена зрелости плодова и оптималног рока бербе. Под оптималним роком бербе подразумевамо се средњи датум око кога мора да се организује берба. То никада не значи да је у питању један дан и да се чита принос у једном засаду може обрати за тако кратко време, већ је то момент када се почиње са бербом одређене сорте.

Дозрелост плодова за бербу може се одредити на разне начине:
1. Један од првих показатеља је да плод достига ботаничку зрелост и да се ускоро може приступити берби је одвајање плода с гателем од граници и плода с гателем.

Ова појава се дешава после стварања апсисног (плутастог) слоја између петеле плода и граници, који спречава притисак храњивих материја из граници у плод и тиме завршава физиолошку везу између стабла и плода. Ова појава се може окуларно опазити када развијени, здрави плодови почну у нормалним условима и по тихом времену да отпадају.

Но, при коришћењу ове појаве за одређивање времена бербе, потребна је предострожност, јер појава отпадања развијених плодова у ботаничкој зрелости није једнака ни код разних сорти нити код исте сорте гајене у различитим условима и на различитим начине.

Међутим, ако се ово уочи код неке сорте у одређеним условима гајене као редовна појава, сматра се да треба приступити берби осми дан после првог отпадања плодова.

2. Промене основне и дойушне боје покожице. -- Боя покожице је у високој корелацији са зрелошћу плодова, те се у знатној мери користи за одређивање момента бербе плодова.

Боја покожице зависи од присуства пигментата хлорофиле, каротиноца, анетокиена и др. У незрелим плодовима где је више кисела средина, анетокијани су црвени боје док у зрелим, који представљају алкалну средину, анетокијани прелазе у
Симптомы недостатка хранящихся элементов:
1-код бреке, Fe; 2-код крушике, Mg; 3-код ябубе, Mg; 4-код ябубе, P; 5-код ябубе, N
Одређивање чвршћине јлода њенешрометром

Једна од машина за бербу јлодова воћа

1 2 3 4 5

(4 и 5 зрелости јлода скроб-јодном јробом
а 3, 5 - још чуно зрело јлод)
Симптоми йосмеђивања йокожице (Scald-a) код: синаркина (лево) и зрени смизма (десно)

Физиолошка обољена јабуке сорте јонашан: шамписать меса йлода (лево) и горке ђеге (Bitter pit) (десно)

Промена на йлодовима јабуке као йоследица ћерорилно ђубрења азом
Последица неодговарајућег режима чувања јабуке: код ајдареда Plura (горе); код зрени смишта - шампанање меса Јлода око семене кућице (доле лево); код злажноћ делешеа - шампанање меса (доле десно)
плаву боју. Хлорофил се зрењем плода трансформишу у каротиноде и каротене, те се основна боја покожице мења од зелене до разних нијанси жуте боје.

Промена боје покожице плода може да се прати визуелно (на основу искуства), али и уз помоћ таблици боја. Оцена уз помоћ таблици боја (које се праве за одређено подручје и одређену сорту) је много поузданija. Упоређивањем боја у овим таблицима и боја плодова у природи, одређује се време почетка бербе.

Међутим, треба имати у виду да је боја покожице доста варијабилна при истој зрелости, што у неким случајевима отежава њено коришћење за прецизно утврђивање оптималног рока бербе.

То је из разлога, што на промену интензитета боје плода могу да утичу разни чиниоци као што су: подлога, експозиција стабла и плода, старост вођке, величина лисне површине, услови исхране, начин одржавања земљишта, примењени пестициди, хормони и др.

Интензитет допунске покровне боје плода се такође може користити као показаољ степени зрелости плода. Тако, нпр. за сорту јабуке јонатан су у Швајцарској направљене таблице за промену допунске боје од мркоцрвене у интензивноцрвену (при којој треба почети са бербом ове сорте).

Најобјективније одређивање обојености плода је могуће применом спектрофотометра и других уређаја. Овакви спектроапарати су релативно скупи и у пракси се ретко користе.

Међутим, треба рећи да у савременим машинама за класирање, (например јабуке и лимуна) постоје утврђени уређаји који сортирају на основу интензитета боје тј. степени зрелости.

3. Промена боје семена. — Утврђено је да се са ботаничком зрелошћу мења и боја семена. Код јабуке, од беле постаје тамна, квесењаста, мрка па и црна. Како је боја семена сортина особина, то ће интензитет боје зависити од степени зрелости.

Међутим, има сорти јабука код којих се потамни неколико дана пре ботаничке зрелости, док се пак летње сорте јабуке и крушка, рани сорте бреске, могу брати и пре него што им сееме промени боју.

4. Ипчицање скроба (јодно-скробни тест). — Са зрением плода смањује се количина скроба. Скроб хидролизом прелази у шећер, најпре у малтузу, затим у глюкозу и фруктозу. Ово постепено ишчезавање скроба користи се као знак за одређивање оптималног рока бербе.

У ту сврху може се применити јод-скробни тест који се заснива на особини скроба да при додирју са јодом поплави.

Најпре се направи раствор од калијум јодида (4 г на 1 литар дестилиоване воде) и 1 грама јода. У тај раствор се урени попречно пресечен плод јабуке или крушка и држи око 2 минута. Након тога се даје оцена на основу петостепене скале (од 5 до 1):
- 5 — црно плава боја целе површине пресека (потпуно зелени плодови),
4 - необојена површина око семена кућице и са проводних судова (почетак зрења),
3 - просветлање на тајној основи целог пресека плода, тамно плаво обојен само под покожичком (оптимално стање зрелости за дуготрајније чување),
2 - тамно бојење само под покожичком и делом око са проводних судова (плодови погодни за краће чување и превоз),
1 - незнатно потамњење испод покожице или потпуно светло пресек (конзумна – пита зрелост).
За овај тест се узима 30–50 плодова са разних стабала и различитог положаја у круни.
У прaksi се, оптималним роком бербе за дуготрајније чување, сматрају оцене од 2,5 до 3,5, што треба проверити за сваки засад и сваку сорту посебно.
Овај тест може дати добре резултате у одређивању времена бербе јабуке, али није довољно поуздан за друге врсте воћа.

5. Одређивање чврстоће меса плода. – Сазревањем плода чврстоћа се смањује услед претварања растворљивог протопектина у нерастворљив пектин, нарочито у ћелијским мембранима. То је веома поуздан знак физиолошке зрелости плода, који се користи при одређивању времена бербе јер се може мерити и објективно утврђивати.
За ту сврху се у прaksi користе једноставне справе, пенетрометри. То су справе које се састоје од цилиндричног клипа, претекта неколико миллиметара који се утискују до одређене дубине у плод, уз савладање извесног отпора. Притисак који се при том користи преноси се преко челичне опруге на скалу и изказује у kg/cm².
Са мереној чврстоћи плода се обично почиње 10–15 дана пре очекиваног времена бербе. Затим се плод зимских сорти јабуке и крупке мери сваких 5–7 дана, а код летњих 2–5 дана, док се не установи оптимално време бербе.
Плодове за мерење треба узимати са разних стабала и са различитих положаја у круни. На сваком плоду се мери сила на два места (код обојених сорти на сушчаној и супротној страни, а код необојених, са стране спољне кривине петље и насупрот ње).
Пре мерења са плодова се на поменутим местима скида покожица на површини од 1 до 1,5 cm².
Чврстоћа меснатог дела плода зависи од сорте, услова средине и степена зрелости. Стога она није постојан критеријум за одређивање оптималног рока бербе.

6. Рефрактометријски индекс. – Време бербе се може одређивати и на основу количине растворљивих сувих материја или шећера, односно њиховог односаха са киселинама.
Количина растворљиве суве материје се одређује ручним рефрактометром. За ово се користи течна фаза (сок), јер се принцип рада рефрактометра заснива на проласку светлости кроз течности различитих густине.
Из количине растворљиве суве материје која се изражава у %, може се прераћунайти помоћу таблици, количина шећера.

Међутим, неки аутори сматрају да се хемијски састав воћа не може користити као поуздан показатељ при одређивању оптималног рока бербе, јер је врло варијабilen и условљен многим факторима.

Поред наведених показатеља степена зрелости, за одређивање времена бербе се користе и неки други, као нпр.: броj дана од бунац увећања до физиолошке зрелости, сума температуре од увећања до познатог развијаша плода, ензимиум T (броj дана од момента када се на младим плодовима јабуке појаве удубљења око петељке до физиолошке зрелости) и др.

Време бербе је условљено наменом и степеном зрелости плодова. Ова карактеристика плода је специфичност сваке врсте и сорте воћа.

У току сазревања плода карактеристична су 2 степени зрелости:
1. ботаничка (физиолошка)
2. пуна (конзумна).

Плодови воћа у ботаничкој зрелости достигну максималну крупноћу, при чему се обуставља даљи притисак хранљивих материја. То је завршна фаза у растењу плода, која почиње са потпуном развијеносншћу, а завршава се формирањем апсценог (штутастог) споја између петељке и гране или између петељке и плода, чиме се прекида физиолошка веза између плода и гране. То је стање плода када је семе способно да клија, а плодов омотач зрео, али не и погодан за јело у свежем стању.

Пуна зрелост је стање плода, којом претходе сложени биохемијски процеси, који резултирају најбољим органолептичким особинама плода: најбољи укус, сочност, појава арому, привлачна боја, како покожице тако и меснатог дела.

У том степени зрелости су плодови најпогоднији за употребу у свежем стању, као и за све облике прераде, изузев оних у којима се траже желирајуће особине произвoda.

У пракси, а и литературе се користи још један термин за одређивање степени зрелости. То је тзв. технологија зрелости. Неки аутори овај степен зрелости поистовећују са пуном или конзумном зрелшћу, што је делимично тачно.

Технологија зрелости је степен зрелости којим се плодови беру у зависности од намене. Ако су плодови намењени за прераду и потрошњу у свежем стању, најчешће ће се ова зрелост поклопити с пуном (конзумном) зрелшћу.

Међутим, ако се плодови беру с намером да се складиште и чувају, онда ће се технологија зрелост у неким случајевима поклопити са ботаничком (физиолошком) зрелшћу, (најчешће код летњих сорти јабука и крушка, бресака, кајсција итд.) или ће се наћи између ботаничке и пуне зрелости (код зимских сорти јабука и крушка).

Зато је потреба да се плодови воћа беру када су најпогоднији за одређене намене, условила одређивање оптималног рока бербе.
Већ је речено да је, како прерана, тако и прекасна берба штетна са производног становишта, те би технологска зрелост могла да се поистовети са оптималном зрелошћу за одређене намене.

Правило је да плодови не би смели да се беру пре ботаничке (физиолошке) зрелости, јер би штете биле вишеструке (умањен принос, непостизање типичних сортичких карактеристика – укуса, ароме, боје, убрана деградација плода, појава физиолошких болести, итд.).

НАЧИН БЕРБЕ

Начин бербе зависи од карактеристика и намене воћних плодова (употреба у свежем стању, прерада и сл.).

У прaksi се примењују три начина бербе:
1. ручна берба,
2. полумеханизована берба,
3. механизована берба.

Плодови који се користе за тзв. стону употребу или употребу у свежем стању, беру се углавном ручно.

Пошто је то најскупљи начин бербе, ради повећања продуктивности рада може се организовати тројако: индивидуално, групно и по спратовима.

Слика 214 – Ручна берба плодова: 1) накривилио, 2, 3, 4 и 5) изправило
Индивидуална берба је кад један радник бере једно стабло, групна берба је када више радника бера једну вођку, а берба по спратовима је кад су радници подељени у 3 групе, па једни бере са земље, други бере средњи део, а трећи вишни део стабла.

Најбољи резултати се постижу организацијом бербе по спратовима. На тај начин, у току седмочасовног радног времена, берач може да обере у јабучаре 400–600 kg, а у бокс-палетама 800–1.000 kg плодова јабуке, што ће зависити од способности берача, узгојног облика, бујности сорте и старости засада.

У прибор за ручну бербу плодова спадају: лествине, корпице, кентур-кесе, берила, амбалажа и др.

Полумеханизована берба се обавља помоћу различитих платформи, на којима или поред којих се налази одговарајући број берача.

Платформе могу бити самоходне или вучене са једном или више платформи.
Самоходне платформе за бербу стоног вођа користе се нарочито у класичним засадима у којима су стабла висока и берба отежана. Применом ових платформи знатно се повећава учинак радника у берби плодова. Према неким истраживањима продуктивност се повећава од 30% у берби јабуке, до 50% у берби јагоде.

Берба плодова намењених преради се може потпуно механизовати. Данас постоје посебне машине тзв. берачи, који могу успешно брати плодове, трешњу, вишњу,
кајсију, грожђе, орах, лешник, купину, малину и др. У неким земљама (САД) механизовано се бере јабука и бресква. Механизованом бербом и уз палетизацију транспорта, трошкови бербе неких воћака могу да се смање и до 40%.

Сл. 216 – Две варијанте платформе за бербу: горе, могућност задржавања ближе и ваље сваблу, доле же није могуће

Машине за механизовану бербу воћа су врло скупе, па их ваља користити што већи број часова. Њихова употреба је рационална само ако се врста воћа коју треба брати гаји на великим површинама и ако су систем узгоја и облик круне прилагођени за ову врсту бербе, о чему се мора водити рачуна приликом подизања воћака.

ОРГАНИЗАЦИЈА И ТЕХНИКА БЕРБЕ

Берба плодова је операција која захтева ангажовање великог броја радника, нарочито ако се у питању интензивни воћњаци који се простире на велиkim површинама. Зато се за бербу треба благовремено припремити. У берби првениствено учеснује сезонска радна снага за коју треба обезбедити: смештај, исхрану, воду за пиће, превоз итд.
Сл. 217 – Машина за скуйљање плодова лешника

За успешно обављање бербе неопходно је благовремено обезбедити амбалажу (jabучаре, бокс-палете, летварице итд.), помагала (кенгуур-кесе, корпе, лествице, бераљке), тракторе са приколицом за изношење обраних плодова, тракторе виљушкаре за изношење палета са обраним плодовима, кампване и др.
Пре почетка бербе потребно је покупити отпале плодове, очистити коров и поравнати површину земљишта.
Амбалажу треба разместити по воћњаку. Треба добро прорачунати потребну количину амбалаже, како због погрешног распоређивања не би у неким деловима воћњака било вишак или мањак амбалаже, односно празних ходова радника и машина.
При берби jabука и крушака руком, мора се водити рачуна о следећем: да берачи одрежу нокте, како би се плодови заштитили од механичких повреда; да се палач ставља на спојно место између петељке плода и граниче, и брзим савијањем ка палцу прекине веза између плода и граниче; да се петељак са покожице не брише; да петељке остану на плодовима неповређене, и да се сваки обрани плод врло пажљиво спушта у амбалажу.
Бреске се беру тако, што се цео плод обухвati руком, како се не би пнечиле или механички повредиле.
Вишње, трешње, шљиве и јагоде за стону употребу се обавезно беру са петељком, а шљиве, и са неосцененим петељком.
Малине и купине се беру и за стону употребу, и за прераду без петељке.
Код рибише и боровнице се беру цели гроздићи.
Орах, лешник, бадем и кестен се беру трешњем (моткама), када плодови добро испадају из клапине.

Плодове воћака по правилу треба брати по лепом и сувом времену. Плодови обрани одмах после кише или јутарње росе су подложни брзом кварењу. Ово је посебно значајно код ситног воћа (јагоде, малине, купине, рибизле и др.).
Бербу би требало прекидати у време највиших температура у току дана. Плодови могу одмах (у току бербе) да се класирају или да се беру редом и накнадно класирају у салама за сортирање и класирање.

Сл. 219-1 – Амбалажа за бербу јолота воћака: 1, 4, 6 (вишорене јелишке леђварица), 2) сандук за суве миље, 3) двострука јелишка леђварица, 5) зиговорен амерички сандук, 7) корица за јолове јадре, 8) сложена јелишка леђварица, 9) корица за јолове јадре, 10) зиговорена јелишка леђварица.
Организација изношења плодова је условањена начином бербе. Уколико се берба обавља ручно, јабукари и холандези (плитке летварице) се износе крај редова и онда утоварују на транспортну приколицу.
Уколико се користи палетни систем, убрани плодови се износе виљушкарима из редова и директно товаре на транспортну приколицу или платформу.

Сл. 219-2 – 11) коса летварица, 12) и 14) летварица јабукари, 13) затворене мале летварице, 15) мале плитке летварице у раму, 16) прегрда у затвореним вагонима јарликом иранстиорија плодова у ринфузу и 17) бокс јарлеши
КЛАСИРАЊЕ ПЛОДОВА

Плодови воћа намењени потрошњи у свежем стању, морају при паковању бити добро класирани по сортама, квалитету, крупноћи, зрелости, па и по боји по-
кожице.

Воће се класира према стандардима при-
хваћеним од ЕСЕ (Economic Comission for Europe),
која је иницирала стандарде за квалитет и величину
плодова у промету, у свим европским земљама, а који
су унети и у југословенски Правилник о квалитету
воћа и поврћа.

Класирање плодова има вишеструк значај
јер је паковање лакше и брже, транспортабилност
плодова већа, плодови су привлачнијег изгледа, јед-
ноставније се и лакше продају.

Плодови већине врста воћака (jabuke, кру-
ышке, брскве, шљиве, кајсије, агрума, малине, ораха
и лешника) се према квалитету стављају у промет као
плодови екстра квалитета, I квалитета и II квалитета,
a плодови једног мањег броја врста воћака (тремење,
вишње, јагоде и боровнице), као плодови екстра ква-
литета и I квалитета.

Као плодови екстра квалитета могу се
стављати у промет само плодови висококвалитетних
сорти (као што су код jabuke: златни делишес, црвени делишес, кокс оранж, јонаголд,
глостер, боскопка и др., код крушке: вилијамовка, боскова бочица, фетелова, пахамс
триумф, друардова, красанка и др., код шљиве: пожегача, аженка, чачанска најбола,
президент и др).

Плодови екстра квалитета се одликују израженим сортним особинама, ујед-
наченом бојом, обликом и крупноћом, без икаквих недостатака, са прописаним преч-
ником за одређену сорту. Дозвољена су одступања од стандарда од 5%.

У категорију I квалитета увршћују се плодови наведених особина, са толе-
ранцијом неких мањих одступања по крупноћи, облику, боји, оштећењима покожица,
odсутношћу петењке, пепељка, и др. Дозвољена су одступања од стандарда до 10%.
Плодови II квалитета морају испуњавати минималне услове, који обезбеђују
употребну вредност плода.

Делимично класирање плодова врши се већ при самој берби. Тада се плодови,
који у промет неће ићи као стоко воће, остављају необрани или се одмах издавају.
Обрати плодови се класирају или у току бербе или непосредно после бербе, и то у
воћњаку или под неком надстручницим у економском дворишту. За директно кла-
скрање у току бере, радици се служе металним прстеновима одређеног пречника, за одређену сорту. Плодови, који пролазе кроз прстен не беру се ради изношења на тржиште. Тиме се штеди у времену, а и плодови се не претурају два пута кроз руке.

Поред описаног класирања руком, плодови се могу класирати и помоћу машина. Машинско класирање плодова је брже, економичније и најчешће се примењује за врсте воћака са чвршћим плодовима (jabuku, крушку, орах, лешник, шљиву, кајсију и др.). Машинским класирањем плодови се групису по крупноћи или тежини.

![Слика 221 - Савремено класирање плодова воћака калибратором](image)

Постоји више типова машина за класирање. Капацитети ових машина имају учинак и до 10 вагона дневно.

ПАКОВАЊЕ ПЛОДОВА

Паковање воћа је обавезан поступак при манипулацији с плодовима од бере до употребе. Тим поступком се ређају плодови у амбалажу са циљем да се до употребе што боље одрже тј. да се у време манипулације сачувају у таквом стању да до потрошача стигну неоштећени, сачуваних сортих својстава (боја, квалитет), а тиме и привлачни за потрошача.

Паковањем плодова постиже се успешније транспортуване, јер се омогућује бољи смештај у вагоне, кампне или друга превозна средства.

Плодови се пакују напољу, у воћњацима или под надстручницама, односно у просторијама у којима се воће чува.
Паковање воћа се врши на различите начине у зависности од врсте, односно намене: у расуто стању (alla rifusa), ређањем, увијањем или без увијања појединачних плодова.

Начин слагања плодова зависи од неколико чинилаца: особине производа (ситно воће, дозрело, недозрело), намене плодова (за блиско или даље тржиште, свежа употреба плода, чување, прерада и др.).

Крупни и уједначен плодови се ређају појединачно или у правилним редовима, и то најчешће у једном супоју.

Јабуке и агруми се ређају по дијагонали, у правилним или неправилним редовима, у зависности од уједначености по крупноћи и са чашницом окренутом нагоре.

Крупке се ређају обрнуто и укосо ако су издуженог облика.

При паковању плодова брескве, кајсије, крупних шљива, мање транспортабилних јабука и крушка, користе се улошци са удубљењима за сваки плод.

Плодови јагоде, малине, вишње, трешње и сличне плодове се пакују у расуто стању. Alla rifusa пакују се и плодови ораха, лешника, бадема, кестена, као и јабуке, крушка и агрума, уколико се транспортују на удаљенија тржишта или се чувају.
Паковање мора бити пажљиво изведено тако да се плодови не покрећу, не повређују и да су изложен нормалним биохемијским променама. Такође је значајно да се паковањем и естетска страна задовољи.

Воће се пакује у различиту врсту амбалаже, како по облику, тако и по врсти материјала. Најчешће се пакује у дрвени сандуке и корне различитих величина, картонске кутије, полиетиленске корпице, мања дрвена и пластична бурад, полиетиленске кесе и др.

Да би амбалажа одговарала функцији, мора да испуњи следеће услове: да је направљена од лаког и квалитетног материјала, да одговара хигијенским прописима, да се са њом може лако да рукује, да је пропустљива за гасове, влагу и друге продукте, да се лако деконтаминише и др.

Да би се спречило повређивање плодова при транспортувану, дрвени сандуци се облажу хартијом. За ову сврху је најбоља таласаста хартија или подметач за сваки плод који се прави од пластичне масе или пресоване хартије.

За паковање екстра квалитета употребљава се мека хартија – свиласта разних боја. Таквом хартијом се сваки плод посебно увија. Она је са једне стране глатка а са друге храпава. Храпава страна се оцрне плоду да би упијала водену пару из њега. На тај начин плод мање транспирише и дуже остаје свеж. Бела и зелена хартија се употребљавају за увијање добро обојених плодова (с црвеним покожицом), а плава и црвена за плодове необојене (са жућкастом и зеленкастом покожицом).

Увијање плодова је нарочито корисно јер се спречава преносење кврења једног плода на други.

Картонска амбалажа има све већу примену у паковању воћа. Углавном се користи за паковање мањих количина плодова јабука, ситног воћа, цитруса као и сувог и смрзнутог воћа.

У примени је и тзв. каширана амбалажа од картона обложен пластичним материјалима, (полиетиленом, целофаном) која се користи углавном за ситно воће.

ТРАНСПОРТ ПЛОДОВА

Начин транспортирања плодова. — Плодови се могу транспортирати, као и сви остали производи свим могућим транспортним средствима, по чем од најпримитивнијих до најсавременијих. Разуме се да је значај разних транспортних средстава за превоз воћа различит.

Транспортирање плодова. Иако транспортирање авионах несумњиво има будућност, ипак ће још задуго железницама и транспорт камионима — обичним и хладњачама — преовлађивати. Да би тај транспорт био што успешнији, нужно је да се обезбеде следећи услови:

— да вагони и камиони буду сасвим чисти, без страног мириса,
- да вагони буду подешени за транспорт плодова (трупкање умањено, вентилација појачана),
- да је транспорт што бржи,
- да су вагони обојени белом бојом и да су са дуплима зидовима,
- да се више користе камиони и вагони хладњаче.

Стоне сорте за потрошњу у свежем стану морају се увек паковати, те је и транспорт скупљи, док се плодови намењени преради могу транспортовати и неупаковани, па је транспорт јефтинији.

Губици – кало. – Плодови воћа у току транспортировања губе од своје тежине – калирају. Ти губици су различити и зависе од низа чинилаца: транспортног средства, услова у којима се обавља транспорт, дужине транспорта, сорте итд. Оријентациони губици (кало) у транспорту преко 50 km за јабуку износе: обичним вагоном 3%, а вагоном хладњачом 2%; обичним камионом 2%, а камионом хладњачом 1%.

Са. 223 – Превоз бокс Јалеша до сабирног центра са ујерођењеним исповаром – уређај за аутоматско исповаравање сних бокс Јалеша
У хлађеним складиштима плодови јабуке до 30 дана могу да калирају 2–3%. Код нас не постоје званични прописи о томе колико се губи и сматрају дозвољеним у транспорту и приликом складиштања плодова.

Током складиштања плодова настају физичке промене које су најчешће изражене губитком у маси плодова. Маса плодова смањује се и у најсавременијим складиштима. Пресудни чиниоци од којих зависи смањење масе јесу: особина сорте и режим под којим се плодови чувају.

ЧУВАЊЕ ВОЋА

Чување воћа има за циљ да реши противуречност између сезонског и квар-љивог карактера воћа са једне стране и неопходност његовог непрекидног коришћења у исхрани у свежем стану, са друге стране. Овај циљ мора бити остварен без икаквог погоршавања квалитета воћа, што је несумњиво од изузетно великог и вишеструког друштвено-привредног значаја.

Чување плодова заснива се на успоравању свих биохемијских и других процеса који при томе не престају. Уколико се то успешније постигне, утолико ће се плодови дуже очувати у свежем стану.
То нам намеће обавезу доброг познавања: 1. начина да се плодови што боље сачувају до момента коришћења, 2. биолошких својстава плодова који утичу на дужину и квалитет чувања.

НАЧИН (ТЕХНИКА – ТЕХНОЛОГИЈА) ЧУВАЊА

Температура ваздуха је од изузетне важности за успешно чување плодова. Она мора да буде оптимална (за плодове одређене врсте или сорте – за јабуку 0, 1, 2, 4 и 6°C; за крушку 0, 1 и 2°C; за бреску око −1,1°C; за шљиву −1,1 до 0°C итд.), ниска (да се успори брзо дозревање воћа као и квасење било физиолошко, физиолошко-биохемијско или технологско), стабилна (што се може постићи једино у вештачким складиштима – хладњачама).

Таб. 71 – Утицај температуре на чување крушке (Станковић, 1979)

<table>
<thead>
<tr>
<th>сорта</th>
<th>температура (°C)</th>
<th>дужина чувања (дана)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>оптимална</td>
<td>најдужа</td>
</tr>
<tr>
<td>боскова бочица</td>
<td>18,3</td>
<td>16 19</td>
</tr>
<tr>
<td></td>
<td>7,2</td>
<td>31 37</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>97 134</td>
</tr>
<tr>
<td></td>
<td>0,0</td>
<td>92 127</td>
</tr>
<tr>
<td></td>
<td>−1,1</td>
<td>80 126</td>
</tr>
</tbody>
</table>

Релативна влажност ваздуха је такође битан чинилац (нако мање значајан од температуре) за успешно и дуга чување воћа. Оптимална релативна влажност ваздуха је најчешће карактеристична за одређену врсту воћа, а врло слична за сорте у оквиру врсте. За јабучасте врсте креће се од 85–90%, за бреску око 85%, за кајсију 85%, за трешњу 85–90% итд.

Обична складишта (било да су укопана, полуукопана или надземна) имају озбиљан недостатак у немогућности одржавања константне температуре и релативне влажности ваздуха. За време благих зима температура је у њима висока, плодови раније дозревају, те им је грађашњост мања. Она се данас користе за чување мање количине плодова и то најчешће за сопствене потребе.
Најсигурнији начин да се плодови дуго и квалитетно сачувају и то у великим количинама и са неуманењем квалитетом јесте чување у хладеним складиштима. То је најбољи начин чувања плодова.

Хладена складишта могу бити различита по типу (приземна и надземна), по систему хладења (у којима се хладење обезбеђује помоћу врло испарљиве течности — амонијака, фреона или помоћу незаледиве течности — гликозиловане воде и др.), по величини и др.

Међутим, посебно је важно разликовати хладена складишта по саставу атмосфере, односно складишта са тзв. нормалном и контролисаном атмосфером. У хладеним складиштима се састав ваздуха у току чувања плодова може знатно изменити. Најчешће долази до нагомилавања CO₂, етилена и испарљивих материја из плодова, чиме се ремети састав ваздуха, што се негативно одражава на трајањност плодова.

Да би се повећала трајањност воћа као и квалитет чувања, у савременој воћарској производњи све се више користе хладилаче са контролисаном атмосфером где се у саставу ваздуха одржава константна количина CO₂ и O₂, која је оптимална за одређене сорте. То се постиже циркулацијом, мешањем и обновом ваздуха у коморама за чување. На овај начин се чување плодова неких врста може продукујти и за 2–3 месеца (jabuka, крушка).

БИОЛОШКА СВОЈСТВА ПЛОДА

Успех чувања воћа је већи, ако се поред складишта добро познају: порекло воћа, његове биолошке карактеристике и услови у којима је оно гајено.

а) Особености сорти. – Позна-то је да се плодови свих врста воћака могу краће или дуже чувати. Међутим, највећи економски значај има чување плодова jabuke, крушка и нешто мање брескве, пливе, трешње, јагоде и др.

Учено је да се код jabuke и крушка најкраће чувају сорте раног времена зрења, нешто дуже и боље сорте средње ране, а најбоље и најдуже сорте позног времена зрења или тзв. зимске сорте.

Најбоље се одржавају плодови, чија је покожица састављена од ситних ћелија, плодови са деблом и ком-

Сл. 225 – Плодови jabuke сорти млажни делишес, чувањи 150 дана. Покожица је слажена због неодговарајућег резама чувања
пактом кутикулом, прекривеном воштаном скрамицом (пепељком) и са ретким затвореним лентицелама.

Неке сорте јабуке могу се чувати и до маја месеца (ајдаред, мелроуз, трени смит, златни делишес и др.). Сорте крушака се краће чувају — негде до априла (пас красан, калуђерка).

Позне сорте бресака се могу чувати 3–6 недеља. Шљива пожегача се према испитивањима Бебиња, може сачувати и до 8 недеља. Трепиће и јагоде се могу чувати 10–14 дана, итд.

6) Стевен зрелости јлода. — Плодови се најдуже чувају уколико су правовремено убрани. Они су краће трајашности уколико су зрели. Да би се плодови што дуже и што квалитетније чували, одређује се оптималан рок бербе за сваку сорту, у сваком засаду посебно.

7) Крупноћа Јлода. — Утврђено је да код исте сорте најситнији и најкрупнији плодови испољавају стабију трајашност. Најбоље се одржавају плодови осредње крупноће.

Таб. 72 — Утицај величине плодова и времена од бербе до усклопштенија златног делиспesa на смањење тежине (у %), (Булатовић—Таравић, 1976)

<table>
<thead>
<tr>
<th>пречник и маса плода</th>
<th>време усклопштенија</th>
<th>губици максе</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>до усклопштенија</td>
<td>у току чувања</td>
</tr>
<tr>
<td>80 mm (214,3 g)</td>
<td>одмах по берби</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>4 дана по берби</td>
<td>5,23</td>
</tr>
<tr>
<td></td>
<td>10 дана по берби</td>
<td>6,72</td>
</tr>
<tr>
<td>70 mm (173,0 g)</td>
<td>одмах по берби</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>4 дана по берби</td>
<td>3,42</td>
</tr>
<tr>
<td></td>
<td>10 дана по берби</td>
<td>6,84</td>
</tr>
<tr>
<td>60 mm (134,6 g)</td>
<td>одмах по берби</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>4 дана по берби</td>
<td>3,05</td>
</tr>
<tr>
<td></td>
<td>10 дана по берби</td>
<td>5,67</td>
</tr>
</tbody>
</table>

8) Начин и време брања Јлода. — Плодови намењени чувању морају се брати пажљиво, да се избегне свако повређивање, па и веће скидање пепељака.

Плодови се беру са петељком, по лепом али не и превише топлом времену. После брања плодове не остављати да стоје дуже на сунцу.

9) Класирање (разврставање) Јлода по квалитету и зрелости. — Да би се плодови успешно чували, мора да се изврши класирање плодова по сортама, квалитету, крупноћи и зрелости. Само здрави неповређени плодови остављају се на чување.
h) Временске држине у јошку године. – Плодови воћака, нарочито јабуке најбоље се и најкалвитетније чувају у годинама када су пролећа кишовита, са обилjem падавина, а лета топла и сушана. У годинама са кишовитим летом, плодови се теже чувају. Летње жеге такође неповољно делују на трајашност плодова, јер изазивају ожењтене.

e) Положај и земљиште. – Оценији положај са умереним нагибом, који су довољно изложени светлости и топлоти делују повољно на трајашност плодова.

Плодови се боље чувају уколико су воћке гајене на растреситом, умерено влажном земљишту, снабдевеном свим хранљивим материјама, него ако је земљиште тешко и збијено или суво и лако и пропушно, а посебно ако је песковито и сиромашно азотом.

Утврђено је да исхрана воћака врло битно утиче на квалитет и трајашност плодова. Посебно је важно да је воћка оптимално снабдевена азотом, јер вишак, као и мањак N се негативно одражавају на трајашност плодова (нарочито јабуке). Анализе неких аутора указују да у лици јабуке треба да има највише 2,1% азота у односу на суму материју ако се жели добар квалитет и трајашност плодова.

ж) Структура и стање воћке. – Плодови са младих и старих стабала су слабије трајашности. Трајашност плодова се смањује изнуреношћу стабла, густом крном, слабом заштитом од болести и штеточина. Такође су слабије трајашности плодови са бујнијих и претерано родних стабала.

На трајашност плодова утичу и вегетативна подлоза и комплетно примењена агротехника (резидба, обрада земљишта, ђуррење, наводњавање, заштита од болести и штеточина и др.). Тако на пример, јача резидба јабуке неповољно утиче на квалитет и дужину чувања плодова, а проређивање плодова, повољно.

ПРОМЕНЕ ВОЂНИХ ПЛОДОВА ЗА ВРЕМЕ ЧУВАЊА

Плодови који се чувају, убрани у стању физиолошке зрелости или непосредно после ње и даље се по битним биохемијским процесима понашају као живи органи, готово исто онако као док су били саставни део биљке од које потичу.

Одвајањем плоде од биљке, престаје притичај хранљивих материја, те се у њима промене после бербе своде на преображаје и разлагање супстанција, везане за одговарајуће трансформације, потрошњу и ослобађање енергије. Те биохемијске промене у току довршења плода, у којима доминирају оксидације, имају далекосежне последице на квалитет и дужину чувања воћа.

Из тих процеса произилазе обично различите промене воћа, веома значајне, како са биолошког, тако и са привредног аспекта. Оне су неједнаког интензитета, што зависи од многобројних чинилаца: првенствено од генетских карактеристика сорте, од
услов ла под којима се развијају, од времена, начина бере и манипулације, од физичких услова чувања воћа итд.

Све те промене по свом карактеру могу бити корисне и неповољне.
Корисне промене се дешавају пре и после бере. Оне су физичко-морфолошког и биохемијског карактера и утичу на побољшање квалитета плодова.

Манифестују се првенствено променом колорације епидермиса (са преласком основне зелене боје у различите нијансе жућкасте или беличaste и допунске првене или плаве у интензивнију нијансу), као и променом боје меснатог дела плода, интензивнијом појавом кутикуле и боље израженом воштаном превлаком (непељком); омекшавањем меснатог дела (условљеном променом пектинских материја), повећањем шећера и смањењем органских киселина, танина и др.: појавом ароме, чиме се постиже карактеристичан сортни укус и најбољи квалитет плодова.

Неповољне промене доводе до погоршања квалитета плодова и по пореклу могу бити: механичко-физичке, физиологске и паразитске.

Механичко-физичке промене се најчешће дешавају у току бере и непосредно после ње као последица манипулације плодовима при пуњењу амбалаже, утовару, истовару, калибрирању и транспорту воћа. Те промене се манифестују у виду убоја (епидермис или хиподермиса), напрслине, смањења масе и смекурања покожице плодова.

Паразитске промене на плодовима се јављају као последица развитка паразитских и сапрофитских гљива и шtetочина (Botritis cinerea, Gloeosporium sp., Monilia fructigena, Penicillium sp., Rhisopus sp., Aspergilus niger и др.).

Манифестују се у виду пега, разних врста тружежи (горка, сива, зелена и плава тружеж итд.) и разних деформација на плоду (услед деловања вироза, бактериоза, микоза, акариди и др.).

Физиологске промене на плодовима нису условљене паразитним организмима, већ физиологским поремећајима, изазваним различитим факторима, како у воћњаку, тако и у складишту.

Оне се манифестују променама на покожици и маси плода у виду посмеђивања епидермиса, посмеђивања око лентицела, тамних удубљених кругова, тамњења меса итд., као и јаком непријатном укусу и нарочито ароми плода.

Физиологске промене изазивају велике губитке у току или након складиштења, те се често називају и физиологским болестима.

Шете су најмање ако се због појаве физиологских болести погорша квалитет плодова, па им се смањи само њихова трговачка вредност. Међутим, оне најчешће изазивају пропадање плодова због омекшавања покожице и маса и напада паразитних организама.

Често ове промене називамо „болестима складишта”, што није тачно у свим случајевима. Неке од тих болести се почињу развијати још у воћњаку, па у току чувања
стање остаје исто или се погоршава, а неке се развијају тек у складишту због поремећаја у метаболизму плодова.

Интензитет појаве зависи од генетских карактеристика сорте (осетљивости или отпорности сорте) од услова складиштења, као и од различитих фактора у току развоја плода у воћњаку.

Физиолошке болести јореклом из воћњака

Горке јеђе (Bitter pit)

Физиолошка болест која настаје у воћњаку, али се може испољити тек у складишту, манифестује у виду округлостих, тамнозелених, мркних, ређе скоро црних депресија на покожици плода, које су катkad само овивчане зеленкастом бојом. Испод њих се налазе некротиране паренхимске ћелије меснатог дела плода које су сувиђерасте, жилавије и збијене структуре.

Горке пеге се најчешће јављају у пределу чашице и не проширују се. Као основни узрок појављивања горких пега сматра се недостатак Ca у плоду. Познато је да Ca притиче у плод киселом узазим током, те је снабдевеност плода Ca добра уколико притиче добровољно воде и хранљиви материји за раст летораста и развој плода. Међутим, ако је недовољна снабдевеност водом, недовољна је и активност киселом сеченома, а како се Ca не може транспленирати из лишћа у плод флоемским путем, и то доводи до дефицита Ca у плоду.

Дефицит Ca у плоду је најчешће изражен сушних година.

Доказано је да уколико се количина Ca у плоду смањи испод критичке границе, пропустљивост ћелијске мембрани се повећава и Mg замењује Ca у мембрани, а део Ca се премешта у друге органе.

Услед наведених поремећаја долази до одавања воде из плодова, до великог повећања концентрације K, Mg и органских киселина, што доводи до пропадања ћелија и наставања некротичних места горког укуса услед области нагомилања магнезијум-сулфата.

Из напред изнетог се може закључити да сви фактори у воћњаку који доводе до лошег снабдевавања плода Ca, могу утицати и на развој ове физиолошке болести као што су: пребујан раст, преобилно ђубређе N, K и Mg, јака резидба, неравномерно и недовољно снабдевавање водом, суша, високе температуре које појачавају транспирацију, итд.

Горке пеге се могу избећи правилном исхраном, равномерним снабдевавањем водом, прскањем са CaCl₂ i Ca(NO₃)₂ u више наврату и правовременом бербом.

Плодове треба брати у оптималном степену зрелости, јер се на рано убраним плодовима горке пеге знатно раније и интензивније појављују.
После бере, плодовима треба обезбедити оптималан режим чувања при чему треба посебно водити рачуна о влажности ваздуха.
Нема отпорних сорти. Посебно су осетљиве сорте јабуке: кокс оранж, боскопка, грени смит, делишес и његови мутанти и др.

Стаклавост плода (Water core)

Стаклавост се јавља у месу плода у виду стакласто провидних поља. Настаје услед физиолошких поремећаја ћелија које чине меснати део плода из којих вода прелази у интерцелуларе и испуњава их уместо ваздуха.
У почетку захвата углавном васкуларни део ткива плода, касније се шири даље, али ретко кад може захватити цео плод.
Стаклавост се јавља најчешће код јабуке, а врло ретко код крушка.
Узроци појаве стаклавости нису потпуно објашњени.
Неки аутори сматрају да је то типична болест младих и слабо родних стабала, код којих је поремећен однос лисне површине и броја плодова. Сви узроци који доводе до развоја релативно превелике лисне површине (преобилно ђубрење N, прејака резидба итд.) погођују и развоју ове болести.
Неки, нак, сматрају да је један од вероватних узрока појаве стаклавости брзо нагомилавање шећера у ткивима плода, уз истовремено повећање осмотског притиска у ћелијама. Ћелије због тога узимају много воде која се потом разлива у међућелијске просторе.
Највећи број аутора стаклавост плода доводи у тесну везу са недостатком Ca у плоду. То изазива поремећај равнотеже између Ca, сорбитона и азола, што узрокује већу пропуштеност ћелијских зидова, те вода из ћелија прелази у интерцелуларе.
За праксу је такође значајно да се појава стаклавости везује за степен зрелости плода и да се чешће јавља код касније бере.
Занимљиво је споменути да је то једина физиолошка болест која може током чувања изчезнути. Међутим, ако се јавља у јачем интензитету, веома је неповољна, јер појачава подложност плодова унутрашњем разлагању.
Интензитет болести се може смањити благовременом бербом и вишекратним прскавањем стабала раствором CaCl2 и Ca(NO3)2.

Йонатанове плеће (Jonathan spot)

Йонатанове плеће се јављају на покожно плода јабуке у облику мањих, округлих или неправилних пега (око 1-2 mm у пречнику), мрке до црне боје.
Ова физиолошка болест је добила назив по сорти Јонатан која је изузетно осетљива на њу.
Узроци болести још нису познати. Утврђено је да се чешће јавља у воћњацима на топлијим, сунчаним положајима, на подлогама слабе бујности, на крупнијим и плодовима млађих засада, као и на зрелијим и касније убраним плодовима.

Јонатанове пеге се најефикасније спречавају правовременом бербоом, брзим ускладиштењем и оптималним условима чувања.

Јавља се првенствено на јонатану и његовим сродницима (ајдаред, мелроze, јонаголд), али и на другим сортама црвених плодова: ром бјутију, вустер пармену, велти, графенштајну и др.

Упућивање плутасти пеће (Cork spot)

Ово обољење се карактерише угледним пегама светлозелене боје, које су испод покожице плутасти, чарст и мрке боје.

Развија се у воћњаку и за разлику од горких пега не развија се даље при чувању.

На појаву овог обољења утичу исти фактори који изазивају и појаву горких пега. Уочено је да се најчешће јавља као реакција на недостатак бора у земљишту.

Мрке лентицилне пеће (Plura)

Ово обољење се јавља у виду смеђих површинских пега које се формирају око лентицела, првенствено у пределу чашчичног дела плода. Споља су сличне горким пегама, али за разлику од њих, увек им се у центру налазе лентицеле.

Неки аутори их означавају као посебан облик горких пега и препоручују њихово сузбијање на исти начин као и горке пеге.

Физиолошке болести које настају у складишту

Посмењивање пожожице (Scald)

То је најчешћа болест која се појављује у току чувања или након исхладиштења плодова јабуке, а много ређе и крушака.

Она се манифестује у посмењивању покожице у облику већих или мањих неправилних смеђих мрља, које се могу спојити и прекривити већи део покожице плода. Ова појава захвата поред епидермиса и 5-6 спојева хиподермалних ћелија. Тиме се знатније не умањује хранљива и технологска вредност плода, али му се погоршавају органолептичке карактеристике, што смањује тржишну вредност.

Узроки ове болести су врло различити, али су симптоми често врло слични, па је тешко разликовати поједине типове посмењивања.

Многи аутори разликују два типа посмењивања пожожице: 1) обично посмењивање зелених плодова и 2) старосно (сенесценцио) посмењивање.
Обично посмеђивање се најчешће јавља у складишту већ почетком јануара, на засенченој страни плода код сорти из групе розе делишеса, код сорте грени смит, јонатан, штајман и др.

Најчешће спомињани узрок појаве обичног посмеђивања је оксидација терпениског угљоводоника α-фарнезана, чији продукти изазивају пропадање ћелија у површинском слоју и његово посмеђивање. Због тога се ово обољење може сузбити антиоксидансима (калиум су дифениламин и етоксиквин) који спречавају оксидацију α-фарнезана.

На појаву овог обољења значајно утичу: степен зрелости плода, агротехника, временске прилике и услови чувања.

Ова појава се најјефикасније спречава правовременом бербом, брзим успостављањем оптималног режима чувања, уз превасходно третирање плодова антиоксидантима.

Старосно посмеђивање покожице настаје због предутог чувања плодова након бербе. Обично се јавља на пререзим плодовима са симптомима сличним обичним ожеготинама, уз посмеђивање и ткива непосредно испод покожице.

Старосне ожеготине се могу јавити при крају чувања још у комори, али се нарочито интензивно јављају после изношења плодова из хладњаче у року од 24–48 часова.

Најефикаснији начин спречавања ове појаве је благовремена берба, оптимална дужина чувања и брzo искладиштење плодова који су добили жуту боју.

Посмеђивање (унутрашње тамњење) меса

Унутрашње тамњење вођа може се запазити код свих врста плодова који се дуже време чувају у хладежном складишту. Нарочито је често код жабуке, крушка, бреске и шљиве.

Као и посмеђивање покожице, ову болест изазивају и различити узорци који изазивају различите типове посмеђивања меса.

Испољава се у посмеђивању, смекшавању и пропадању или читавом месу плода или, зависно од узрока, појединим деловима плода.

Највећи број аутора разликује два основна типа посмеђивања меса: 1) првомарно посмеђивање – због ниских температура у складишту или старости плода; 2) секундарно посмеђивање – узроковано повредама (притисак) или поремећајима у развоју плода (стаклавост плода).
Посмећивање због ниских температура

(Internal breakdown)

Ова болест је позната као болест хладеног складишта, јер се јавља код јабуке, чување на ниским температурама од 0–3°C. Тамњење меса се најјре јавља око спроводних судова, а затим се шири према периферији плода. Месо постаје прљко, омекшава и бљутавог је укуса. У почетној фази развоја ова болест се споља не може уочити. До појаве болести долази због поремећаја у метаболизму. Што је интензитет дисања плода у тренутку складиштења већи, то ће се поремећај пре и јаче испољити у зависности од дужине излагаша критичним температурама. Због тога је посмећивање меса изазвано ниским температурама чешћа појава у зрелијим плодовима, односно у плодовима који су убрани и ускладиштени у хладњачу у климактеричном усопну дисања.

Старосно посмећивање меса (Senescent breakdown)

Старосно посмећивање меса се најјре јавља у површинским спојевима меса, а затим се шири према централном делу плода. То је последица старости плода, односно чувања плода дуже од животног потенцијала. У поодмањкој фази ове болести покожица губи сјај и потамњује, месо смешава и лако се гњечи, постепено се суши, брашњави и губи укус и арому. Узрок овог обољења је најчешће касна берба, одлагање ускладиштења и споро обезбеђивање оптималног режима чувања. Старосно посмећивање меса се може јавити већ у складишту, али се интензитет појачава након изношења плодова из хладњаче. Ова болест се може спречити или бар ублажити добром обезбеђеношћу Са, благовременом бербом, ускладиштењем и ускладиштењем плодова.

Посмећивање око семена кућице (Core flush)

Ово обољење захвата централни део плода. Јавља се у виду посмећивања у облику жућкастих и црвенкасто смешених кругова око семена кућице и шири се према проводним судовима. Јавља се као последица предугог чувања (старости), недостатка O₂, превисоке концентрације СO₂, као и поремећање размене материја. Посебно је честа појава у обичној хладњачи код сорти: глостер, ајдаре, боскопка, старкинг, кокс оранж и др.
Брашњавост плода (Mealy breakdown)

Брашњавост меса плода се у воћњаку јавља као последица: дугог периода чувања, сувише касне бербе или чувања на високим температурама.

Ова појава се манифестује смамањењем течне фазе у плодовима, као и про-менама ћелијских зидова под утицајем активности пектинских ензима, нарочито пек-тиназе.

То је веома честа појава у току чувања нарочито јабуке и крушке.

Може се успорити њено појављивање правовременом бербом, чувањем у хлађеном складишту (било са нормалном или контролисаном атмосфером) као и избегавањем предугог чувања.

Оштећење плода као последица смрзавања

(Freezing injury breakdown)

Смрзавање плодова се сврстава у физиолошка обољења складишта. Настаје, ако температура у складишту падне на −1°C тј. испод температуре смрзавања сока.

Јавља се у виду тамних улегнућа неправилног облика и зракастом пос-међивана меса од епидермиса према семеној кућици. На пресеченом плоду сок излази из повређених ћелија под малим притиском.

При јачем смрзавању и покожица губи природну боју.

Јабуке смрзнуте у слабијем степену могу се након одмрзавања искористити као стоне, али их не би требало више чувати да не би дошло до погоршања квалитета.

Одмрзавање плодова треба обавити постепено, јер се наглим одмрзавањем озбиљно оштећују ткива.

* * *

Поред наведених физиолошких болести складишта у мањем или већем обиму могу се јавити и следеће: повреде плода због недостатка O₂, повреде плода због превисоке концентрације CO₂, оштећење плода од амонијака, меке ожеготине (Soft Scald) и др.
Сл. 226 – Палеоми систем складиштења (горе). Изглед савремених хладњача (у средини и доле)
КЛАСИФИКАЦИЈА ВОЂАКА

Постојеће форме вођака се међусобно разликују по морфолошким, физиолошким, привредним и другим особинама. Разлике су условљене како њиховим филогенетским пореклом, тако и утицајем доместификације, интродукције, фитотехнике, као и географске распространиености.

С обзиром на постојање великог броја различитих форми вођака, намење се потреба њиховог класификовања.

Најстарија класификација вођака, као и осталих биљака је боштанчика. Она се заснива на филогенетској вези и припадности вођака одређеним системским категоријама.

Све вођке припадају типу Magnoliophyta (по Taxifoliáceae), класи Magnoliatae (или Dicotyledoneae по Engleru).

Ова класа се састоји од 6 поткласа од којих се у 3 налазе представници вођака.

I Поткласа HAMAMELIDANAE

– Ред URTICALES L.
 – Фам. Moraceae
 1. Morus sp. – дуд
 2. Ficus sp. – смоква

– Ред BETULALES N.
 – Фам. Betulaceae S. F.
 1. Corylus sp. – лешник

– Ред JUGLANALES
 1. Juglans sp. – орах
 2. Caria pecan – пекан (амерички орах)
II Поткласа DILLENIIDAE

Надред Ericanae
 - Ред ERICALES L.
 Фам. Ericaceae A.
 1. Vaccinium sp. – боровница
 - Ред EBENALES B.
 Фам. Ebenaceae G.
 1. Diospyrus kaki – јапанска јабука

III Поткласа ROSIDAE

Представља групу биљака са највишим степеном организованости у оквиру класе. То је најважнија поткласа са воћарског становишта, јер се у њој налазе најважније врсте воћака.

Надред Rosanae
 - Ред ROSALES LINDLEY
 1. Фам. Rosaceae Juss.
 - Rubus sp. – малина, купица
 - Fragaria sp. – јагода
 - Потфам. MALOIDEAE
 - Cydonia sp. – дуња
 - Pyrus sp. – крушка
 - Malus sp. – јабука
 - Sorbus sp. – оскоруша, мукиња,
 брекиња, јаребика и др.
 - Mespilus sp. – мушмула
 - Потфам. PRUNOIDEAE
 - Prunus sp.
 - Подрод Amygdalus
 1. Prunus persica L. – бресква
 2. Prunus amygdalus – бадем
 - Подрод Prunus
 1. Prunus armeniaca L. – кајсија
 2. Prunus cerasifera Ehrh. – цанарака
 3. Prunus spinosa L. – цри трни
 4. Prunus domestica L. – шљива
 5. Prunus salicina Ehrh. – јапанска шљива
Подрод Cerasus Juss.
1. Prunus fructicosa – степска вишња
2. Prunus avium L. – трешња
3. Prunus cerasus L. – обична вишња
4. Prunus mahaleb L. – рашељка

Подрод Padus Fock.
1. Prunus padus L. – срезма
2. Prunus serotina Eh.

Подрод Laurocerasus
1. Prunus laurocerasus – ловор вишња

Фам Grossulariaceae
1. Ribes sp. – риbizла, огурец

Иако у овој класификацији нису приказане све врсте воћака, већ само оне које се више гаје у умерено-континенталном климатском подручју, из свега изнетог произлази да систематска класификација по Taxaиjану, поред тога што најбоље приказује филогенетске везе између воћака, ипак није довољно прегледна и практично је тешко примењива.

Чињени су пokuшаји груписања воћака и на основу других критеријума (као што су: однос према чиниоцима средине, дуговечност, отпорност према ентомофаунам и микрофлорам и др.), међутим, највише успеха и примена има тзв. Јогомолска класификација, која као критеријум за груписање воћака има особине плода.

На основу овог критеријума све воћке су подељене у 4 групе:

I група – Воћке са јабучастим плодовима

Све воћке из ове групе имају плод који припада ботаничком типу – синкарпна коштуница.

Овој групи припадају врсте рода: Malus (јабука), Pyrus (кушка), Cydonia (дуња), Mespilus (мушума), Sorbus (оскоруша, мукиња, брекиња и др.), Rosa (шипурак), Crataegus (глог) и др.

II група – Воћке са коштичавим плодовима

Све воћке из ове групе имају плод који припада ботаничком типу – монокарпна коштуница.

Овој групи припадају врсте рода Prunus: domestica (шљива), persica (бреска), armeniaca (кајсија), avium (трешња), cerasus (вишња) и др.
III група – Воћке са језграстим йелодовима

Воћке из ове групе имају плод који припада различитим ботаничким типовима (монокарпина коштуница и орашица). Међутим, нако су анатомски различити, ти плодови су слични по лакој манипулацији и могућности дугог чувања и иско- ришћавања. С друге стране јестиви део тих плодова није део перикарпа (мезокарп или месо плода), како је то уобичајено, већ семе са јако увећаним ендоспермом.

Овој групи припадају врсте рода: *Juglans* (орах), *Amygdallus* (бадем), *Corylus* (лешић) и *Castanea* (кестен).

IV група – Воћке са Јагодастим йелодовима (ситно воће)

Воћке из ове групе имају плод који припада различитим ботаничким типовима (бобица, збирна коштуница, збирна орашица и др.), али је за све ове плодове заједничка особина да су релативно ситни, нежни и слабо манипулативни.

Помоћним класификацијом обухваћене су само тзв. кондензационе врсте воћака, што значи да поред њих, према географској распро стренености сречемо још две велике групе воћака, тзв. суптропско и тропско воће.

Група суптропског воћа назива се још и воћкама јужних Јогурчја, из разлога, што оне по својим еколошко-адаптивним карактеристикама чине прелаз између континенталних и тропских воћних врста.

Тропска воће се гаје у тропским крајевима. Неке од њих се могу срести и у нашој земљи, само спорадично, у стакленицима и као украсне - дендролошке билке. Овој групи припадају воћке изузетно велике биолошке вредности плода (високог садржаја витамина: C, B, A, D, E, K, каротина, минерала: Fe, Ca, P, Mg, K, шећера, уља, киселина и других материја).

КОНТИНЕНТАЛНЕ ВРСТЕ ВОЂАКА

ВОЂКЕ С ЈАБУЧАСТИМ ПЛОДОВИМА

По заступљености у укупној воћарској производњи, вођке с јабучастим плодовима су на другом месту. Оне у укупном броју вођака учествују са 27,63%. У ову групу вођака спадају: јабука, чији је удео 19,27%, затим крушка са 7,10%, дуња са 1,26%, док су мурумула и оскоруша незнатно заступљене, статистика их и не евидентира.

У структури воћварства наше земље јабука је по броју стабала на другом месту, одмах после шљиве, крушка је на трећем, а дуња на последњем месту. Економски значај јабуке, крушке и дуње је у свестраној употребној вредности њихових плодова. Плодови ових вођака, посебно јабуке, користе се током целе године и учествују у потрошњи свежих плодова са око 90% у односу на све стено вође.

Ови плодови су значајни и у индустрији прераде, јер су добра сировина за многе прерађевине.

ЈАБУКА

Јабука спада у најраспрострањеније и привредно најкорисније врсте воћака. По производњи (38.209.000 t) и потрошњи плодова у свежем стању, јабука се међу воћкама у свету налази на трећем месту, иза агрума и банана.

Тако значајно и високо место јабуке у светској воћарској привреди је последица њене изузетне адаптивне способности. Иако је то воћка, пре свега, умереног поднебља северне Земљине полулопте, она се с више или мање успеха гаји на свим континентима.

Европа је као континент највећи производођач јабуке (22.111.000 t) и на њену производњу отпада око 60% укупне светске производње. За њом долазе Северна Америка и Азия. Гајење јабуке на јужној полулуопти је ограничено само на хумиднија подручја.

Највећи производођачи јабуке у свету су: Русија, Земље бивше СССР-а, САД, Кина, Француска, Италија, Немачка, Пољска и др.

Западна Азиза је исходни центар порекла јабуке. Највећи број врста јабуке налази се на подручју Хimalаја. Из овог подручја јабука се ширила преко Мале Азизе у европске земље.

Прве писане податке о гајењу јабуке наводи грчки писац Теофраст (370–285. године пре нове ере). Грчка је прва у Европи почела да гаји јабуку.
Човек је од давнина користио плод јабуке као храну и лек. Јабука је изузетно квалитетно воће, комплексног хемијског састава. Њен плод садржи од 10 до 19% суве матерije, 7-16% укупних шећера (у чијој структури доминирају редуктујући шећери, глукоза и фруктоза), од 0,20 до 1,80% укупних органских киселина, до 0,40% минералних матерĳа (нарочито висок садржај K), до 0,8 g % пектина 0,025 до 0,27 g % танина, од 5 до 80 mg % витамина C, значајну кoličinu каротина, антацијана, аминокиселина и dr. биолошки значајних супстанци.

Плодови јабуке се користе за различите намене: као стоно воће (за потрошњу у свежем стању током целе године) и као сировина за индустрију прераде (у сокове, кафе, мармеладе, цемове, осушене плодове, компоте, сирће и dr.).

Велики привредни значај јабуке се види и по њеној заступљености у структури вођарства наше земље.

ПРОИЗВОДЊА ЈАБУКЕ У ЈУГОСЛАВИЈИ

Југославија има услове за производњу јабуке. Са производњом од око 23,60 kg по становнику, она је испод европског просека. То значи да је наша производња јабуке недовољна и да у томе несуграђене све могућности. У протекли четири деценије, поевао се број стабала за више од три пута (таб. 73).

Јабука после шљиве је најзначајнија воћка у Југославији. Годишње се произведе 255.550 t (1989/93.), што је 19,27% од укупне производње воћа.

Таб. 73 – Број стабала и производња јабуке у Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабала у хиљ.</th>
<th>производња у хиљ. тона</th>
<th>принос по стаблу у kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955</td>
<td>5.225</td>
<td>3.664</td>
<td>87</td>
</tr>
<tr>
<td>1965</td>
<td>8.409</td>
<td>5.994</td>
<td>56</td>
</tr>
<tr>
<td>1975</td>
<td>11.437</td>
<td>9.474</td>
<td>198</td>
</tr>
<tr>
<td>1985</td>
<td>16.295</td>
<td>14.446</td>
<td>194</td>
</tr>
<tr>
<td>1988</td>
<td>16.071</td>
<td>13.936</td>
<td>217</td>
</tr>
<tr>
<td>1989</td>
<td>16.274</td>
<td>14.259</td>
<td>286</td>
</tr>
<tr>
<td>1993</td>
<td>16.519</td>
<td>13.841</td>
<td>225</td>
</tr>
</tbody>
</table>

Јабука је најабилитија воћка у Југославији. Приноси у добром јабучним (углавном на друштвеном сектору) се крећу од 40 до 50 тона по хектару.
Међутим, мали просечан принос који бележи статистика, може се објаснити чињеницом да се око 80% површине под јабуком налазе на приватном сектору, на коме доминирају у гајењу тзв. аутохтоне сорте, које врло осцилирају по родности услед изразито екстензивног начина гајења.

У укупној производњи јабуке још увек је висок удео плодова неоднограварјућег квалитета, који се користе као индустријска јабука. Чине се стални покушаји да се побољша структура сортиmentа (како на друштвеном, посебно на индивидуалном сектору), да се смање трошкови производње подизањем нових засада са бољим, отпорнијим (према екологијским и патогеним агенцијама) сортама, као и да се интензивира производња јабуке у брдско-планинском подручју.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ ЈАБУКА

Јабука заузима према Tахитијану (1966), следеће место у систематичко биљању:

Одељак: Magnoliaphyta (Angiospermae, скривеноосеменице)
Класа: Magnoliatae (Dycotyledones, дикотиле)
Поткласа: Rosidae (руже)
Надред: Rosanae (руже)
Ред: Rosales (руже)
Фамилија: Rosaceae (руже)
Потфамилија: Maloideae (Pomoideae – јабучасте воћке)
Род: Malus Miller (јабука)

Rehder(1949) и Wilcoх (1962) су 33 врсте рода Malus које се срећу у спонтаној популацији груписане у 5 сектрија: Eumalus, Sorbomalus, Choromeles, Eriolobus и Dacyniopsis.

У току дуготрајне еволуције, на широким пространствима северне Земљине полулопте (Азија, Европа и Северна Америка), под врло различитим еколошким условима, спонтано се укрштало 11 врста јабуке, које припадају сектријама Eumalus, Sorbomalus и Chloromeles. Као резултат њихове спонтане и планске хибридишивање, настало је преко 10.000 сорти јабуке. То су следеће врсте:

1. **Malus sylvestris Miller (L.)** (шумска јабука). — Изражене бујности стабла. Релативно је отпорна према мразевима и температурним колебањима.
2. **Malus pumila Miller** (патаљаста јабука). — Мање бујности, велике могућности вегетативног размножавања, доброг квалитета плода.
У оквиру ове врсте издвојена су 4 варијетета:
- вар. *precox* (средње бујности)
- вар. *paradis* (врло мале бујности)
- вар. *niedzwetskiana* (са много антоцијана у свим органима)
- вар. *domestica* (одличног квалитета плода)

Селекцијом прва два варијетета у Ист Молингу створене су вегетативне подлоге за јабуку (М). Варијетети *niedzwetskiana* и *domestica* су вероватни родоначелници великороја сорти јабука.

4. *Malus baccata* Borkh (сибирска јабука). – Отпорна према екстремно ниским зимским температурама. Издржава и до −60°C.

5. *Malus spectabilis* Borkh (кинеска оријентална јабука)
6. *Malus hupehensis* Rehder (кинеска јабука)
7. *Malus halliana* Koehne (кинеска јабука)

Ове три врсте су родоначелници локалних азијских сорти јабуке.

II Секција Sorbomalus Zabel

9. *Malus sieboldi* Rehder (јапанска украсна јабука)
10. *Malus zummi* – отпорна према пепелници (*Podosphaera leucotricha*)

III Секција Chloromeles Rehder

11. *Malus coronaria* Miller (америчка дивља)
12. *Malus ioensis* Britton (прсијска дивља)

Врсте ове секције су вероватни родоначелници северноамеричких аутохто
них сорти јабуке.

Доминантно место у стварању највећег броја сорти квалитетне јабуке, заузимају: шумска јабука (*Malus sylvestris*) и патуљаста јабука (*Malus pumila*).

СОРТЕ ЈАБУКЕ

Клоз (Close)

Потиче из САД, а код нас се постепено шири.

Бере се у другој половини јуна, односно 7 до 10 дана пре старкове најраније.

То је најранија летња сорта јабуке.
Особине биљке: бујна је, трипloidна, рано-цветна сорта, са поленом слабе клјавости. Средње је осетљива према пепелици и чђавој краставости. Рано пророди и редовно рађа. Плодови неравномерно сазревају, те је треба брати у више наврата.

Плод је круштан (140–180 г), зарубљенокупастог облика. Покожица је танка, светлозелена, основне боје, већим делом прекривена пругастим руменилом. Месо је сочно, зеленожуто, винастокисело и ароматично. Благовремено убран плод одржи се око две недеље. Кад се са бербом закасни, плод брзо брашњави. Транспорт подноси добро. Погодна је за гајење на окућници.

Старкова најранјица (Stark earliest)

Створена је у САД. У производњи је од 1944. год. У нашој земљи је много раширина.

Сазрева крајем јуна и почетком јула.

Умерено је бујна, дипloidна сорта. Круна је пирамидална. Захтева оштрију резидбу. Погодна је за систем густе садње. Цвета рано. Релативно је отпорна према позним мразевима и чђавој краставости. Умерено је осетљива према пепелици. Рано почиње да рађа и рађа добро и редовно.

Плод је средње круштан (око 120 г), правилног, дипласто-колачастог облика. Покожица је сламасто жуте боје препливена јарким црвенилом у виду праменова. Месо је бледо жуто, ситно зрнасто, чврсто, сочно, нежно, пријатно освежавајуће, ароматично. При обилном замећењу неопходно је проређивање, иначе плод остаје ситан. Доста добро подноси транспорт. Стајањем, плод брашњави. Плодови јој неравномерно сазревају, те је треба брати у више наврата.

Виста бела (Vista bella)

Сазрева у првој декади, до средине јула месеца.

Бујног је стабла. Треба је гајити на слабо бујним подлогама (М 9, М 27). Диплиондна је и средње раноцветна. Релативно је осетљива према чђавој краставости и пепелици. Средње рано пророди. Рађа добро.

Плод је средње круштан (око 140–150 г), округласто-блато-кулапастог облика. Покожица је зеленкасто-жућкасте основе боје и допунске љубичастоцрвене, која прекрива 50–75% површине плода. Спада у групу одлично обојених сорти. За покожицу је карактеристичан мешак (пепелиц), светле боје, који плоду даје посебно леп изглед.

Месо је бледожуто, средње чврстоће, слатко-накисело, ароматично, одличног квалитета. Добро подноси транспорт.
Мантет (Mantet)

Потиче из Канаде. Настала је као спонтани сејанац сорте тетовски. Код нас је доста расшиrena.

Сазрева у другој половини јула.

Бујног је стабла, диплоидна је и средње рано цветна сорта.

Релативно је отпорна према ниским зимским температурама. Осетљива је према пепелици, а релативно отпорна према чамаковој краставости. Добре резултате постиже на подлогама слабе бујности. Погодна је за систем густе садње. Средње рано почиње да рађа. Склона је альтернативности у рађању, што се може ублажити оштријом резидбом и проређивањем.

Плод је средње крупан до крупан (130–180 g), облика лоптасти-коничног са благо израженим ребрима. Покожица плода је танка, основне жућкасто-зеленкасте боје, прекривене јарко црвеним пругама, са сунчаним странама плода. Она је слабо обојена сорта. Месо је жућкасто-бело боје, сично, винаста-накиселог укуса, ароматично, квалитетно и врло погодно за стону употребу. Због танке покожице, врло је слабе манипулативности и транспортибилности.

Пронађен је и црвено обојени мутант рода мантет.

Мелба (Melba)

Потиче из Канаде. Настала као сејанац слободно опрашеног мекинтоша. У Југославији се доста гаји.

Сазрева у трећој декади јула.

Стабло је средње бујно, широкопирамидалне крупне. Диплоидна је, рађа обилно (на кратком родном дрвету), али је склона альтернативности. Цвета средње рано и доста дуго, те мање страда од ниских температура, па је зато прикладнија за гајење у хладнијим подручјима. Осетљива је према чамаковој краставости.

Плод је средње крупан до крупан (110–180 g), округласто-конусног облика, асиметричан са благо назначеним ребрима. Покожица је танка или жилава и може се код зрелих плодова прстима одвојити од меса. Основна боја је светлежућкаста са допунским љубичасто-црвеном која је прекрива више од 50%. Сивкасти макаш даје црвенилу тон цикламе. Спада у средње обојене сорте. На покожици су изражене ситне беле лентицеле.

Месо је средње чврсто, интензивно беле боје са израженим спроводним снопићима. Укуса је слатко-средње-киселкастог и са врло израженом аромом. Плодови су врло осетљиви на притисак и слабо манипулативни.

Пронађен је црвено обојени мутант, ред мелба.
Дискавери (Discovery)

Потиче из Енглеске. Настала је као спонтани сејанац сорте вустер пармен. Код нас се релативно мало сади.
Сазрева у другој половини јула и почетком августа. Умерено је бујног стабла. Рамене гране се слабо гранају. Релативно је отпорна према чађавој краставости и пепелици, а осетљива према појави мумифицираних плодова (Sclerotinia fructigena). Цвета средње рано, касније почиње да рађа, а затим рађа умерено.
Плод је ситан до средиње крупан (100–120 g), правилног лоптаст-колачастог облика. Плодови су уједначеног облика и крупноће. Покожица је основне светлоруже боје, прекривена интензивним црвенилом (преко 90% површине плода, по коме су разасуте јасно изразене лентицеле). Одлично обојена сорта. Месо је бледожуто, чврсто, слатко-накисело, врло укусно и одличног квалитета. Транспортабилна је и манипулацивна.
У појединим локалитетима показује склоност ка пуцању покожице.

Церзимек (Jerseymac NJ)

Потиче из САД. Настала је вишекратним укрштањем. Задњи родитељи су NJ24 x цулайред.
Сазрева почетком августа, а може да се чува до месец дана. Бујни је стабла. Диплоидна сорта. Цвета средње рано. Рађа добро. Плодови понекад опадају пред бербу. Релативно је осетљива према пламењаци.
Плод је средиње крупан (140–160 g), лоптастог до лоптаст-колачастог облика. Покожица је основне зеленкасте боје прекривена на 50–80% површине љубичастим црвенилом. Добро обојена сорта. Месо је било, средње чврсто, сочно, слатко до слатко-накиселог укуса, ароматично, одличног квалитета. Транспортабилна је и манипулацивна.
Захтева пробирну бербу јер плодови неравномерно дозревају.

Акане – примруж (Akane, Primrouge)

Потиче из Јапана. Настала је укрштањем јоната и вустер пармен. У Југославији се све више шири.
Сазрева средином августа. Добро се држи на грани, па може да се бере 2–3 недеље без осетније промене. У хладњачи може да се чува 2–3 месеца.
Стабло је слабе бујности, разведене и разгранате круне. То је диплоидна сорта, са поленом одличне клијавости. Захтева средиње бујне подлоге и плодна земљишта. Доста је отпорна према чађавој краставости и пламењачи, а умерено осетљива према пепелици. Рано пророди, а затим рађа добро и редовно.
Плод је ситан до средње купан (100–140 g) зарубљено-купастог облика. Због склоности да прероди, потребно је проређивање. Основна жугозелена боја покожице прекривена је привлачном тамноцрвеном допунском бојом која прекрива 60–80% површине плода. Спада у групу одлично обојених сорти. Убрани плодови добијају танку воштану превлаку.

Месо је бело, чврсто, сочно, накисело, ароматично и одличног квалитета. Добро подноси транспорт. Погодно је за густу садњу.

Прима (Prima)

 То је прва привредно-значајна сорта јабука, отпорна према Venturia inequalis (чађава краставост), те је не треба прескакати фунгицидима против ове патогене гљиве.
Сазрева у трећој декади августа, тј. 10–15 дана пре јонатана. У хладњачи се чува до 2 месеца.
Бујног је стабла, диплоидна и средње позно-цветна сорта. Рано пророди и рађа редовно и добро. Рађа на младом родном дрвету (једногодишњем, двогодишњем и трогодишњем). Практично је отпорна према пепелици и пламењачи јабуке.
Плод је средње купан (120–140 g), облика лоптasto-колачастог са благо израженим ребрима. Покожица је основне зеленкастожућкасте боје, са допунском светлоцрвеном, која покрива већи део површине плода. Спада у одлично обојене сорте. Месо је жућкасто, чврсто, сочно, винасто-накиселог укуса, пријатне ароме. Квалитет плода је добар (квалитетна сорта).

Присила (Priscilla)

 Још једна сорта из групе СО–ОР, отпорна према Venturia inequalis (чађава краставост).
Пореклом је из САД. Такође је настала сложеним укрштањем. И у њеном генотипу Malus floribunda 821 је почетни родитељ (преносилац гена отпорности – Vf према чађавој краставости). За квалитет су биле задужене сорте златни делишес, мекинтош и старкинг.
Сазрева у I декади септембра, а може да се чува у хладњачи око 2 месеца.
Стабло је средње бујности, диплоидна је и средњецветна сорта. Добре је и редовне родности.
И она показује практичну отпорност према пепелици и пламењачи јабуке.
Плод је средње крупан до крупан (масе око 160 g), по облику слична розе делишесу. Покожица је светлозелуте основе боје, са допунском светлоцрвеном, која прекрива 70–90% површине плода у виду праменова. Одлично обојена сорта. Месо је белохвасто, чврсто, слатког укуса сличног розе делишесима. По квалитету заостаје за примом. Склона је брзом брашњављењу плода.

Јонатан (Jonathan)

Потиче из САД. Настала је из семена сорте езопус, 1800. године.
Сазрева у првој декади до средине септембра. Потрошња јој почиње одмах након бербе и траје до марта, докле може да се чува у хлађеном складишту. Диплоидна је сорта.
Средње је бујног стабла, округле густе круне. Средње позно цвета. Рано пророди, а затим редовно и обилно рађа. Веома је осетљива према гљиви Podosphaera leucotricha (пепелица), а у мањој мери према гљиви Venturia inequalis (ч. краставост). Релативно је отпорна према зимским и позним пролећним мразевима. Добре резултате постиже на средње и слабо бујним подлогама. (M4, M9, M26, MM106).
Плод је средње крупан, а често и ситан (85-145-245 g), симетричног округлас-токонусног облика, са благо назначеним ребрима у пределу чашице. Покожица је глатка, сјајна, чврста, основне зеленкастожуге до светлозелуте боје, а допунске интензивно црвене са снучане стране плода. Спада у слабије обојене сорте. Месо плода је жућкасто-беле боје, чврсто, фине структуре, осочно складног, хармоничног киселкасто-слатког, винастог укуса, са пшементом и добро израженом аромом. Квалитет плода је висок и по многим ауторима то је најквалитетнија јабука.
Ова сорта на жалост, има читав низ врло озбиљних недостатака: претерана осетљивост према гљивичним болестима, често ситан плод који је врло слабо обојен, лоша складишна способност – појава „јонатаових” пега (физиолошко обојење плода које се јавља најчешће ако се касно приступи берби) и релативно кратка трајашћност плода (до марта).
Пронађен је црвено обојени мутант (Red Jonathan), који капемљен на слабо-бујним подлогама, постиже одличне резултате (обојеност, крпноћ плода), док су остала лоше особине јонатана такође изражене.

Мелроуз (Melrose)

Потиче из САД. Настала је укрштањем јонатана и розе делишеса. У Ју-гославији се шири као водећа сорта.
Сазрева половином, до краја септембра (око недељу дана после јонатана). Плод се чува у обичним складиштима до априла, а у хладњачи до маја, дуже и боље него плодови родитеља.
Буна је и диплоидна сорта. Цвета средње позно. Цвет је релативно отпоран према позним провећним мразевима, а лист и плод су средње отпорни према чађавој краставости и пепелици. Рано пророди и знатно боље резултате постиже на слабо бујним подлогама (M 9, M 27).

Плод је крупан до врло крупан (маса преко 250 g). Облика је издужено-округластог са израженим ребрима у делу чашице. Покожица плода је глатка, еластична, жуто-зелене до светлозлатне основе боје. Допушта је интензивна до тамнокрвена, једнолико присутна на плоду и прекрива већи део површине плода. Одлично обојена сорта. На висини од око 500 m над морем и слабо бујним подлогама, обојеност сорте мелроз је стопореччана.

Месо плода је чврсто, сочио, бледожуто, слатко-накисело, ароматично и квалитетно.

У току чувања склоно је брашњављењу плода.

Веома погодна сорта за гајење у густим засадима и добро подноси транспорт.

Ајдаред (Idared)

Потиче из САД. Настала је укрштањем јонатана и вагенера. У нас се шири као водећа сорта.

Сазрела у другој декади до краја септембра (тј. око две недеље после јонатана). Чува се одлично у обичним складиштима и хладњачи. Плодови су погодни за употребу од новембра до маја, уз напомену да на крају чувања има знатно бољи квалитет на почетку. То је једна од најбоље чувањих сорти, чији плод чувањем постаје сочиој, хармоничнији и укуснији.

Стабилно је средње бујности, нешто слабије од јонатана. Диплоидна је сорта и цвета средње рано. Цвет је релативно осетљив према позним мразевима. Осетљив је према пепелици (али нешто мање од јонатана), а практично је отпоран према чађавој краставости. Рано пророди и рађа редовно и обилно.

Плод је крупан до врло крупан (маса преко 250 g) округласто-колачастог облика. Обле је чашице. Покожица је чврста, глатка, еластична, сјајна. Основна бледозелена боја, је највећим делом прекривена интензивним црвенилом. Одлично обојена сорта. Месо је беличесто, чврсто, сочио, киселикасто-сласткастог укуса. Спада у групу квалитетних сорти.

Добро подноси транспорт и манипулацију.

Ако се са бербом закасни, на плоду се јављају „јонатанове пеге“.

Розе делишес (Delicious)

Потиче из САД. Настала је као спонтани сејанац, непознатих родитеља, крајем прошлог века. Једна од најраширенјијих сорти у свету и код нас.
Сазрева од друге декаде септембра до прве декаде октобра. Потрошња јој траје у зависности од складиштења, најдуже до краја априла.

Стабло је бујно, круна више пирамидалног облика. Диплоидна сорта, цвета средње касно и врло кратко. Врло је осетљива на ниске температуре у време цветања, те јој родност варира, иако се могу постизати високи приноси у подесним еколошким условима. Треба је калемити на слабо до средње бујним подлогама. Релативно је отпорна према пепелиници, а осетљива према чајавој краставости.

Плод је крпун до врло крпун (150–200–280 г), звонасто-конусног облика, са карактеристичним сужењем у горњој трећини плода и са врло израженим ребрима у пределу чашице. Покожица је дебела, чврста, суша, глатка и полусјајна. Основна боја у пуној зрелости је засићено жута, прекривена допунском светлом до тамноцрвеном у виду пруга. Розе делишес спада у лоше обојене сорте. На покожици плода се уочавају средње – ситне лептицелено густо присутне на плоду, светле боје на обојеној, а мрке на необојеној страни плода.

Месо је светложућкасте боје са уочљивим зеленим проводним снопићима око семењаче. У почетку је чврсто и сично, а стајањем врло брзо брашњави. Укус је изразито спадак са карактеристичном аромом. Укусу розе делишеса се замера недостатак киселина, иако се и она сврстава у сорте одличног квалитета.

Добро подноси транспорт и манипулацију.

Плодови су осетљиви на болести складишта: Scald (посмеђивање покожице) и горкућ пеге.

Сорта розе делишес је врло лабилног генотипа, што је условило појаву читавог низа мутаната. До сада је откривено више од 400 – од којих су многи признати као нове сорте са побољшаним особинама у односу на исходну сорту (розе делишес). У нашим засадима су најзаступљенија три мутанта – сорте: ричаред, старкинг и старкримсон. Они имају много сличности са мајком, а овде ће бити описане само њихове разлике.

РИЧАРЕД. – Ова сорта се од мајке разликује само по боји плода. Плодови су јаче црвено обојени и црвенило је нешто светлије и једноличније, а тамније пруге су мање наглашене. У нашим засадима се овој сорти даје предност у односу на мајку.

СТАРКИНГ. – Има плод у просеку нешто крупнији од мајке. Плодови су у просеку боље обојени од обе претходне сорте. Допунска боја је тамније црвена до љубичasta и по читавој површини плода расута у виду пременови – пруга. Квалитет плода је нешто лошији.

СТАРКРИМСОН. – То је спур мутант, што значи да је врло слабе бујности стабла, што је различито у односу на мајку и предходна два мутанта. Врло рано долази у род, рађа обилно, и ако се не врши проређивање, плодови остају преситни. Корен му је осетљив према раку. Плодови су одлично обојени, готово 100% прекривени јед-
ноличном тамнољубичастом бојом. Боја се врло рано појављује. На покожици се истичу белкасте лентицеле.

Квалитет плода заостаје за мајком и предходним мутантима.

Глостер (Gloster 69)

Потиче из Немачке. Настала је укрштањем глокенафер и ричареда. У нас се постепено шири.

Сазрева у другој половини септембра. Плод се у обичним хладњачама чува до фебруара—мартана. Осетљив је према CO2, па је дуже чување могуће у комбинованим условима: у контролисаној атмосфери (16°C, 90% релативна влага ваздуха, 3—3,5% CO2 и 3—4% O2), до краја марта, а затим у обичним хладњачама још месец—два.

Стабло је бујно, ускопирамидалне круге. Диплоидна је сорта, црта средње рано до средње позно. Отпорнија је према мразу од сорти из групе розе делинеша. Осетљив је према чећавој краставости, средње осетљив према пламењачи, а доста отпоран према пепелинци. Рађа добро и редовно.

Плод је крупан до врло крупан (180—250 g), зарубљено купаст и благо ребраст, сличан ричареду. Покожица је дебела глатка, светлозелене основе боје у технологској, а светлажуте боје у пуној зрелости. Већи део (70—90 па и 100%), површине плода је прекривен једноличним првињилом на коме су упадљиве беле лентицеле. Одлично обојена сорта. Покожица је доста осетљива према удару града и манипулацији. Месо је бледожуто, сочно, слатко до благо накисело, са слабије израженом аромом но у ричареда, високог квалитета.

Спорадично се јављају горке пеге, стаклавост и брашњављење плода.

Златни делинеш (Golden delicious)

Потиче из САД. Настала је као спонтани сејанац, непознатих родитеља. Зимска сорта, која у нашим условима почиње да се бере од почетка друге декаде до краја септембра. Може да се чува до краја маја у хладњеном складишту.

Стабло је средње бујности (нако у првим годинама расте нешто бујније), крупна је више пирамидалног облика. Прикладна је за све узгојне облике, а нарочито за витко вретено. Диплоидна је, црта средње касно и цвет је отпоран према позним пролећним мразевима. Родност је одличне и редовне. Показује склоност ка альтернативности. Отпорна је према пепелинци, а осетљива према чећавој краставости и недостатку Zn.

Плод је крупан до врло крупан (140—180—280 g) конусни облик са средње широким подрезаним врхом. Дуж целог плода пружају се благо назначена ребра. Покожица плода је средње танка, глатка, сувата, основне зеленкастожућкасте боје која у пуној зрелости прелази у златножуту. По плоду су уочљиве средње велике лентицеле,
средње густо распоређене. То не утиче на лошији изглед плода. Међутим, појава рђасте превлаке на покожици смањује не само естетске вредности плода, већ утиче и на њихово лошије чување. Иако неки аутори тврде да то није сорта особина златног делишеса већ само склоност, код њега се рђаста превлака у већем или мањем обиму редовно јавља, јер је условљена читавим низом фактора: високим подземним водама, сушом, позним мразевима, обилатим падавинама у току вегетације, већом концентрацијом заштитних средстава итд. Месо је светложуте боје, чврсто, средње зрнасте структуре, изразито слатког укуса са врло пријатном аромом, високог квалитета.

Замера му се врло слаба транспортабилност и манипулативност, јер је осетљив на притисак и убоје. Иако се дуго чував, чувава се неквалитетно, јер он мало киселине што има у плоду, врло брзо губи, и месо брашњави, покожица смежура. Не може да се чував у обичним условима. Тешко се бере због врло дуге и танке петељке која се тешко одваја од гране, а лако од плода.

Jonagold (Jonagold)

Потиче из САД. Настала је укрштањем златног делишеса и Јонатана. Код нас је у групи водећих сорти.

Бере се средином септембра, тј. у време Јонатана, а 7–10 дана пре златног делишеса. Чува се у обичним хладњачама (на 0,5°C) до фебруара, а у хладњачама са контролисаном атмосфером, до краја априла.

Стабло је бујно, широкопиромидалне круне, те се препоручују слабо бујне подлоге (M 9, M 27). То је триплоидна сорта. Цвета средње рано. Полен је врло лоше кластивост, те не може да се користи као опрашивач. Умерено је осетљива према пепелиници, тађавој краставости и пламењачи Јабуке. Врло рано пророди. Рађа обилно и редовно.

Плод је крупан до врло крупан (150–200–320 g), округласто благо излаженог облика. Покожица је средње дебела, глатка, сјајна, у време бербе зеленкасто-жути боје која у пуном зрелошti прелази у златно жуту. Допунска наранџасто-црвена боја се јавља са сунчане стране плода у виду праменова. С обзиром да врло касно добија допунску боју, јонаголд, убран у технологској зрелошti је врло слабе обојености. Ако се бере касније (кал добије допунску боју), тада се врло лоше и кратко чува, јер брзо брашњави. Иначе, у току чувања добија воштану превлаку те покожица не смежура. Није склона појави рђасте превлаке. Месо је жуђкасто, доста чврсто, врло сочно, слатко-накисело, ароматично, по квалитету нешто боље од златног делишеса, а нешто лошије од Јонатана.

Боље је манипулативности и транспортабилности од златног делишеса, али ипак, захтева пажљиву манипулацију и транспорт. Погодна је за гајење у густим засадима.
Грени смит (Granny smith)

Потиче из Аустралије. Откриена је као спонтани сејанац непознатих родитеља. Код нас се све више гаји.

Бере се у другој половини октобра у умеренооктиненталним условима, а на приморју – месец дана касније. То је сорта најдужег вегетационог периода. Чува се до маја.

Стабло је умерено бујно до бујно. Одликује се оштрим углом гранања и слабијим обрастањем донијих делова круне. Умерено је осетљива према чађавој краставости и непећици. Осетљива је према различитим вирусама и микроплазмозама. Отпорна је према пламењачи јабуке, зимским и познм пролећним мразевима и удачи града. То је диплоидна сорта, позно цветна, са пољеном добре клијавости. Средње рано почиње да рађа, а затим рађа веома добро и редовно. Потребно је проређивање плодова.

Плод је крупан (180–220 г.), округласто тупоконусног облика. Врло је велике специфичне тежине. Покожица је дебела, чврста, стајањем добија вешту прекласу. Основна боја покожице је интензивно зелена која у пуној зрелости само мења нијансу. Нема допунску боју. Покожица је по целој површини прекривена ситним, густо расутилим лентицелама беле боје.

Ова сорта има специфичан однос према светлости – воли дифузну светлост, те јој погођује што гушћи склон при садњи. Међутим, уколико су плодови изложен утицају директне светлости, долази до појаве допунске боје – црвенолубичасте, са сунчане стране, што умањује тржишну вредност плодова.

Месо је беличашто, чврсто, соично, доста кисело, слабо ароматично, празног укуса и осредњег квалитета.

И поред осредњег квалитета, грени смит се код нас све више шири и наилази на долапање потрошача. То се може тумачити и чињеницом да је тржиште било пресецишено сортом слатког укуса (пред свега слатним делишесом). Друго, грени смит је сорта која се најкачественије чува у хлађеном складишту, (споро губи киселине, задржава сочност, не смекура и на крају чувања је бољег квалитета од осталих сорт). Она може успешно да се чува и у обичним складиштима, па чак и под тремом, (кад су благе зиме) јер јој је плод изузетно отпоран према ниским температурама.

Будимка

Стара, домаћа сорта, непознатог порекла. Веома распро страшена по брдско-планинским крајевима Србије и Босне и Херцеговине.

Сазрева половином октобра. Може да се чува у обичним условима до априла – маја.

Стабло је бујно, округласте круне. Касно пророди, рађа веома добро, али изразито альтернативно. Врло је осетљива према чађавој краставости, праљивости плода.
Плод је средње крупан до крупан (150–200 g), округласто-купасти, не-
правилног облика. Покожица је средње дебела, глатка, зеленкастожута у технологској,
сламасто жута у пуној зрелисти. Светлорозикасто-црвена боја се јавља са сунчане
стране плода. На већим висинама је боље обојености.
Месо је крем-белисто, чврсто, слатког празног укуса, без ароме, слабе
сочности, осредњег квалитета.
Отпорна је према механичким оштећењима, јер се на оштећеном месту
ствара плутасти слој који спречава трујење плода.

Колачара
Стара домаћа сорта, непознатог порекла.
Сазрева половином октобра, а чува се у обичним условима до марта –
априла.
Стабло је врло бујно округластоамреластог облика. Триплоидна сорта слабе
клијавости полена. Добар оправинач јој је будимак.
Плод је крупан до врло крупан, изразито округласто-колачастог облика.
Покожица је танка и сјајна, масна, основне жутозеленкасте, односно сламасто-жуте
боје. Са сунчане стране плода јавља се допунско руменило у виду праменова.
Месо је беличастозеленкасте боје, полу чврсто, сочно киселог трпког укуса
са мало ароме, квалитета осредњег.
Слабе је транспортабилности. Осетљива је према већини болести и ште-
точина, посебно према Monilii и црвљивости плода.

Шуматовка
Стара домаћа сорта, непознатог порекла.
Сазрева крајем октобра, а може да се чува до маја.
Стабло је бујно, дуговечно, ускопирамидалне круне.
Отпорна је према проузроковачима болести, мразевима, суши и јаким вет-
ровима.
Цвета средње рано. Почиње да рађа средње рано и касније рађа редовно и
обилно.
Плод је ситан (50–80 g) издужено-лоптасти облика. Покожица је средње
dебела, сјајна, основне зеленкастожуте боје, која је већим делом прекривена тамно-
црвеном допунском бојом.
Месо је беличасто, чврсто, сочно, слатко-накиселог укуса, осредњег ква-
литета.
Добре је манипулативности и транспортабилности. Погодна је као сировина
за индустријску прераду.

* * *
Поред наведених сорти јабуке, треба поменути као врло интересантне, али недовољно проучене у нашим скопошким условима и групу сорти отпорних према чађавој краставости (Venturia inaequalis):

1. сир приз (Sir prize) – сазрева почетком септембра,
2. нова изигро (Nova Easygro) – сазрева у другој половини септембра,
3. фридом (Freedom) – сазрева у другој половини септембра,
4. јонафри (Jonafree) – сазрева крајем септембра,
5. мекфри (Macfree) – сазрева крајем септембра, почетком октобра,
6. либери (Liberty) – сазрева почетком октобра,
7. флорина (Florina Querina) – сазрева почетком октобра.

У експерименталним засадима (што значи још увек у фази проучавања) се налази и један већи број сорти различитих својстава:

1. квинте (Quinte) – која сазрева средином јула,
2. самеред (Summerred) – сазрева почетком августа,
3. тадејман ерли вустер (Tydemana Early Worcester) – сазрева средином августа,
4. јонадел (Jonadel) – сазрева средином септембра,
5. јулајред (Julyred) – сазрева почетком августа,
6. пауларед (Paulared) – сазрева половином августа,
7. присила (Priscilla) – сазрева почетком септембра,
8. вијук (Wijcik) – јабука стубастог (колумнар) типа – сазрева крајем августа,
9. гала (Gala) – сазрева почетком септембра и др.

У периоду од 1956. до 1986. године у Југославији су створене и признате следеће сорте јабуке:

1. приолов делишес – сазрева крајем августа, почетком септембра,
2. лоњон (лондон гелинг х јонатан) – сазрева средином септембра,
3. чачанска позна (старклинг х јонатан) – сазрева крајем септембра, почетком октобра,
4. ражи делишес (златни делишес х лоди) – сазрева средином августа,
5. чадел (златни делишес х јонатан) – сазрева крајем септембра,
6. мајда (јонатан х голден нобл) – сазрева почетком октобра.

Међу њима су најинтересантније за комерцијално гајење сорте: чадел као потенцијално добра сорта за чување и мајда, као потенцијална сорта за прераду.
Висьа бела
Церзимек
Самеред
Молис делишес
Фуџи

Галакси

Флорина

Вајцек
КРУШКА

Крушка, производњом од око 10 милиона тона (1992/93) заузима међу вођка-
ма шесто место у свету (после агрума, банана, јабуке, манга и маслине).
Европа је као континент највећи производњач крушка (3.904.000 t) и на њену
производњу отпада око 40% укупне светске производње. Производња крушка нагло
расте у Азији и приближава се европској. Највећи светски производњачи крушка су: Кина,
САД, Италија, Француска, Шпанија и др.
Крушка спада у ред најраспрострањенијих врста вођка. Она је човеку
служила као храна још у неолиту, у доба док је живео на сојеницама, пре више од 20.000
година. У то доба гајена је заједно са јабуком у сунтропском појасу у северозападним
пределима Хималаја. Касније се проширила у неке области Ирана, Кавказа и горње
токове Тигра и Еуфрата. Преко Мале Азије и Грчке пренета је у Европу и остали
континенте.
Због тога се с правом сматра да је Азија домовина крушка, али да је на
dоместификацији ове врсте највише урађено у Европи, где се она од давнина сретала у
спонтаним шумским популацијама и ливадама.
Прве писане податке о гајењу крушка срећемо код античких писаца (Плу-
tарха, Хомера, ботаничара Теофраста 286. год. пре н.е.).
Плод крушка је врло квалитетан и у себи садржи до 20% суве материје, од 9
до 15% укупних шећера (са изузетно високим садржајем фруктозе, због чега врло
повољно деле у дијететској исхрани дијабетичара), од 0,30-0,60% органских киселина,
od 0,80 до 1,5% целулозе, знатну количину пектине, танина, минералних материја
(значајне количине K, Ca, P, Mg, Fe i Mn), витамина и др. биолошки значајних
сустана.
После јабуке и језграстог воћа, крушка као стоно воће има, најлук сезону
потрошње (од друге половине јуна до краја априла). Поред тога, она се користи и у
индустрији прераде (у сокове, каше, беби каше, компоте, мармеладе, щемове, ракије и
др.).

ПРОИЗВОДЊА КРУШКЕ У ЈУГОСЛАВИЈИ

Крушка је после шљиве и јабуке најважнија воћка у Југославији. Годишње се
у нас произведе око 874.000 t (ф 1989/93) крушка или 8,73 kg по становнику, што се не
може сматрати доволјним.
У протекле четири деценије повећао се број стабала и производња крушка за
око три пута (таб. 73).
<table>
<thead>
<tr>
<th>година</th>
<th>стабала, хиљ.</th>
<th>производња (000 т)</th>
<th>принос по стаблу (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>2.860</td>
<td>2.094</td>
<td>27.760</td>
</tr>
<tr>
<td>1965</td>
<td>5.053</td>
<td>3.382</td>
<td>17.820</td>
</tr>
<tr>
<td>1975</td>
<td>5.587</td>
<td>4.583</td>
<td>79.329</td>
</tr>
<tr>
<td>1985</td>
<td>8.440</td>
<td>7.182</td>
<td>87.903</td>
</tr>
<tr>
<td>1988</td>
<td>12.424</td>
<td>7.703</td>
<td>94.871</td>
</tr>
<tr>
<td>1989</td>
<td>8.970</td>
<td>7.572</td>
<td>104.956</td>
</tr>
<tr>
<td>1990</td>
<td>9.052</td>
<td>7.777</td>
<td>93.762</td>
</tr>
<tr>
<td>1991</td>
<td>9.004</td>
<td>7.559</td>
<td>83.614</td>
</tr>
<tr>
<td>1992</td>
<td>8.455</td>
<td>7.516</td>
<td>74.891</td>
</tr>
<tr>
<td>1993</td>
<td>8.301</td>
<td>7.256</td>
<td>83.263</td>
</tr>
</tbody>
</table>

У укупној производњи воћа у Југославији на крушку отпада 7,10%. Она спада у групу рентабилних воћака. Приноси у добром плантажним засадима у нас, већи су од 30 t/ha.

У Југославији постоје услови за интензивније гајење крушке. Њена производња се може унапредити правилним избором рејона – терена за гајење, (jer је крушка знатно осетљивија на ниске температуре од јабуке) увођењем у производњу отпорнијих (нарочито према еколошким агенсисма) квалитетних сорти различитог времена зрења, са већим учењем позних зимских сорти. Посебно је значајно поклонити већу пажњу здравственом стању садног материјала, jer је превремено пропадање засада крушке у нас све чешћа појава.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ КРУШКЕ

Крушка заузима следеће место у систематици биљака:

<table>
<thead>
<tr>
<th>Одељак:</th>
<th>Magnoliophyta (Angiospermae, скривеносеменице)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Класа:</td>
<td>Magnoliatae (Dicotyledones, дикотиле)</td>
</tr>
<tr>
<td>Поткласа:</td>
<td>Rosidae (руже)</td>
</tr>
<tr>
<td>Надред:</td>
<td>Rosanae (руже)</td>
</tr>
<tr>
<td>Ред:</td>
<td>Rosales (руже)</td>
</tr>
<tr>
<td>Фамилија:</td>
<td>Rosaceae (руже)</td>
</tr>
<tr>
<td>Потфамилија:</td>
<td>Maloideae (Pomoideae, ябучасте воћке)</td>
</tr>
<tr>
<td>Род:</td>
<td>Pyrus L. (кушка)</td>
</tr>
</tbody>
</table>

Велики број истраживача – Бавилов (1937), Дарлингтон (1955), Мишу (1959), Thompson (1967) и др. је мишљења да је 15 врста рода Pyrus учествовало у стварању око
6.000 данас евидентирианих сорти крушке. Међу њима су посебно значајне као ро-
доначелици највећег броја сорти, врсте:

1. *Pyrus communis* L. (обична крушка). – Од ове врсте је настао највећи број
европских и азијских сорти крушке. Врло је израженог полиморфизма, те се јавља у
великом броју варијетета и форми:
 а) *Pyrus communis* ssp. *pyraster* Lin. – чије је стабло непшто мање бујности,
 а плодови ситнији и округластог облика.
 б) *Pyrus communis* ssp. *cordata* Hoo – стабла мале бујности са израженим
 бодљама, ситног лисња.
 в) *Pyrus communis* ssp. *longipes* Hen. – стабла средње бујности, без трња
 и са крупним лисњем.

 Родоначелик је једног броја аутохтоних сорти крушке отпорних према суши и вишку
 хреча у земљишту. Користи се и као подлога за крушку.

 крушке. Због своје отпорности према мразу показала се као добра подлога за европске
 сорте крушке.

 крушке које се гаје на Кавказу и у северном Ирану.

 различитих помошних својства, отпорних према мразу и суши.

6. *P. ussuriensis* Maxim. – Родоначелик је мањег броја сорти крушке доброг
 квалитета плода, отпорних према мразу и адаптивних за гајење на већим надморским
 висинама.

СОРТЕ КРУШКЕ

Јунска лепотица (*Bella di guigno*)

Италијанска сорта, која је код нас почела да се шири седамдесетих година.
Сазрева од друге декаде до краја јуна.
Стабло је умерено бујно, пирамидалне крune. Цвета рано, те често страда од
позних мразева. Рано пророди и рађа добро и редовно. Нема добар афинитет са дуњом,
па је треба калемити преко посредника.
Плод је ситан (60–70 g), издужено-кушаастог облика. Покожица је средње
dебела, глатка, сјајна, жутозелене до златножуте основне боје. Допунска је интензивно
црвена боја која прекрива око 1/3 површине плода. Одлично је обојена. Месо је
беличасто, средње чврсто, умерено сочно, слатко-накселог празног укуса.
Као најранију сорту, треба је гајити у близини већих тржишних центара и на окућници.

Јулска шарена (Colorre de julien)

Француска сорта. Непознатог је порекла. То је једна од најраспрострањенијих сорти крушка на свету.
Сазрева у првој декади јула.
Стабло је средње бујно и врло родно. Рано цветна је и диплоидна сорта, са поленом добре клијавости. Отпорна је на сушу и мраз, а релативно отпорна према фузикладијуму.
Плод је ситан, до средње крупан (око 90 g), правилног издужено-купастог облика. Покожица је танка, мат, зеленкастожуте основне боје, са допунским црвеном, са сунчане стране плода. Спада у лоше обојене сорте. Месо плода је беле боје, сочно, укуса киселкасто-слатког са слабо израженом аромом.
Склон је унутрашњем разлагању плода.

Кошија рана (Coscia precoce)

Италијанска сорта. Настава је укрштањем Precoce di kasano и кошије.
Сазрева средином јула.
Стабло је средње бујно, полупирамидалне круне. Диплоидна је. Цвета рано до средње рано. Осетљива је према позним мразевима. Рано пророди. Рађа веома добро и редовно. Нема добар афинитет са дуњом.
Плод је ситан до средње крупан (70–100 g), издужено-кушкостог облика са врло дугом петељком. Покожица је танка, глатка, сламастожуте боје. Спада у групу необојених сорти. Има врло изражене сите, многоброне лентицеле, браон боје. Месо је жуткасто-беле боје, полутопиво, сочно, слатко-наксисло, благо ароматично. Доброг је квалитета за то време зрења. Није склона унутрашњем разлагању а и спорије брашњави.
Треба је гајити у ограниченом обиму, крај већих тржишних центара.

Тревушка (Precoce de trevoux)

Француска сорта, пронађена крајем XIX века. Непознатог је порекла.
Сазрева крајем јула и почетком августа.
Стабло је врло бујно, округастопирамидалне круне. Диплоидна је. Средње рано цветна. Родности је добре и редовне.
Плод је крупан (150–180 g) карактеристичног звоначастог-чиграстог облика са накривљеном петељком. Покожица је средње дебела, основне зеленкастожуте боје са допунским дифузним црвеном са сунчане стране плода. Обојени плодови су лепог
изгледа, али она спада у слабо обојене сорте. Месо је беличаште боје, фине структуре, топиво, слатко-накиселог укуса, ароматично. Доброг квалитета.
Плодови јој неравномерно сазревају, па је треба брати пробирно.

Клапова љубимица (Clapp’s favorite)

Пореклом је из САД. Настала је као спонтани сејанац.
Сазрева почетком, до прве декаде августа.
Стабло је средње бујно, широкопирамидалне круне, добре и редовне родности. Цвета позно, те избегава позне пролећне мразеве.
Плод је купран (180–200 g), јајастог облика. Покожица је танка, глатка, сјајна, зеленкастожуте основе боје са допунским дифузним црвенилом са сунчане стране плода. Спада у слабо обојене сорте. Месо је беле боје, топиво, слатко-накиселог укуса, пријатне ароме. Доброг је квалитета.
Нема добар афинитет са дуњом. Плодови се кратко чувају јер су склони унутрашњем разлагању.

Старкримсон (Starkrimson)

Пореклом је из САД. Настала је као мутант клапове љубимице.
Сазрева у првој половини августа тј. неколико дана после клаповке, односно 7 дана пре виљамовке.
Стабло је умерено бујно, доста разгранато, широкопирамидалне круне. Цвета средње позно. Родности је умерене и редовне.
Плод је купран (180–220 g), облика јајастог као код клаповке. Петељка је средње дуга и доста дебела. Покожица је танка, глатка и целом површином прекривена тамнољубиначастом допунском бојом. Допунскку боју добија врло рано, одмах по заметању плода. Месо је жућкасто, сочино, топиво, слатко-накиселог укуса, ароматично. Доброг је квалитета.
Нема добар афинитет са дуњом. Кратко се чува, јер су плодови склони унутрашњем разлагању.

Рана моретинијева (Butirra precoce morettini)

Пореклом је из Италије. Настала је укрштањем кошије и виљамовке.
Сазрева у другој половини јула до почетка августа. У хладњачи може да се чува до месец дана.
Стабло је средње бујно до бујно, широкопирамидалне круне. Цвета рано до средње рано. Рано пророди, а затим рађа добро и редовно. Осетљива је према јачим зимским мразевима и према крушкиној буви (Psylla pyricola). Нема добар афинитет са дуњом.
Плод је средње крупан до крупан (140–180 g), крушкастог облика. У доњој тречини плода има изражене неравине. Покожица је нежна, глатка и сјајна. Основна боја покожице је зеленкастохвата, а допунска, интензивно црвена са сунчане стране плода. Спада у добро обојене сорте. Месо плода је беличесто, чисто, топиво, слатко - накиселог врло пријатног укуса са израженом аромом. Квалитета је одличног (слично плоду виљамовке).

Најбоље резултате постиже у виноградарској зони. Ако се плод чува у обичним условима, почиње да гњили око семене кућице седмог до десетог дана.

Санта марија (Santa maria)

Пореклом је из Италије. Настала је укрштањем виљамовке и колоније. Сазрева средином августа – 2 до 3 дана после старкимсона, а неколико дана пре виљамовке.

Стабло је средње бујно до бујно, широкопирамидалне круне. Цвета средње рано. Осетљива је према позним пролећним мразевима. Рађа обилно и редовно.

Плод је крупан (250 g), крушкастог облика са благо израженим неравинама у доњој тречини плода. Покожица је лимушастокуте основне боје, са допунском црвеном која се јавља са сунчане стране плода. Спада у врло љуш љуш обојене сорте. Месо плода је бело, средње зрењано, сочно, киселкасто-слатког, прилично презног укуса, без изражене ароме. Квалитета је, осједлег.

Скромних је органолептичких особина плода, те је треба гајити у ограниченим обиму и то претежно у виноградарској зони.

Вилијамовка (Williams christbirne-bartlett)

Стара енглеска сорта. Пронађена је као спонтани сејанац 1796. године. То је најраспрострањенија сорта крупке у свету, а код нас је водећа.

Сазрева у другој половини августа. Може да се чува у хладеном складишту 2–3 месеца.

Стабло је средње бујно, иако се развија врло бујно док не пророди, крупна је пирамидалног облика. Цвета средње позно и то је једна од најотпорнијих сорти према позним пролећним мразевима. Рано пророди и рађа обилно и редовно.

Плод је средње крупан до крупан (око 180 g), издужено-крушкастог облика. У доњој тречини плода врло су изражене неравине, што је особина, коју она редовно при укрштањима преноси на потомство. Покожица је танка, глатка и сјајна. Основна боја је зеленкасто-жвака у техношкој, а сламастокута у пуној зрелости. Допунска црвена се јавља са сунчане стране плода, али код врло малог броја плодова, те спада у лоше обојене сорте. То јој се много не замера јер је плод лепог изгледа и без допунске боје. По плоду су изражене ситне многобројне лентицелне брашн боје. У пределу чашчице
има изражена ребра. Месо плода је бело, сочно, фине, ситно зрнасте структуре, слатко-благо накиселог хармоничног укуса, са пријатним израженим мускатним мирисом. То је једна од најкачитетнијих сорти крушака, а неки аутори сматрају да је она најкачитетнија сорта воћа уопште.

Нема добар афинитет са дуњом, те је треба калемити преко посредника. Пронађена су два црвено обојена мутанта виљамовке: Red Bartlett и Williams rouge Delbard. У нашим засадима среће се овај први мутант – црвена виљамовка. Она сазрева истовремено са виљамовком или 3–4 дана касније. Разликује се од мајке само по стопроцентно црвено обојеном плоду; све друге особине су сличне. С обзиром да допушнуто боју релативно касно добија, неких година долази до повлачења те боје, (реверзибилност боје) а што је велики недостатак овог мутанта.

Боскова бочица (Beure bosc.)

Пореклом је из Белгије. Настала је као спонтани сејанац почетком 19. века. Водећа је сорта у нас.

Сазрева крајем септембра, а чува се у хладњаци до краја децембра – почетка јануара.

Стабло је средње бујно. Позно цвета, рађа добро и редовно.

Плод је крупан (маса око 200–250 г), правилног боцастог облика. Покожица је средње дебела, транспортабилна и манипулативна. Основна боја је зеленкасто жута. Има мало допунског црвенила са сунчане стране плода, коja се врло ретко јавља. По покожици је изражена рђаста превлака која прекрива мрежасто од 1/4 до 100% површине плода. Месо је беличasto, топиво, фине снитнозрнасте структуре, слатко-накиселог освежавајућег укуса, пријатне ароме. Квалитет плода је висок, најсличнији плоду виљамовке.

Покажује већу осетљивост према крушкиној буви (Psylla).

Хајланд (Highland)

Пореклом је из САД. Настала је укрштањем виљамовке и друштвенке. Код нас је још увек у фази проучавања.

Сазрева у првој половини септембра. У хладњаци се може чувати до децембра.

Стабло је средње бујно, у почетку, ускопирамидалне круне. Родности је добре и редовне. Цвета позно и показује релативну отпорност према позним пролећним мразевима. Осетљива је према пламењачи и крушкиној буви.

Плод је средње крупан (150 g) уједначеног крушкастог облика. Покожица плода је жуте боје, са средње присутном рђастом превлаком. Месо је жућкасто, топиво,
ситнозрнасте структуре, слатког дезертног укуса лепе, изражене ароме. Квалитет плода је висок, нешто мало бољи од квалитета боскове бочице, а незнатно заостаје за квалитетом виљамовке.

Клерко (Beurre clairgean)

Пореклом је из Французе. Настава је као спонтани сејанац 1838. године. Гаји се свуда у свету где успева крушка.

Сазрева почетком, до половине септембра. Може се чувати у обичним условима до децембра–јануара.

Стабло је кржљаво, слабо бујно. Посебно малу бујност постиже ако се калеми на дуњу са којом је инкопатибила. Рано пророди и рађа ређиво и обилато. Због изузетно велике родности добила је и назив „фабрика крушака”.

Плод је врло крупан (преко 250 g), трбушасто крушкастог облика, у горњем делу повијен са криво насадђеном, кратком, дебелом петелком. Покожица је дебела, транспортабилна, сламастожуте основе боје, са допунским црвенилом са сунчане стране плода. По покожици су расуте крупне лентицел брао боје. Јавља се и рђаеста превлака, најчешће око петељке. Месо је бело, крупнозрнасте структуре, инкорпорирано склеренхимским ћелијама. Укус је слаткаст, без изражене ароме, трећеразредног квалитета.

Препоручује се као индустријска сорта.

Гран шампион (Grand champion)

Пореклом је из САД. Настала је мутацијом пуполка сорте горхам (вилијамовка x Jozefina de Malines). То је новија интродукована сорта.

Сазрева средином септембра, тј. 2–3 недеље после виљамовке. У хладном складишту чува се до три месеца, а у обичним условима врло кратко – до месец дана.

Стабло је слабо, до средње бујно, округласте круне. Цвета средње позно до средње рано. Пророди рано и рађа обилно и ређиво. Има добар афинитет са дуњом. Боље резултате постиже на плодним и умерено влажним земљиштима.

Плод је средње крупан (160 g), читгастог, уједначеног облика. Покожица је танка, глатка, жућкасте основе боје са израженом рђаестом превлаком по целој површини плода. Месо плода је бело-често, фине ситнозрнасте структуре, сочно, топиво, слатко-накиселог укуса, ароматично и висококвалитетно.

Због осетљиве покожице на убоје, треба је ширити у ограничном обиму у близини тржиших центара.
Генерал леклер (General le clerc)

Пореклом је из Француске. Настаља је као спонтани сејанац друштвене. То је новије интродукован сорта.

Сазрева средином септембра. Чува се у хлађеном складишту до јануара–фебруара.

Стабло је средње бујно, широкопирамидалне круне. Цвета средње позно. Средње рано пророди и рађа добро и редовно. Покажује склоност ка партнерокарпији. Плодови су груписани у гродове.

Плод је крупан (око 200 g), здепасто–кургкатстог облика. Покожица је средње дебела, основне зеленкастожуте боје до жуте, прекривена рђастом превицам. Месо је беличесто, фине синтозрнасте структуре, нежно, слично, топиво, слатко–нагиселог укуса, ароматично и високо квалитетно.

Има добар афинитет са пуњом. Добре је транспортабилности.

Пакхамс триумф (Pacham's triumph)

Пореклом је из Аустралије. Настаља је укрштањем сорти bell и вишијамовка. То је новије интродукован сорта, која се у нешто уећој мери гађи у Србији.

Сазрева крајем септембра тј. месец дана после вишијамовке. У обичним условима у складишту чува се до средине новембра, а у хладњачама са контролисаном атмосфером, до фебруара. Због таквог понашања у чувању убраја се у касне јесене, односно ране зимске сорте.

Стабло је средње бујно, округласте круне. Цвета средње рано до средње позно. Рано пророди и рађа добро и редовно. Боље резултате постиже на дубоким, плодним и умерено влажним земљиштима. Осетљива је према пламењачи (Erwinia amylovora chester) и вирусу мозаика крушка са појавом камењих ћелија (Stony pit virus).

Плод је крупан до врло крупан (око 200 g), по облику сличан вишијамовки са неравном површином у доњој тречини плода. Покожица је танка, зелена до лимунастожуте основе боје. Петељка је средње дуга, дрвенаста, накривљена на једну страну. Месо је беличесто, синтозрнасто, слично, топиво, слатко–кисело, ароматично и високо квалитетно.

Добре је транспортабилности. Има добар афинитет са пуњом.

Друардова (Beurre drouard)

Пореклом је из Француске. Настаља је као сејанац из семена наполеонове. Сазрева почетком октобра. Чува се у хлађеном складишту до марта.

Стабло је бујно, круна пирамидалног облика. Рано пророди и рађа обилно и редовно. Отпорна је на мраз и сушу. Има одличан афинитет са пуњом, те се често користи као посредник за калемљење сортини које су инкопатибилне са пуњом.
Плод је крупан (преко 200 g), правилног звоначног облика. Покожица је танка, глатка, зеленкасте до жућкасте основе боје. Врло је осетљива на притиске и убоје. Месо је крем беличасто, ситнозрнасте структуре, сочно, топиво, слатко-накиселог укуса, ароматично, високо квалитетно.
Због изузетне осетљивости покожице, друардова је слабе транспортабилности и манипулативности, што је димитирајући фактор њеног ширења у нашој земљи.

Калуђерка (Cure)

Пореклом је из Француске. Пронастао ју је, као спонтани сејанац 1760. године известан калуђер Leroy у једној шуми, одакле се раширила у све европске земље. Код нас се гаји од краја 19. века.
Сазрева почетком октобра, а може да се чува у обичним условима до јануара-фебруара.
Стабло је бујно, пирамидалне круне. Изузетно је високе и редовне родности, јер велики процент плодова замиње партенокарино. И њу називају „фабриком крушка”. Врло је скромних захтева - успева и на лошијим, тежим, збијеним, сиромашним земљиштима и у другим мање погодним условима.
Плод је врло крупан (200–300 g), издужено крушкастог облика, врло често са жаче развијеном једном половином. Покожица је дебела, сува, доста глатка јер је често прекривена виштаном превлаком. Основна боја је светлозелена до жутозелена, ишарана сним кетинелама браон боје. Већина плодова има браон кожасту штрафту, која се пружа дуж плода од петелке до чапищта. То је један од карактеристичних елемената за њену детерминацију. Месо плода је бело или бело-зеленкасто, трубуље структуре, са израженим каменим велијама, полусочко, слатког прозног укуса, са недовољном количином киселина и без изражене ароме. Квалитета је осредњег (treher).
Има одличан афинитет са дуњом, те се у нашим условима најчешће користи као посредник. Због обилате и редовне родности препоручује се као индустријска сорта.

Красанка (Passe crassane)

Пореклом је из Француске. Настала је као спонтани сејанац крајем 18. века. Једна је од најраширенјих сорти (поред вилијамовке) у свету. Код нас се гаји као водећа сорта.
Сазрева од средине, до краја октобра. У хлађеном складишту се чува до априла. Не може да се чува у обичним условима, јер брзо транспирше.
Стабло је слабе бујности, са кратким родним дветом. Средње рано цвета. Рађа добро. Стабло је делимично осетљиво на мраз и сушу, а плодови на фузиладијум. Инкопатибилна је са дуњом.
Плод је варијабилне крупноће и облика. Маса плода се креће од 150 до 750 g. Изражен је полиморфизм облика, са доминантним округластим обликом. Покожица је дебела, зелене боје у технолошки, а ћилибарножуте у пуној зрелости. По покожици су изражене ситне многобројне браон дентицеле. Има дугачку, дрвенасту, лако ломљиву петељку. Месо је бело, фине ситнозрне структуре, сочно, топиво, слатко-накиселог, хармоничног укуса, ароматично, висококвалитетно.

Код ове сорте камене ћелије се јављају у делу испод покожице и око семене кућице, што смањује јестиви део плода (рандман).

* * *

У Југославији су, у послератном периоду створене следеће сорте крушке:
1. јунко злато (тревушка х јулска деканткиња) – сазрева крајем јуна,
2. тревлек (тревушка х лектиерка) – сазрева средином јула,
3. шампионка (вилијамовка х драардова) – сазрева у првој половини септембра.
ДУЊА

Дуња је као већина јабучастог воћа стари воћна врста. Према подацима Kangolea, она се гаји преко 4000 година, никад као главна, већ најчешће као споредна култура.

Претпоставља се да је пореклом са Кавказа, одакле се ширила на исток и југ (у малу Азију), па из ње у стару Грчку. Из Грчке је дуња пренета у Рим, (пре почетка наше ере) а одатле у остали део Европе.

Плодови дуња се мало користе за потрошњу у свежем стању, већ најчешће прерађени у слатка, компоте, железе, цем и сок. Разлог томе треба тражити у укусу и хемијском саставу плода. Плодови дуње су триког киселкастог укуса (због садржая веће количине танина), веће чврстоће са доста камених ћелија (што говори и о већем садржају целулозе).

Насупрот малој потрошњи овог плода као стоног воћа, индустрија прераде дуња изузетно цени због велике биолошке вредности плода, односно, врло повољног хемијског састава за различите видове прераде.

Посебно је погодна за производњу железе, због велике количине лектина (којих има од 1,97 до 3,25%).

Плод је богат угљеним хидратима (шеперима) од 7–15%, са већим учешћем моносахарида (гулозе и фруктозе – којих има и до 11%). Органске киселине се крећу од 0,35 до 1,85%. Оне дају плоду специфичну арому и освежавајући укус. Танина има у количини од 0,08 до 1,14%, а минералних материја од 0,4 до 0,9%.

Плод дуње је богат витаминима, пре свега: каротинима (од 71 до 112 mg%), B1 (од 0,03 до 0,38 mg%), B2 (0,01–0,05 mg %), B3, PP (од 1,60 до 0,48 mg %), нешто мање витамином B6, витамином C кога има нешто више но код јабуке (10–17 mg %) и др. материја.

Овакав хемијски састав условљава хранљиву, профилактичку и терапеутску вредност плода дуње.

Развој и унапређење прерађивачке индустрије утицао је да се дуњи у свету поклања све већа пажња. Подизу се нове површине под овом воћком, интензивира се оплемењивачки рад, стварају се нове, боље (продуктивније и отпорније) сорте, унапређује се технологија гајења. Међутим, у нашој земљи и поред свих напора стручњака, гајење дуње у последњем периоду није много унапређено.
ПРОИЗВОДЊА ДУЊЕ У ЈУГОСЛАВИЈИ

Производња дуња у Југославији је мала и у укупној структури воћарства учествује са 1,26%.
У посљератном периоду, она је изразито стагнирала до 1985. године, да би се после љежи деције повећало интересовање за њено гајење, пре свега захваљујући тражњи прерађивачке индустрије за овим плодовима (таб. 74).

Таб. 75 – Број стабала и производња дуња у СР Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабла у хиљ.</th>
<th>производња (т)</th>
<th>принос по стаблу (кг)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>869</td>
<td>682</td>
<td>10.269</td>
</tr>
<tr>
<td>1965</td>
<td>775</td>
<td>614</td>
<td>6.130</td>
</tr>
<tr>
<td>1975</td>
<td>918</td>
<td>767</td>
<td>7.991</td>
</tr>
<tr>
<td>1985</td>
<td>1.050</td>
<td>827</td>
<td>8.096</td>
</tr>
<tr>
<td>1988</td>
<td>1.078</td>
<td>914</td>
<td>10.232</td>
</tr>
<tr>
<td>1989</td>
<td>1.0426</td>
<td>960</td>
<td>13.872</td>
</tr>
<tr>
<td>1990</td>
<td>1.092</td>
<td>920</td>
<td>11.585</td>
</tr>
<tr>
<td>1991</td>
<td>1.083</td>
<td>939</td>
<td>11.030</td>
</tr>
<tr>
<td>1992</td>
<td>1.493</td>
<td>1.255</td>
<td>13.315</td>
</tr>
<tr>
<td>1993</td>
<td>1.340</td>
<td>1.042</td>
<td>14.814</td>
</tr>
</tbody>
</table>

Број стабала за последњих десет година се повећао од 1.050.000 на 1.340.000, а производња од 8.096 т до 14.614 т.
Дуња се у нашој земљи организовано, врло мало гаји, због чега и немамо изразитих рејона гајења. То је воћка која се гаји више у расутом стану. Највише је има долином Западне и Велике Мораве и у Подунављу.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ ДУЊЕ

Дуња заузима следеће место у систематици биљака:

Одељак: Magnoliophyta (Angiospermae, скривеносеменице)
Класа: Magnoliatae (Dicotyledoneae, дикотиле)
Поткласа: Rosidae (руже)
Надред: Rosanae (руже)
Ред: Rosales (ру же)
Фамилија: Rosaceae (ру же)
Потфамилија: Maloideae (Pomoideae – јабучasto воће)
Род: Cydonia Mill.
Род *Cydonia*, обухвата само једну врсту: *Cydonia oblonga* Mill., која је родонаучник око 1.000 евидијентаних сорти дуње.

Бекетовска (1957) је у оквиру врсте *Cydonia oblonga* Mill. издвојила три варијетета и према њиховим особинама груписала сорте:

1. *Cydonia oblonga* var. *maliformis* (јабуколика дуња),
2. *Cydonia oblonga* var. *pyriformis* (курушколика дуња),

Неки аутори у оквиру ове врсте наводе још два варијетета: *Cydonia oblonga* var. *piramidalis* и *Cydonia oblonga* var. *luzitanica*.

СОРТЕ ДУЊЕ

Дуња је по броју сорти врло сиромашна ђоћна врста. Светска помошница наука је до сада регистровала око 1.000 сорти дуње, од којих се гаји врло мали број (свега десетак).

У нашој земљи гаје се само две сорте:

Лесковачка дуња

То је стара домаћа сорта, настала као сејанац, спонтаном хибридизацијом. Стабло је слабо, до средње бујно, широке, разгранате, густе, окружасте круне.

Цвета касно, релативно је мале клијавости полена, делимично је самооплодна, због чега су јој за доброродност потребни опрашивачи. Одлично је оплођава вранска дуња.

Сазрева у првој половини октобра.

Плод је јабучастог облика, крупан (400–500 г), са благим неравинама по површини. Покожица је танка, глатка и сјајна, лимунасто-жуте боје, прекријена снимним сивкастим маљама.

Месо је чврсто, збијено, синтознастост, сочно, киселкасто-освежавајућег укуса, пријатне ароме. Нема много камених ћелија.

Због чврстог меса и доброг квалитета, плодови ове сорте су одлични за прераду.

Вранска дуња

Стара сорта неизвесног порекла. У народу, широм наше земље је позната и под именом „дуњач“. Стабло јој је бујно, робусно, високо, са правим деблом и разгранатом круном, округлог облика.
Цвета рано. Полен јој је добре клијавости, самооплодна је, те може да се гаји и у хомогеним засадима.
Рано пророди (у трећој години) и рађа редовно и обилно.
Сазрева крајем септембра, почетком октобра.

Сл. 227 – Сорте дуње: врањска (лево), лесковачка (десно)

Плод је крушколиког облика, крупан до врло крупан (400–650 г), гукасте, неравне површине. Покожица је танка, глатка, сјајна, интензивно жуте боје, покривена ситним маљама.
Месо је жуто, полућврсто са много камених ћелија, слабо слатко, труко, осредњег квалитета.
Стајањем, месо брзо промени боју и арому и лако прозукне, те губи на квалитету и ароми због чега није за финије прерађевине. Најчешће се користи за производњу сокова.

* * *

Поред ове две сорте дуње, у колекционим и екстензивним засадима наше земље могу се наћи и следеће сорте: беречи, шампион, португалска дуња, руска ружа, константинополска, пловдивска дуња, аморова, хинус, мик пролифик, тријумф и др.
У Југославији је створена једна сорта дуње – морава.
МУШМУЛА (MESPILUS SP.)

Мушмула је корисна због тога што успева и у најнеповољнијим условима без опасности од измирзавања. Плодови се могу користити и за прерађу (мармелада, желеа, ракија). Отпорна је према болестима и штеточинама. Погодна је за јело само у гњилом стању.

У данашње време њен привредни значај је ограничен и сталио је потискују остале врсте воћака.

Meђутим, ми сматрамо да муshmпу убудуће треба више размножавати. Има услова да она заузме значајније место у воћарској производњи, утолико пре што је врло погодна да попуни мале ненискоришћене површине.

Мушмула је воћка малих размера, густе и округле крупе, декоративна, с појединачним цветовима који се доцна стварају. Плодови су врло карактеристични, са пуно семена, а покожица је мрке боје и са врло развијеном чашицом.

Сл. 228 – Мушмула: 1 – гранична са лицићем и плодовима, 2 и 3 – лици, 4 – назубљеност лиција са железцима (пресек) и границима, 5 – пресек цвела, 6 – нерваштура залиска, 7 – плод и 8 – подредни пресек плода.
Стабло може да поднесе и јаче зиме од −20°C, али најбоље успева у умерено топлим условима погодним за гајење винове лозе. Може да се гаји на 700 до 1.100 м надморске висине. Иако дошкан цвета, цвет не подноси јаче хладноће, те је због тога у севернијим крајевима, односно земљама, њено гајење ограничено. За дозревање плода није неопходна велика количина топлоте, па се мушмула може гајити у подручјима са свежијом климом.

Мушмула је самооплодна, цвета тек у мају, рано пророди и рађа добро до 12. године, а затим јој родност опада.

Сорте мушмуле

Има више сорти од којих су најзначајније:

Домаће мушмуле. — Доста су ситних плодова, уједначеног чиграстог облика. Зру у новембру. Родне су. Вредност плода им је мања, јер је плод пун семена.

![Sl. 229 – Плодови неселекционисане домаће мушмуле](image)

Холандска мушмула. — Разликује се од домаћих мушмула по скоро два пута крупнијим плодовима, који су плоснатог облика и нешто тамније боје. Лишић јој је крупније, те изгледа декоративније.

Краљевска мушмула. — Плодови су доста крупни. По другим особинама се не разликује од претходне.

Мушмула без семена. — Има вредност за аматере и др.
ОСКОРУША (SORBUS DOMESTICA)

Расте као самоникло дрво у свим нашим крајевима, али су јој погодни сунчани положаји.

Употребљава се у свежем-сагњилом стању или се прерађује у воћно вино или сок. Од 100 kg плодова добија се 50 литара сока. Дрво има техничку вредност за резбарије, инструменте и алат.

Није пробирач земљишта, али више јој одговарају сува него влажна земљишта. Погодују јој и кречна земљишта. Код нас су најбоља и најпогоднија стабла на карбонатним дубоким земљиштима у топлијим областима. Расте на љивама, усамљена; достигне висину 20 m и више, скоро толико иде и у ширину. Кад се сади у чистом засаду, размах трeba да је као и за друге врсте воћака на бујним подлогама (7 m x 5 m).

Саднице се тешко производе, јер је за добру садницу потребно више година. Саднице се производе из семена. Ако се производи калемљењем, узима се подлога сејанац оскоруше, глова или крушке. После садње није потребна нарочита нага, а рађа добро сваке године – једно дрво може дати до 1.000 kg плодова.

Бере се трешњем. Плодови за прераду беру се раније, а за јело касније, јер треба да утњише.
Бошке са коштичавим плодовима

У југословенској воћарској производњи бошке с коштичавим плодовима учествују са око две третине (57,82%). У овој групи воћака је највише заступљена шљива. По броју стабала шљиве, па и по производњи, наша земља заузима водеће место у свету. Плодови сорте ножегаче се, захваљујући климату, беру од почетка августа до краја октобра. Мало је земаља које се са таквим природним богатством могу похвалити као ми.

Индустриска прерада ни до данас није у потпуности искористила све могућности јер највећи део плодова шљиве се још увек прерађује у ракију, а знатно мањи део у друге прерађивине.

Плодови брескве се користе за прераду и за потрошњу у свежем стању. Произвођачи је ради таје пошто је високоакумулативна.

Кајсија је такође значајна воћка. Плодови кајсије се убрајају у високооквалитетну сировину. Највећи део се прерађује, а остало се троши у свежем стању. Њено ширење је нашло ограничено изненадним оболењем и сушењем стабала. Ипак се у последње време јавља све већи интерес произвођача за кајсију.

Вишња је посебно значајна за индустриску прераду. Површине под овом воћком су знатно повећане. Сва како да је томе допринела њена економска вредност. Од вишње се највише плодова прерада а врло мало употреби као стино воће.

Трешња је воћка, чији се плодови користе за потрошњу у свежем стању и за прераду. Њено се ширење ограничивало само на поједине подручја и знатно мање је заступљено у односу на вишњу.

Бошке с коштичавим плодовима спадају у привредно најкориснију групу континенталних воћака.

Шљива

Међу листопадним воћкама, шљива, са производњом од 6.084.600 т, заузима четврто место у укупној светској производњи воћа.

Шљива је воћка северне земљине полуопште. Европа је као континент највећи производач шљиве, (са 3.331.000 т) што је око 55% укупне светске производње.

Југославија је највећи светски производач шљиве (са производњом од 446.500 т). За њом долазе Румунија, САД, Кина, Немачка, Бугарска и др.

Еволуција шљиве текла је широким пространствима Земљине коре и у врло различитим условима и срединама. Исходни центри порекла шљиве су западна Азија и Европа.
Први писани подаци о гајењу шљиве врсте *domestica*, потичу из VI века пре нове ере, од грчких песника Архилаккуса и Хибона. Ботаничар и филозоф Теофраст (4–3. век пре н.е.) описује 3 сорте шљиве. Сматра се да су сорте шљиве у Грчу (Епири и Македонију) пренели ратници Александра Великог. Из Грче се шљива ширила у остале делове Европе.

Плод шљиве је поред јабуке, најкавалитетније континентално воће. Он у себи садржи од 13 до 25% суве матерije, од 10 до 20% шећера (где доминира глукоза са 51%, сахароза са 35% и фруктоза са 14%). Поред ових шећера, у плоду шљиве се налази и шећер сорбитол, који је посебно погодан за дијабетичаре. Од органских киселина, (којих има од 0,5 до 2,0%) доминирају јабучна и лимунска. Пектинске матерije се крећу око 0,70%, азотне од 0,60 до 0,8%, минералне око 0,50% (са преко 55% К и око 18% Р). У плоду шљиве је значајно и присуство провитамина А и витамина В комплекса и С.

Плод шљиве служи у исхрану као богат енергетски извор, а има и високу заштитну дијететску и терапетску вредност. У свежем стању, као стино воће, може се користити од средине јуна до половине октобра. Изузетно је погодан као сировина за сушење (по чему је наша земља посебно позната) и за разне видове прерађивост (у сокове, мармеладе, цемове, ракију и др. производе).

ПРОИЗВОДЊА ШЉИВЕ У ЈУГОСЛАВИЈИ

Шљива је најзначајнија вођка у Југославији. Она се на тлу наше земље гаји вековима.

Са годишњом производњом од 428,600 т (ф 1989/93) или 54,45 kg по ста новнику, Југославија је највећи светски производач шљиве.

У укупној производњи воћа, на шљиву отпада око 40,11%.

Интересантно је уочити да се у последње четири деценије број стабала шљиве није знатније повећавао (таб. 76).

У нас је шљива задобила водеће место у производњи благодарећи низу погодности. Она одлично успева у брдско-планинском подручју СР Југославије, релативно се лако размножава и доста брзо пророди.

Међутим, иако је њена производња велика, она има сва обележја екстензивне производње. Због велике старости засада, релативно слабе заштите и ниске агroteхнике, просечан принос по стаблу је испод 10 kg.

Преко 95% шљиве гаји се на имањима индивидуалних производача, којима је значајан извор прихода. У гајењу доминирају пожегача и тзв. ракијске сорте шљиве.

То није добро, јер је пожегача, иако високог квалитета плода, врло осетљива према вирусу шарке (*Prunus virus 7*), а ракијске сорте су врло осцилирајуће родности.
Таб. 76 – Број стабала и производња шљиве у Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабала, хиљ.</th>
<th>производња у хиљ. t</th>
<th>принос по стаблу (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>52.390</td>
<td>39.410</td>
<td>540</td>
</tr>
<tr>
<td>1965</td>
<td>55.905</td>
<td>46.154</td>
<td>279</td>
</tr>
<tr>
<td>1975</td>
<td>58.459</td>
<td>52.257</td>
<td>734</td>
</tr>
<tr>
<td>1985</td>
<td>57.420</td>
<td>50.620</td>
<td>345</td>
</tr>
<tr>
<td>1988</td>
<td>55.569</td>
<td>49.974</td>
<td>530</td>
</tr>
<tr>
<td>1989</td>
<td>54.975</td>
<td>49.452</td>
<td>513</td>
</tr>
<tr>
<td>1990</td>
<td>54.979</td>
<td>48.974</td>
<td>372</td>
</tr>
<tr>
<td>1991</td>
<td>54.521</td>
<td>47.785</td>
<td>365</td>
</tr>
<tr>
<td>1992</td>
<td>51.565</td>
<td>46.988</td>
<td>374</td>
</tr>
<tr>
<td>1993</td>
<td>52.808</td>
<td>47.811</td>
<td>519</td>
</tr>
</tbody>
</table>

Међутим, из године у годину структура сортимента шљиве се побољшава увођењем у производњу квалитетних, интродукованих и новострорених домаћих сорти.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ ШЉИВЕ

Шљива заузима следеће место у систематици биљака:

Одељак: Magnoliophyta (Angiospermae, скривеносеменице)
Класа: Magnoliophyta (Dicotyledones, дикотиле)
Поткласа: Rosidae (руже)
Надред: Rosanae (руже)
Ред: Rosales (руже)
Фамилија: Rosaceae (руже)
Потфамилија: Prunoideae (Amygdalaceae, коштичаве воћке)
Род: Prunus L.
Подрод: Prunophora Focke (шљива)

Родонаречници највећег броја сорти шљиве су следеће врсте:
I Секција Euprunus Koehne (преве шљиве)

2. Prunus institia L. (трношљива). - Родоначелник највећег броја тзв. ракијских сорти шљиве. Среће се у облику 3 варијетета: Ренклоде (P. institia var. italica), бардаклије (P. institia var. damascena) и јулијанка (P. institia var. juliana).

СОРТЕ ШЉИВЕ

Рут герштетер (*Rat gerstätter*)

Пореклом је из Немачке. Настала је укрштањем сорти Bon de bri и чар.

Сазрева половином, до краја јуна. То је једна од најранијих сорти европске шљиве.

Стабло је средње бујно, округластог облика круне. Цвета средње рано, самооплодна је и отличан опрашивач за већину сорти. Рано пророди. Средње је родности. Плодови отпадају пред бербу. Отпорна је на болести (монилија, пламењача, рђа и др.) и ниске температуре.

Плод је средње крупан (око 30 g), овалног облика, при основи неправилан. Плод је подељен на два неједнака дела средње израженом браздом. Петељка је кратка, дебела, зелене боје. Покојница плода је плаво-љубичаста - шарено обојен плод. Мезокарп је жуте боје, сочен, слатког укуса, пријатне ароме и одваја се од коштице (цепача).

Ово је сорта за стону употребу.
Чачанска рана

Домаћа сорта, створена у Институту за воћарство у Чачку. Настала је укрштањем сорти вагенхаймова и пожегача. Сазрева крајем прве декаде јула. Стабло је средње бујно до бујно. Самобезплодна је, са поленом добре клија- вости (око 50%). Рано пророди и рађа веома добро и редовно.

Плод је крупан (око 36 g), јајастог облика, љубичасто-плаве боје до плаве. Мезокарп је жутозелене боје, чврст, сочен, слатког хармоничног укуса, са израженом лепом аромом. Цепача је.

Треба је ширити као врло рану и родну стону шљиву, крупних квалитетних и транспортабилних плодова.

Калифорнијска плава (California blue)

Потиче из САД. Непознатог је порекла. Сазрева средином јула. Стабло је средње бујно, округластопирамидалне, ретке крune. Раније је цвета те показује релативну осетљивост према позним пролећним мразевима. Спада у сорте слабе самооплодности (12,5%), па се препоручује обавезно гајење уз присуство опра- шивача. Родности је велике.

Плод је крупан (око 50 g), правилно округлог облика. Покожица је танка, плave боје и прекривена обилатим пепељком. Покожица се лако одваја од мезокарпа. Мезокарп је чврст, жућкасте боје, слаткасто-накиселог нехармоничног укуса, без изра- жене ароме. Одваја се од коштице.

Слабо је транспортабилности и манипулативности, те је треба брати неко- лико дана пре пуне зрелости.

Цимерова рана (Zimmers frühzwetche)

Потиче из Немачке. Непознатог је порекла. Сазрева у другој половини, до краја јула. Стабло је умерено бујно, редовне, добре родности. Цвета средње рано. Отпорна је према пламенљачи. Плод је средње крупан (20–25 g), правилног, јајастог облика. Покожица плода је чврста, еластична, плавољубичасте боје. Мезокарп је зеленожуте боје, слатког хар- моничног укуса. Одваја се од коштице. Плодови су подложни опадању.
Чачанска лепотица

Домаћа сорта, створена у Институту за воћарство у Чачку. Настала је укрштањем сорти ватенхаймова и пожегача.

Сазрева крајем јула и почетком августа.
Стабло је средње бујно. Круна је пирамидална и растресита, добро обрасла кратким родним дрветом и не ломи се под теретом рода. Делимично је самооплодна, са поленом добре клијавости. Рано пророди и рађа добро и редовно.
Релативно је отпорна према проузроковачима рђе и пламењаче.
Плод је крупан (изнад 40 g), јајастог облика. Покожица је тамноплаве боје, прекривена врло израженим, привлачним пепељком. Месо је зелено-жуто, чврсто, сочно, слатко-накиселог хармоничног укуса, са израженом пријатном аромом. Месо се одваја од коштице.
То је једна од најбољих стоних сорти. Треба је ширити.

Чачанска најбоља

Домаћа сорта, створена у Институту за воћарство у Чачку. Настала је укрштањем сорти ватенхаймова и пожегача.

Сазрева средином августа, тј. 7 до 10 дана пре степнија.
Стабло је бујно, пирамидалне, растресите круне. Самобесплодна је, са поленом добре клијавости. Рађа добро и редовно. Осетљива је према шарки љуљаве.
Плод је врло крупан (око 50 g), јајастог облика. Покожица је тамноплаве боје са израженим пепељком, који плоду даје врло леп изглед.
Мезокарп је зеленкастожуте боје, врло чврст, сочан, слатко-накиселог, хармоничног укуса, са израженом лепом аромом. Високог је квалитета. Ценача је. Плод може релативно дуго да се задржи на грани (2–3 недеље), а да при том не изгуби на квалитету.

Једна је од најбољих стоних сорти у својој епохи зрела. Може да се користи и за прераду. Може се гајити у подручјима која нису заражена шарком.

Чачанска родна

Домаћа сорта, створена у Институту за воћарство у Чачку. Настала је укрштањем сорти степни и пожегача.

Сазрева у трећој декади августа, приближно истовремено кад и степни.
Стабло је слабо, до средње бујно. Круна је пирамидална и растресита. Самооплодна је. Рано пророди и рађа веома добро и редовно. Отпорна је према сувој труглени плодова (монилији). Релативно је осетљива према шарки љуљаве.
Нове црвено обојене сорти крушке

Cascade

Regal Red Comice

Crimson Gem
Ру́ш Гершштетер

Гилбере́й

Чачанска ле́йойца

Чачанска на́йбо̀ла
Плод је средње крупан (око 30 g), јајастог облика, тамноплаве боје са израженим пепељком, свищна пожегачи. Мезокарп је жућкаст, чврст, средње сочан, изразито слатког укуса, ароматичан и одличног квалитета. Цепача је.

То је сорта комбинованих својстава. Може се користити као стона и за све видове прераде (посебно је добра као сува шљива). Захрана обавезну и редовну резидбу (тј. обнову родног дрвета).

Степли (Stanley)

Потиче из САД. Настала је укрштањем сорти аженка и циновка. Код нас је у групи водећих сорти (интродукована је да замени пожегачу).

Сазрева у другој половини августав и почетком септембра, тј. 7-10 дана пре пожегаче.

Стабло је средње бујно. Крона је широкопирамидална, са ретким раменим гранама. Цвета средње позно. Осетљива је према позним пролећним мразевима. Делимично је самооплодна. Врло речно почиње да рађа. Рађа редовно и обилно.

Обилну редовну родност постиже уз обавезну и редовну резидбу, на структурним, плодним, благо киселим и умерено влажним земљиштима. На киселим земљиштима ван виноградарске зоне, стењи на сејанцу панарику постаје осетљив према бактеријским и гљивичним болестима, а нарочито према монилци цветних пуњака и плодова. Толерантан је према шарки шљиве (Prunus virus 7). Релативно је отпоран према пламењаци, рђи и сушин.

Плод је крупан (око 35 g), издужено-овалног облика. Покожица је тамноплаве боје са обилатим пепељком. Спорадично се јављају близанци. Мезокарп је зеленкасте боје, чврст, сочан, сладунђавог укуса и осредњег квалитета. Делимично је цепача (месо се одваја од коштице само у пуној зрелости плода), коштица је врло крупна. Презрели плодови лако отпадају.

То је сорта комбинованих својстава (стона и за све видове прераде). Добро подноси транспорт.

Аженка (Prune d'agen)

Потиче из Француске. Непознатог је порекла. Интродукована је у нашој земљи да замени пожегачу, али се није много расширила.

Сазрева у другој половини августав и почетком септембра (у исто време кад и стењи тј. 7 до 10 дана пре пожегаче).

Стабло је умерено бујно, пенуластне форме (тј. крупне у облику жалосне врбе - оборенних грана). Самооплодна је. Одличне је и редовне родности. Релативно је отпорна према већини болести, сем монилије. Нешто је осетљивија према позним пролећним мразевима.
Плод је средње крупноће (око 28 g), издужено-жајастог облика. Покожица је црвенкастоплаве боје са финим пепељком. Мезокарп је ћилибарножукте боје, сочан, изразито слатког, хармоничног укуса, најбољег квалитета. Садржи око 18% суве мајерије.

Погодна је за све видове прераде, а нарочито за производњу суве шљиве.
Због пендуластог облика круне, тешко се бере механизовано.

Јелица

Домаћа сорта створена у Институту за воћарство у Чачку. Настала је укрштањем пожегаче и калифорнијске плаве. Нова сорта, која је тек поцела да се шири.
Сазрева крајем августа, почетком септембра.
Стабло је умерено бујно, округласте круне, добре и редовне родности. Самооплодна је.
Осетљива је према шарки шљиве.
Плод је средње крупан (око 30 g), издужено-овалног облика. Покожица је тамноплаве боје са обыкнатим пепељком. Месо је жуто, сочно, слатког укуса, ароматично, одличног квалитета. Цепача је.
Одлична је за све видове прераде, а посебно за сушење.

Ваљевка

Домаћа сорта, створена у Институту за воћарство у Чачку. Настала је укрштањем сорти аженка 707 и стенли.
Сазрева крајем августа, почетком септембра.
Стабло је умерено бујно. Пирамидалне круне, самооплодна је и врло родна.
Рађа редовно.
Репативно је осетљива према шарки шљиве (нарочито лист).
Плод је средње крупан (преко 30 g), жајастог облика. Покожица је плаве боје са израженим пепељком. Месо је ћилибарножуто, одваја се од коштице, слатко-намиелог укуса са присутном аромом, високог квалитета.
Добра је за све видове прераде.

Пожегача (маџарка, бисирица)

Пореклом је из Мале Азије. Непознатих је родитеља. Најраспрострањенија сорта шљиве код нас (заступљена је са преко 50%).
Сазрева у првој декади септембра.
Стабло је умерено бујно, а на плодним и довољно влажним земљиштима развија се бујно. Круна је густа, округластог облика. Док је млађе, дрво је са бодљама.
Рано цвета. Самооплодна је. Рађа добро, али је склона алергичности. Врло је осетљива према шарки шљиве (Prunus virus 7), пламењачи и рђи.

Размножава се вегетативно изданцима. Формира велики број изданака.

Плод је ситет, до средње крупан, неправилно јајастог облика. Постоје многобројне форме, међу којима их има врло ситних плодова (12 g) и крупних плодова (30 g). Ситне је коштице и врло повољног надмана (преко 95%). Покожица плода је интензивно плаве боје са обилим сивим пепељком. Месо плода је жуто, сечко, изразито слатког укуса са пријатном аромом, високог квалитета.

Добра је за све видове прераде (супа шљива, сок, цем, мармелада, ракија и др.), као и стона. То је најбоља цепача.

Италијанска

Порекло ове сорте није познато, али се претпоставља да потиче из северне Италије.

Срезева крајем августа, почетком септембра.
Стабло је средње бујно, до бујно, са широком, растреситом круном. Нешто касније пророди, а затим рађа редовно и обилно.
Цвета средње касно. Показује репативну отпорност према ниским температурама, рђи и пламењачи, као и осетљивост према шарки и монилији.
Делимично је самобесподна те је треба гајити са опрашивачима (пожегача, стенли, аженка и др.).

Плод је средње крупан до крупан (око 35 g), елиптичног облика, мало асиметричан. Покожица је тамноплаве, до љубичастоплаве боје. Месо је жућкасто-зеленкасто, чврсто, сечко, слатко-накисело, врло ароматично и одличног квалитета. Коштица је средње крупна и одваја се од плода.

Добра је за потрошњу у свежем стању, за сушење и разне виде прераде.

* * *

Поред наведених сорти европске шљиве треба поменути као интересантне, али још увек недовољно проучене и следеће сорте:
1. херман (Herman) – срезева крајем јуна, почетком јула,
2. гилберт (Gilbert) – срезева крајем јуна и почетком јула,
3. дор (Dor) – срезева крајем јула, почетком август,
4. примакот (Prima cotes) – срезева крајем јула, почетком августа,
5. брукс (Brooks ital ian) – срезева у трећој декади августа,
6. блуфи (Bluefre) – срезева крајем августа, почетком септембра,
7. тардикот (Tardicotes) – срезева у току прве декаде септембра.
Од јапанских (кинеских) сорти шљиве треба поменути, као потенцијално интересантне за гајење у медитеранској зони наше земље, следеће сорте:

1. ред бјут (Red beat) – сазрева средином јуна,
2. фронтјер (Frontier) – сазрева крајем јуна,
3. санта роза (Santa rosa) – сазрева почетком јула,
4. озарк премијер (Ozark Premier) – сазрева половином јула,
5. редстар (Red star) – сазрева средином јула,
6. стартинг делишес (Starking delicious) – сазрева у првој половини јула.

У Југославији су, у послератном периоду, створене следеће сорте европске шљиве:

1. чачанска рана (вагенхајмова х пожегача) – сазрева крајем прве декаде јула,
2. чачанска лепотица (вагенхајмова х пожегача) – сазрева крајем јула, почетком августа,
3. чачанска најбоља (вагенхајмова х пожегача) – сазрева средином августа,
4. чачанска родна (стенли х пожегача) – сазрева у трећој декади августа,
5. чачански шећер (аженка х пожегача) – сазрева средином августа,
6. ваљевка (аженка 707 х стенли) – сазрева крајем августа, почетком септембра,
7. јелица (пожегача х калифорнијска плава) – сазрева крајем августа, почетком септембра,
8. валерија (хол х рутгерштетер) – сазрева крајем јула, почетком августа.
БРЕСКВА

Бресква је једна од најраспрострањенијих врста воћа у свету. Гаји се у умерено топлим пределима Европе, Азије, Северне Америке, северне и јужне Африке и Аустралије.

У укупној светској производњи воћа заузима осмо место (са производњом од 7.469.000 т), а међу листопадним воћкама је на трећем месту (иза јабуке и крушка).

Европа је са производњом од 3.886.000 т највећи производао бреске од континената. За њом долазе Северна Америка и Азија. Италија је највећи производао бреске у Европи и свету, а за њом следе: САД, Грчка, Шпанија, Француска, Кина и др.

Бреска потиче из Кине у којој и данас спонтано расту неки њени дивљи сродници. На том подручју бреска се гаји већ више од 4.000 година. Са Далеког истока, следећи путеве сеоба народа, трговине и ратних похода, бреска је преко Персије доспела у Европу.

Први писани подаци о брескви потичу из Х века пре нове ере. О њој се најраније писало као о гајеној воћи. (Колумела, Теофраст, Плиније и др.)

Бреска је веома квалитетно, цењено и рентабилно воће. У повољним природним условима и при коришћењу савремених система гајења, бреска веома рано пророди, тако да већ у трећој години, врдност приноса покрива трошкове производње, односно, инвестиције се брзо отплаћују. Захваљујући свом брзом развоју, већ у шестој години постиже максималан пораст и тако се за кратко време остварује пун капацитет производње (30, 40 и више т/ха). Не угрожава је велики број болести и штеточина, што практично значи да је у њеној производњи употреба хемијских алплицијних средстава сведена на минимум. Отпорна је према суши, а показује нешто већу осетљивост према позним пролећним мразевима.

Плод бреске је врло атрактивног изгледа и доброг квалитета. Он у себи садржи 8–15% суве материје, 4–13% шећера, 0,2–1,5% органске ћелијина, 0,2–0,8% пектинских материја, око 0,5% минералних материја (нарочито K, Ca и P), од 3 до 20 mg % витамина C, око 1 mg % провитамина A и витамина B1 и B2, као и знатне количине других биолошки значајних материја.

Као стоно воће, бреска се у Југославији користи од краја маја до друге половине октобра. Њени плодови су такође погодни и за производњу сокова, компота, беби каша, мармелада, цемова, за сушење, замрзравање и др.
ПРОИЗВОДЊА БРЕСКВЕ У ЈУГОСЛАВИЈИ

По привредном значају бресква се у Југославији налази на петом месту, иза шљиве, јабуке, крушка и вишње.
Годишње се у нас производе око 43.355 т (ф 1989/93) или 4,76 kg бресака по становнику.
У укупној производњи воћа на брескву отпада око 4,20%.
У протекле четири деценије број стабала брескве се повећао за око три пута, а производња, за више од шест пута.

Таб. 77 – Број стабала и производња брескве у Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабла, хиљ.</th>
<th>производња (t)</th>
<th>принос по стаблу (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>1.624</td>
<td>1.202</td>
<td>6.886</td>
</tr>
<tr>
<td>1965</td>
<td>2.590</td>
<td>2.064</td>
<td>17.740</td>
</tr>
<tr>
<td>1975</td>
<td>4.133</td>
<td>3.173</td>
<td>42.516</td>
</tr>
<tr>
<td>1985</td>
<td>4.808</td>
<td>4.092</td>
<td>46.153</td>
</tr>
<tr>
<td>1988</td>
<td>4.826</td>
<td>4.098</td>
<td>43.745</td>
</tr>
<tr>
<td>1989</td>
<td>5.090</td>
<td>3.933</td>
<td>56.704</td>
</tr>
<tr>
<td>1990</td>
<td>4.979</td>
<td>4.313</td>
<td>54.695</td>
</tr>
<tr>
<td>1991</td>
<td>5.265</td>
<td>4.146</td>
<td>57.886</td>
</tr>
<tr>
<td>1992</td>
<td>4.911</td>
<td>4.194</td>
<td>52.002</td>
</tr>
<tr>
<td>1993</td>
<td>4.696</td>
<td>4.123</td>
<td>45.389</td>
</tr>
</tbody>
</table>

Бресква се доминантно гаји на поседу индивидуалних произвођача, али због високе акумуллативности радо је гајена и на друштвеним гајництвима. Њена производња је углавном савремена (интензивна), високо приносна (30, 40 и више t/ha), са најсавременијим светским сортиментом. У структури сортимента доминирају сорте праве брескве, спорадично се гаје нектарине, а тзв. индустриске сорте су још увек у фази изучавања.

Најважнији рејони гајења брескве у СР Југославији су: смедеревско Подунавље, шире подручје Београда, Бела Црква, Нови Сад, Суботица, Сремска Митровица, Ниш, Лесковац, Чачак, Призрен, Пећ и др.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ БРЕСКВЕ

Бресква заузима следеће место у систематици биљака:

Одељак: Magnoliophyta (Angiospermae, скривеносеменице)
Класа: Magnoliatae (*Dicotyledones*, дикотиле)
Поткласа: *Rosidae* (руже)
Надред: *Rosanae* (руже)
Ред: *Rosales* (руже)
Фамилија: *Rosaceae* (руже)
Потфамилија: *Pruñoideae* (*Amygdalaceae*, коштичаво воће)
Род: *Prunus L.*
Подрод: *Amygdalus Focke* (*Persica L.*) (бадем и бресква)

Према Хесеву (1975) највећи број, од око 3,000 описаних и евидентирираних сорти бреске, пореклом је од врсте *Prunus persica Batsch.* У стварању једног мањег броја сорти бреске учиствовало је још 5 врста подрода *Amygdalus* (*Prunus davidiana Franch.*, *P. mira Kov. et Kost.*, *P. kansuensis Kov. et Kost.*, *P. ferganensis Kov. et Kost.*, и *P. andersoni Gray*).

У оквиру врсте *Prunus persica Batsch.* се јављају три варијетета:

1. *P. persica var. vulgaris* – која је родоначелник највећег броја сорти праве (обичне) бреске. Среће се у спонтаним популацијама у Кини и на пољопривредном земљишту као самоникла (спонтана) виноградарска бреска.
2. *P. persica var. nucipersica* – родоначелник цектарина (голица).
3. *P. persica var. platycarpa* (кинеска бреска), отпорна према ниским температурама.

СОРТЕ БРЕСКВЕ

Мајски цвет (Mayflower)

Створена у САД. Непознатог порекла.
То је најранија сорта бреске. Сазрева у другој декади маја.
Стабло је умерено бујно. Родности је, осредње.
Плод је сипан (око 70 g), издужено овалног облика. Покожица је жутозелене основе боје, са мало руменила са сунчане стране плода. Мезокариј је бео, празног неароматичног укуса. Глођуша је. Осетљива је на зимске нiske температуре.

Спрингтајм (Springtime)

Створена је у САД. Настала је сложеним укрштањем.
Сазрева врло рано – у београдском воћарском подручју је то око 20. јуна. У топлијим подручјима зри крајем маја или почетком јуна.
Стабло је умерено бујно. Добро и редовно рађа. Осетљива је према пепелици (Sphaerotheca pannosa), рупичавости листа, (Clasterosporium carphophilum), вирусima и ниским зимским температурама.

Плод је ситан до средње крупан (око 100 г), издужено овалног облика (често асиметричан) са израженим врхом. Покожица је основне зеленожуте боје са интензивно црвеном допунском бојом која покрива већи део површине плода. Месо је бело, доста чврсто, слично. Задовољавајућег је укуса за тако рану сорту. Глођуша је.

Осредње је манипул ativности и транспортабилности.

Армголд (Armgold)

Створена је у САД. Настава је укрштањем сорти фламинго и спринглајм.

Сазрева после спринглајма (у београдском рејону, почетком треће декаде јуна).

Стабло је бујно. Родности је осредње. Осетљива је на ниске температуре, те се препоручује за гајење у топлијим крајевима.

Плод је ситан до средње крупан (до 100 г), издужено-овалног облика, симетричан. Покожица је лимушастовита, прошарана црвенatinum са сунчане стране. Месо је жуто, слично, складног укуса, ароматично, квалитетно. Глођуша је.

Добро подноси транспорт.

Спринголд (Springgold)

Створена је у САД. Настава је више кратним укрштањем.

Сазрева средином треће декаде јуна.

Стабло је бујно. Рађа врло добро и редовно. Осетљива је према бактериозама.

Плод је ситан до средње крупан (око 90 г), лоптаста облика, са мало израженим врхом. Основна жута боја покожице, прекривена је са око 50% лепим црвенилом. Месо је жуто, чврсто, слично, укусно, квалитетно. Глођуша је.

Манипул ativна је и транспортабилна.

Спрингкрест (Springcrest)

Створен је у САД. Настао је више кратним укрштањем.

Сазрева око недељу дана после спринго лда тј. крајем јуна и почетком јула.

Стабло је умерено бујно, до бујно. Родности је одличне. Доста је отпоран на позне мразеве.

Плод је средње крупан (око 100 г), лоптаста, уједначеног облика. Покожица је наранационе боје и прекривена на 80% површине жарким црвенилом. Месо је жуто, чврсто, слично и врло укусно. Полукаланка је, у време пуне зрелости.

Треба је више ширити.
Колинс (Collins)

Створен је у САД. Настао је укритањем сорте церизиленд и спонтаног сејанца. Врло је распрострањен у свету и код нас.
Сазрева почетком јула, тј. неколико дана после спрингкреста.
Стабло је бујно и врло родно. Отпоран је према ниским температурама.
Потребно је проређивати плодове.
Плод је средње крупан (око 140 г), лоптасто-издуженог облика са израженим врхом. Покожица је жуте основне боје, прекривена интензивним црвенилом са сунчане стране плода.
Месо је жуто, чврсто, слатко-накиселог укуса и квалитетно. Коштица се тешко одаја од меса.
Релативно добро подноси транспорт.

Рани редхевен (Early redhaven)

Створен је у САД. Настао мутацијом пупољка сорте редхевен.
Сазрева крајем прве декаде јула тј. 12 до 14 дана пре редхевена.
Стабло је умерено бујно. Рађа веома добро и редовно. Релативно је отпоран на ниске температуре.
Плод је средње крупан (око 160 г), округластог до издужено-округластог облика, са слабије израженим врхом. Покожица је жуте основне и црвене допунске боје са сунчане стране плода. Месо је жуто, чврсто и квалитетно. Полукаланка је.
Добро подноси транспорт.

Диксиред (Dixired)

Створен је у САД. Настао је самооплодњемем сорте халхевен.
Сазрева у исто време кад и рани ред хевен, тј. крајем прве декаде јула.
Стабло је средње бујно, до бујно. Он је делимично самооплодан, те боље резултате даје уз присуство опрашиваца. Рађа добро и редовно. Осетљив је према оштријим мразевима.
Плод је средње крупан (120–140 г), лоптастог облика. Покожица је маљава, наранџастокутне основе боје, са дифузним црвенилом које прекрива скоро цело плод. Месо је жуто, чврсто и квалитетно. Полукаланка је.
Добро подноси транспорт.

Редхевен (Redhaven)

Пореклом је из САД. Настала је укритањем сорте халхевен и калхевен. Најзаступљенија сорта у свету. Код нас је у групи водечих сорти.
Флејвортоп (Flavortop)

Пореклом је из САД. Настала је као спонтани сејанца сорте Faertime.
Сазрева почетком друге декаде августа.
Стабло је бујно, рађа добро и редовно. Релативно је осетљива према јачим зимским мразевима.
Плод је средње кружан, до кружан (130–160 g), округласто-јајастог облика. Покожица је 100% прекривена допунском црвеним бојом. Месо је наранџастожуто са израженим црвеним око коштице. Укуса је слатко-накиселог и ароматичног. Квалитет је добар. Делимична је каланка. Транспортабилна је.

Фантазија (Fantasia)

Пореклом је из САД. Настала је укрштањем сорте Gold King са спонтаним сејанцем сорте Red King.
Сазрева средином, до друге декаде августа.
Стабло је бујно. Рађа добро и редовно.
Плод је кружан (око 160 g), јајастог облика. Основна боја покожице је светложута са црвеним које дифузно прекрива 50–70% површине. Месо је наранџасто, црвено око коштице, чврсто, благоароматично, квалитетно. Каланка је.
Добро подноси транспорт и манипулацију.
За све три сорте карактеристично је да цветају врло рано, те најчешће страдају од пролећних мразева, што их препоручује за гајење искључиво у топлим подручјима.

* * *

Поред наведених сорти бреске, у наше комерцијалним засадима се могу наћи у нешто мањем обиму и следеће сорте праве бреске:
1. магнолија (Magnolia) – сазрева почетком јула,
2. спринг леди (Spring lady) – сазрева почетком јула,
3. ред кеп (Red cap) – сазрева прве декаде јула,
4. старк ерлиго (Stark Earliglo) – сазрева у првој половини јула,
5. фејрхевен (Fair haven) – сазрева средином августа,
6. санхай (Sunhigh) – сазрева средином августа,
7. санкрест (Suncrest) – сазрева у другој половини августа,
8. ветеран (Veteran) – сазрева у другој половини августа,
9. блек (Blake) – сазрева у другој половини августа,
10. редскен (Redskin) – сазрева крајем августа, почетком септембра и др.

Од нектарина у нешто мањем обиму су заступљене и следеће сорте:
1. ред џун (Red June) — сазрева половином јуна,
2. армкинг (Armking) — сазрева почетком јула,
3. меј гранд (May grand) — сазрева средином јула,
4. кримсон голд (Crimson gold) — сазрева средином јула,
5. вајнбергер (Weinberger) — сазрева у другој половини јула,
6. рани сангранд (Early sangrand) — сазрева у трећој декади јула,
7. старк сангло (Stark sunglo) — сазрева у другој декади августа,
8. старк редголд (Stark Redgold) — сазрева средином августа.

Поред ове две групе сорти брекве, у последње време постају све интересантније за гајење сорте из групе Павије или тзв. индустриске брекве. Ове сорте поседују извесне опште специфичности као што су: обилата родност, релативна осетљивост према ниским температурама, време зрeña после ред хевена, фиброзно месо срасло са коштицом, висок квалитет плода и погодност за све видове прераде.

С обзиром да до сада нисмо имали искуство са овим сортама, оне се могу срести још у век само у експерименталним засадима. Прве добре резултате за гајење у нашој земљи показале су следеће сорте:

1. лоадел (Loadel) — сазрева крајем јула,
2. фортуна (Fortune) — сазрева у првој декади августа,
3. вивијан (Vivian) — сазрева половином августа,
4. беби голд 6 (Babygold 6) — сазрева у другој половини августа,
5. андрос (Andross) — сазрева крајем августа, почетком септембра,
6. јунгерман (Jugerman) — сазрева кад и андрос,
7. каролина (Carolina) — сазрева крајем августа,
8. хелфورد (Halford) — сазрева средином септембра.

У Југославији су у последњем периоду створене и следеће сорте праве брекве:

1. радмиловчанка (Muntant сорте J.H.Hale) — сазрева у другој половини септембра,
2. чачак (Veteran x Early East) — сазрева у другој половини јула,
3. маја (Glohaven x Glohaven) — сазрева у првој декади августа,
4. весна (Glohaven x Glohaven) — сазрева два дана после маје,
5. дора (Elberta x Springtime) — сазрева почетком августа,
6. јулија (Redhaven x Collis) — сазрева крајем прве декаде јула.
КАЈСИЈА

По производњи воћних плодова кајсија заузима 13. место у свету. Просечна годишња светска производња кајсије се креће око 1.839.000 t.

Европа, производњом кајсије од 757.000 t надмашује остали континенте. Највећи произвођачи кајсије у свету су земље бивше СССР-а, Турска, Шпанија, Италија и Грчка.

Постоји и кајсија у којој се гајила још пре 5.000 година. У Средњој Азији пренета је тек почетком наше ере, одакле се ширила у остали делове света.

У својој постојаности кајсија се формирала у континенталном поднебљу, где су топла и жарка лета, дуге и хладне зиме и брзи прелази између ових крајности.

С обзиром да кајсија као врста има релативно кратко биолошко мировање зимска и пролећна температурна колебања угрожавају њену производњу. Стога је и разумљиво да су највећи светску производјачи кајсије управо земље или изразито континенталне или медитеранске климе, где су врло ретки јачи зимски или пролећни мразеви) где су услови за гајење кајсије повољни.

И поред изузетно добрих особина које ову врсту чине атрактивном за гајење, (брзо се развија, рано пророди, обилно и редовно рађа, добро подноси сушу и одличног је квалитета плода) њена производња је угрожена и ограничена изненадним утицајима стабала, појавом, која се назива апоплексија. Ова појава коју изазива велики број различитих фактора, (еколошких, физиолошких и патогених) чешће се јавља у поднебљу са великим температурним колебањима крајем зиме и рано у пролеће, што је случај и у већем делу наше земље.

Плод кајсије је првокласна намирница у свежем или прерађеном стању. Хранљива вредност плода види се из количине биолошки важних хемијских супстанци. Плод садржи од 10–16% суве материје, од 8 до 13% љевера, од 0,5 до 1,0% органских киселина, око 0,9% беланичевина, око 0,59% пектин, од 0,03 до 0,27% танина, око 1,20 mg % бета каротина (прониметином А), од 7 до 10 mg % витамина C, минералних материја, око 0,5% јодида и др. Посебно треба нагласити релативно висок садржај јодида и бета каротина, којег остало воће има у траженима.

Плод кајсије је због тога велике употребе вредности, како за потрошњу у свежем стању, (као стоно воће) тако и за најразличитије видове прераде (у сокове, беби каше, мармеладе, цемове, компоте, ракије, за сушење, замрзавање и др.).
ПРОИЗВОЂА КАЈСИЈЕ У ЈУГОСЛАВИЈИ

Производња кајсије од око 26.338 t (ф 1989/93) или 2,2 kg по становнику, је мала и не одговара ни производачким могућностима Југославије, ни потребама за овим воћем. Кајсија је веома дефицитарно воће у Југославији.

У укупној производњи воћа на кајсију отпада само 1,87%.

У протекле четири деценије број стабала кајсије се повећао за око један и по пут, а производња за око два пута (табл. 78).

Табл. 78 – Број стабала и производња кајсије у Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабла, хиљ.</th>
<th>производња (т)</th>
<th>принос по стаблу (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>1.157</td>
<td>809</td>
<td>1.367</td>
</tr>
<tr>
<td>1965</td>
<td>1.512</td>
<td>1.188</td>
<td>11.620</td>
</tr>
<tr>
<td>1975</td>
<td>1.577</td>
<td>1.261</td>
<td>14.207</td>
</tr>
<tr>
<td>1985</td>
<td>1.870</td>
<td>1.475</td>
<td>18.697</td>
</tr>
<tr>
<td>1988</td>
<td>1.885</td>
<td>1.624</td>
<td>17.378</td>
</tr>
<tr>
<td>1989</td>
<td>1.883</td>
<td>1.625</td>
<td>31.256</td>
</tr>
<tr>
<td>1990</td>
<td>1.859</td>
<td>1.634</td>
<td>31.637</td>
</tr>
<tr>
<td>1991</td>
<td>1.908</td>
<td>1.577</td>
<td>17.288</td>
</tr>
<tr>
<td>1992</td>
<td>1.829</td>
<td>1.569</td>
<td>30.600</td>
</tr>
<tr>
<td>1993</td>
<td>1.880</td>
<td>1.576</td>
<td>20.913</td>
</tr>
</tbody>
</table>

Ограничителни фактор гајења кајсије је изненадно угивање стабала (апоплексија), које се најчешће јавља у подручјима са великим температурним колебањима крајем зиме и рано у пролеће, што је случај у већем делу наше земље.

У циљу унапређења производње кајсије, треба бирати сорте дужег зимског миравања и каснијег времена цветања.

Важнији рејони гајења кајсије у Југославији су: смедеревско Подунавље, околина Београда, Хоргош, Суботица, околина Чачка.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ КАЈСИЈЕ

Кајсија заузима следеће место у систематици биљака:

Одељак: Magnoliaphyta (Angiospermae, скривено-semенице)
Класа: Magnoliifera (Dicotyledones, дикотиле)
Поткласа: Rosidae (руже)
Надред: Rosanae (руже)
Ред: Rosales (руже)
Фамилија: Rosaceae (руже)
Потфамилија: Prunoideae (Amygdalaceae, коштичаве воћке)
Род: Armeniaca Juss. (кајсија)

У оквиру рода Armeniaca Juss. евидентирано је 10 врста кајсије. Највећи број, од око 1.000 сорти кајсије пореклом је од врсте Armeniaca vulgaris Lam. тзв. обичне кајсије. Ова врста се одликује израженом осетљивошћу према температурним колебањима, кратким биопошким миришњењем и добром квалитетом плода.
Остале сродне врсте:

1. Armeniaca brigantica Vill.,
2. A. ansu Kost.,
3. A. mume Sieb.,
4. A. sibirica Pers.,
5. A. mandshurica Sevor.,
6. A. dasycarpa Kost. (црна кајсија),
7. A. holesterica Kost.,
8. A. davidiana Carr.,
9. A. anomala Kost.,

учествовали су у знатно скромнијем обиму у стварању сорти кајсије.

СОРТЕ КАЈСИЈЕ

Крупна рана
Пореклом је из Мађарске. Код нас је у групи водећих сорти. Сазрева у другој половини јуна до почетка јула.
Стално је средње бујно. Рано почиње да рађа и врло је родна. Отпорна је према ниским температурама, а осетљива према пролећним. Није посебно осетљива према болестима и штеточинама.
Плод је врло крупан (80–140 g), округластокупастог облика. Покожица је наранџасте боје са руменилом са сунчане стране плода. Месо је средње чврсто и сочно, киселкасто-слатког укуса и доброг квалитета. Каланка је.
Стопа сорта.
Мађарска најбоља

Пореклом је из Мађарске. То је једна од најраспрострањенијих сорти кајсије у свету. Код нас је у групи водећих сорти.
Сазрева половином јула.
Стабло је средње бујно. Рано почиње да рађа. Добре је и редовне родности. Отпорна је према писким температурама. Скромних је захтева према земљиштима. Релативно је отпорна према болестима и штеточинама. Покажује нешто већу осетљивост према монилији.
Плод је средње купан (око 50 g), округластог облика. Покожица је наранџасто боје, прекривена руменилом са сунчане стране. Месо је чврсто, сочно, слатко-нагисело, ароматично, одличног квалитета. Добра је као стона сорта и за све видове прераде.

Кечкеметска ружа

Пореклом је из Мађарске. Она је такође у групи водећих сорти у нас.
Сазрева крајем јула или почетком августа.
Стабло је бујно и врло родно. Отпорна је према ниским температурама, посебно према пролећним мразевима. Скромних је захтева према земљиштима. Доста је отпорна према болестима и штеточинама.
Плод је средње купан (око 30 до 40 g), издужен округластог облика, мало плоснатог, асиметричног. Покожица је жуте боје, са руменилом са сунчане стране плода. Месо је жуто, средње чврсто, осердње сочности, слатко-нагисело, слабо ароматичног укуса. Осердњег је квалитета.
Добро подноси транспорт. Користи се пре свега за прераду.

Старк ерли оранж (Stark early orange)

Пореклом је из САД. Настала је селекцијом.
Сазрева средином јула, тј. у време мађарске најбоље.
Стабло је умерене бујности, изразито пирамидалне круне. Рађа добро и редовно. Касно цвета. Мање је осетљива према шарки шљиве, од других сорти кајсије.
Плод је ситан до средње купан (око 30 g), округластог облика. Покожица је тамножуте боје, делимично прекривена црвенилом. Месо је наранџастожуто, чврсто, сочно, благо-нагисело, квалитетно.
Индустријска сорта.

Цегледи бибор (Cegledi bibor)

Пореклом је из Мађарске. Настала је селекцијом.
Сазрева у другој декади јула.
Стабло је бујно, широкоцирмене круне. Врло је родна сорта. Релативно је осетљива према позим зимским и раним пролећним мразевима.
Плод је крупан (око 60 g), издужено-овалног облика и бочно сплоштеног. Основна наранчастицата боја покожице прекривена је тамноцрвном бојом. Месо је наранчастицате боје, сочно, слатко-накисело, ароматично и по укусу врло слично мађарској најбољој.
Плод је погодан за стону употребу, као и за прераду, пре свега, за компоте.

Цегледи оријаш (Cegledi oriüs)
Мађарска сорта сличних особина и порекла као и претходна. Различит је само: широкоокругласт облик круне, нешто крупији плод (просечно око 70 g), изразито округластоовалног облика.

Бленрил (Blenril)
Пореклом је из САД. Хибридиног је порекла (blenhajm x riland).
Сазрева средином јула. Стабло је средње бујно, широко пирамидалне круне. Родности је обилате.
Плод је ситан до средње крупан (око 25–30 g) правилног овалног облика. Већи део покожице је прекривен тамним црвеним. Месо је наранчащуто жуто, чврсто и доброг квалитета.
Препоручујем се као индустријска сорта.

Роксана
Пореклом је из Авганистана, а у Бугарској је, после испитивања добила име.
Сазрева касно – крајем јула, почетком август.
Стабло је бујног пораста. Цвета средње рано. Осетљива је према пролећним мразевима. Самооплодна је. Пророди касно, а затим рађа обилато. Толерантна је према шарки, а није осетљива ни према проузроковањима гљивичних болести.
Плод је средње крупан (око 70 g) округласто-издуженог облика. Покожица је наранчастицате боје, са сучане стране прекривена руменилом. Месо је такође наранчащто, чврсто, сочно, слатко накиселог укуса, доброг квалитета.
Добре је транспортабилности. Плод може да се користи за потрошњу у свежем стању и као сиропина за прераду.

* * *
Поред наведених сорти кајсије, у нашим комерцијалним и експерименталним засадима могу се наћи и следеће сорте:
1. кишњевска рана (Кишневски раний) – сазрева у првој декади јула,
2. русијанска црвена (Rouge de Roussillion) – сазрева средином јула,
3. син красношеково (Син красношекого) – сазрева средином јула,
4. раковски (Rakovszky) – сазрева у другој половини јула,
5. луизетова (Luiiset) – сазрева у другој половини јула,
6. амброзија (Ambrise) – сазрева у другој половини јула,
7. бреда (Breda) – сазрева почетком августа,
8. холубова (Sucre de Holub) – сазрева половином августа,
9. црвени партизан (красни партизан) – сазрева у другој половини јула,
10. костјуженски (Костюженски) – сазрева у другој половини јула, и др.

У Југославији су у послепратном периоду створене две сорте кајсије:

1. чачанско злато (самоникли сејанац) – сазрева крајем друге декаде јула,
2. чачанска пљосната (домаћа самоникла кајсија х мађарска најбоља) – сазрева крајем јула.
ТРЕШЊА

Трешња се по производњи плодова међу воћкама налази на 15. месту у свету. Више од 75% светске производње трешње се произведе у Европи. Италија са производњом од 58.000 t је највећи производач трешње у свету.

Умерено поднебље пружа трешњи оптимальне услове за живот и плодоношење.

Постојбина трешње је јужна Европа и западна Азија – подручје од Балканског полуострва до Каспијског језера.

Трешња је једна од најстаријих привредно искоришћаваних воћака. Прикупља је човекову пажњу у далекој прошлости пријатним укусом и раним сазревањем плода. То потврђују и ископине неких насеља у Швајцарској и Италији, где су нађене коштице трешње из млађег каменог доба.

Прве писане податке о гајењу трешње даје грчки ботаничар и филозоф Теофрас (IV–III век пре нове ере). У првом веку наше ере, Плиније Старији је описао 10 сорти трешње гајених у околини Рима, одакле се ширила у осталим земљама Европе.

Плод трешње се одавнина користи као храна, освежавајуће средство и лек. Заједно са јагодом, представља најраније стино воће у нас. Њен плод садржи од 9 до 27% суве материје, 6–18% шећера. Највећи део шећера чине тзв. редукујући шећери, где доминира грошћани шећер – глукоza (са око 60%) и воћни шећер – фруктоза (са око 40%). Органске киселине се крећу у границама од 0,32 до 1,29%, пектини су присутни са око 0,70%, минералне материје са око 0,60% (са значајним учешћем S, P, Cl, Na, Mg, Ca, Fe, Zn, Cu, Mn и знатном количином органског јода), целулозе са око 1%.

У плоду трешње има и танина, антиоксиданата (нарочито код обојених сорти), витамина (A, B₁, B₃, B₅, B₆ и C), ензима, ароматичних материја и др.

С обзиром на такав састав плодова, трешње делују: освежавајуће, диуретично, енергетски, детоксиниксиче, антиинфективно и лаксативно. То је и разлог да се највећи део приносна (око 85%) трешње користи као стино воће (за потрошњу у свежем стању).

Плод трешње је важна сировина за производњу слатка, компота, смуке и кандираног воћа.

ПРОИЗВОДЊА ТРЕШЊЕ У ЈУГОСЛАВИЈИ

Производња трешње од око 30.686 t (ф 1989/93) или 3,25 kg по становнику је мала и недовољна. То је, уз јагоду, најраније воће у нашој земљи.

У укупној производњи воћа, на трешњу отпада 2,78%.
У протекле четири деценије број стабала трешње се повећао за нешто више од један и по пут, а производња за око 1,4 пута (таб. 79).

Таб. 79 – Број стабала и производња трешње у Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабла, хиљ.</th>
<th>производња (т)</th>
<th>принос по стаблу (кг)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>1.512</td>
<td>1.165</td>
<td>22.260</td>
</tr>
<tr>
<td>1965</td>
<td>1.990</td>
<td>1.546</td>
<td>22.691</td>
</tr>
<tr>
<td>1975</td>
<td>2.228</td>
<td>1.901</td>
<td>28.805</td>
</tr>
<tr>
<td>1985</td>
<td>2.409</td>
<td>2.049</td>
<td>25.633</td>
</tr>
<tr>
<td>1988</td>
<td>2.432</td>
<td>2.101</td>
<td>31.438</td>
</tr>
<tr>
<td>1989</td>
<td>2.424</td>
<td>2.092</td>
<td>33.615</td>
</tr>
<tr>
<td>1990</td>
<td>2.401</td>
<td>2.085</td>
<td>31.991</td>
</tr>
<tr>
<td>1991</td>
<td>2.409</td>
<td>2.070</td>
<td>25.963</td>
</tr>
<tr>
<td>1992</td>
<td>2.456</td>
<td>2.044</td>
<td>30.919</td>
</tr>
<tr>
<td>1993</td>
<td>2.470</td>
<td>2.052</td>
<td>30.941</td>
</tr>
</tbody>
</table>

Трешња се у Југославији гаји готово искључиво на индивидуалном поседу и на релативно мањим површинама. Разлог томе је у чињеници да се највећи део плодова трешње реализује као стино воће, (преко 85%) због чега се берба обавља ручно (што знатно поскуршава производњу) и гаји најчешће у близини великих потрошачких центара.

Да би се производња овог врло квалитетног и укусног воћа у наредном периоду повећала, потребно је гајити интродуковане самооплодне сорте трешње крупног и атрактивног плода, чиме би се повећали приноси по јединици површине, брже и лакше обављала берба, што би све резултирало мањим трошковима производње.

Такође би требало искористити и компаративне предности медитеранског подручја за узгој трешње, које тамо дозревају око месец дана ранје. Наше тржиште је иначе слабо снабдевено раним воћем, а ране трешње би се могле и извозити.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ ТРЕШЊЕ

Трешња заузима следеће место у систематици биљака:

Одељак: Magnoliophyta (Angiospermae, скривеносеменице)
Класа: Magnoliaceae (Dicotyledones, дикотиле)
Поткласа: Rosidae (руже)
Надред: Rosanae (руже)
Ред: Rosales (руже)
Фамилија: Rosaceae (руже)
Потфамилија: Prunoideae (Amygdalaceae, коштичаво воће)
Род: Prunus L.
Подрод: Cerasus Pers.
Секција: Eucerasus Koehne
Врста: Prunus avium L. (Cerasus avium Moench.)

Родонаучници преко 2.000 сорти трешње је само једна врста: Prunus avium L. или трешња врапчара. Она се среће у храстовим шумама и шумама доњег буковог појаса од Мале Азије на истоку, преко Кавказа, до јужне и средње Европе на западу.
Бијног је стабла, разгранате круне. Врло ситног плода, различито боје. Може се срести и на већим надморским висинама.

СОРТЕ ТРЕШЊЕ

Примавера (Primavera)

Пореклом је из Немачке. Настала је укрштањем сорти фламентажер и тржишна рана.
Сазрева почетком маја.
Стабло је средње бујно, разгранате круне. Релативно је отпорна према мразу и суши. Рано пророди. Рађа обилно и редовно.
Плод је ситан до средње крупан (око 4 g), срцастог облика. Покожица је пурпурано црвено боје. Месо је средње чврсто, сочно, слатко-накисело и ароматично. Сок је обојен. Кишних година плод пуца.

Бурлатова рана (Bigarreau sativ de burlat)

Пореклом је из Француске.
Сазрева половином маја.
Стабло је умерено бујно растрсите круне. Рано пророди. Рађа редовно и добро. Склон је преношењу рођности на периферију круне, те је треба обавезно резати.
Плод је крупан (око 7 g), трапецистог облика. Покожица је чврста, црвено до тамно црвено боје. Месо је полуврчесто, црвено, сочно, слатког укуса. Сок је ружичаст. На кишном времену плод спорадично пуца. Одлично подноси транспорт.

Лионска рана – докторка (Rose de Lyons)

Пореклом је из Француске.
Сазрева крајем маја или почетком јуна.
Стабло је средње бујно, пендуласте форме круне. Родности је обилате и редовне.
Плод је средње крупан (4,5–5 g), срцасти одбин. Покожица плода је црвене боје, танка, сјацина, пуца на кипи. Месо је чврсто, сочино, слатко-накоисело укуса, одличног квалитета.

Ван (Van)
Пореклом је из Канаде. Настала је као спонтани сејанац сорте емпре еутен. Сазрева половином јуна.
Стабло је средње бујно. Рано пророди и рађа обилно и редовно. Осетљив је према монилији.
Плод је крупан до врло крупан (око 7,5 g), срцасти-лопоастог облика. Покожица је тамноцрвене боје. Петељка је кратка. Месо је чврсто, сочино, слатко-накоисело, ароматично.
Плод је погодан за употребу у свежем стању и за прераду.

Сју (Sue)
Пореклом је из Канаде. Настала је укрштањем сорти бинг и шмит.
Сазрева у првој половини јуна.
Стабло је средње бујно. Родности је обилне и редовне.
Плод је врло крупан (8 g), издужено срцасти облика. Покожица је бледожуте основе боје и допунске, црвенорозикасте са сунчане стране плода. Месо је бледожуто, чврсто, полухрсакавично, слатко-накоисело, ароматично, одличног квалитета. Покожица не пуца на кипи. Сок је безбојан.
Одлична је за употребу у свежем стању и за разноврсне облике прераде.

Стела (Stella)
Пореклом је из Канаде. Настала је укрштањем сорте ламберт са самооплодним сејанцем (emperor fransis x наполеонова, зрачена X зрацима). То је прва створена самооплодна сорта трешње.
Сазрева средином јуна.
Стабло је средње бујно, до бујно. Родности је обилате и редовне. Може да се гаји у чистим засадима, али боље резултате даје са опрашивањем. Компатибилна је са свим самооплодним сортама. Умерено је осетљива према мразу.
Плод је врло крупан (преко 8 g), издужено-срцасти облика. Покожица је тамноцрвене боје и врло осетљива према пузању при кишном времену. Месо је тамноцрвоно, средње чврсто, хрсакавично, сочино и квалитетно.
Одличан је опрашиваач за друге сорте.
Код стеле је издвојен патуљаци мутант – компакт стела, који се од мајке разликује само по врло слабој бујности.

Наполеонова (Royal ann)

Пореклом је из Француске.
Сазрева крајем јуна, почетком јула.
Стабло је средње бујно, пирамидалног облика круне. Круна је врло ретка и склона огњавању. Обавезно је треба резати. Родности је добре.
Плод је средње крпапан (око 5,5 g), срцасти облика. Покожица је врло танка, основне бледожуте боје са допунским буменом са сунчане стране плода. Месо је механо, светле боје, сочно, слатко укуса, ароматично, одличног квалитета. То је једна од најквалитетнијих сорти трешње. Сок је безбојан.
Покожица пуча. Слабе је транспортабилности и манипулативности.

Ламберт (Lambert)

Пореклом је из САД. Издвојена је из смеше сејанаца наполеонове.
Сазрева неколико дана после наполеонове тј. крајем јуна до прве декаде јула.
Стабло је умерено бујно, високе пирамидалне круне. Родности је добре и редовне. Плод је крпапан (око 8 g), окружасто-срцасти облика. Покожица је тамно црвена, чврста, сочна, одличног квалитета.
Плодови пучају на киши. Осетљива је према моннији. Склона је опадању плода.
Пронађен је и код ње спер-мутант, тј. мутант слабе бујности – компакт ламберт.

Бинг (Bing)

Пореклом је из САД.
Сазрева у другој половини јуна.
Стабло је средње бујно и врло родно.
Цвета средње касно. Самобесплода је и добри опрашивају су јој: ван, суе и хеделминерова.
Плод је крпапан до врло крпапан (просечне месе 7,8 g), затупасто-срцасти облика са глатком, сјајном покожицом, тамноцрвене боје. Месо је чврсто, рскавичаво, сочно, слатко-нажисег укуса, пријатне ароме, одличног квалитета.
Плодови су јој погодни за потрошњу у свежем стању, као и за индустријску прераду.
Емперор Франсис (Emperor Francis)

Ово је одлична шарена трешња, са веома повољним привредно-биолошким особинама, која се гаји у многим вођарским земљама.

Сазрева са бином или дан два после њега. На грани се плодови добро држе и на киши не пушају.

Стабло је здраво, бујно и разгранато. Средње цветна је сорта. Рађа редовно и веома обилно.

Плод јој је средње купан до купан (око 5 g), облика затупасто-срцастог. Покожица је жуте основне, са допунском првом боком са сунчане стране плода. Месо је жуто, сочно, чврсто, спатко-нажисело и пријатне ароме. Сок је безбојан.

Погодна је за индустријску прераду.

Дроганова жута (Drogans gelbe knorreikirche)

Пореклом је из Немачке.

Сазрева почетком јула.

Стабло је бујно, широкопирамидалне круне. Родности је добре и редовне.

Плод је средње купан (5–6 g), округласто-срцастог облика. Покожица је светложуте боје, танка и за време кише пуша. Месо је чврсто, сочно, са мало горчине у укусу.

Врло је осетљива према црвљивости плода (Rajaletis cerasi).

Намена јој је искључиво за прераду.

Гермердорфска (Grosse germerzdorfer)

Пореклом је из Немачке. Стара сорта.

Сазрева средином јула.

Стабло је врло бујно, пирамидалне круне. Родности је добре.

Плод је врло купан (8–11 g), срцастог облика. Покожица је тамноцрвене боје, еластична, транспортабилна. Месо је чврсто, храстачиво, блендцрвено, сочно, обојеног сока, спатког укуса, одличног квалитета. Копитица је ситна и сразла са месом плода (глобуша).

Плодови су подложни црвљивости. Пуцају пред зрење, а напада их моноилада. Лист је осетљив према рупичавости (Clasterosporium carpophilum), а цвет, према мразу и топлим ветровима.

* * *

Поред наведених сорти трешње у наших комерцијалним и експерименталним засадима се могу срести и следеће сорте:
– новоинтродуковане, самооплодне сорте и универзални опрашивајући трешње:

1. Санбарст (Sunburst) – сазрева у току друге декаде јуна,
2. стаиркримсон (Starkrimson cherry) – сазрева у току друге декаде јуна,
3. њу стар (New star) – сазрева у току друге декаде јуна,
4. лапинс (Lapins) – сазрева у току треће декаде јуна.

Сорте чија покожица плода не пуча при кишном времену:

4. виста (Vista) – сазрева у другој половини маја,
5. венус (Venus) – сазрева крајем маја,
6. мертон бигаро (Merton Bigareaw) – сазрева у првој половини јуна,
7. стаиркинг харди џајент (Starking Hardy Giant) – сазрева у току друге декаде јуна и др.

У Југославији су у последњем периоду створене две сорте трешње:

1. асенова рана (дроганова жута x мајова рана) – сазрева крајем маја,
2. чарна (мајова рана x shreken bigaro) – сазрева крајем јуна.
ВИШЊА

Вишња се по производњи плодова од 780.000 t, међу воћкама налази на 19. месту у свету.
Европа, као континент, а бивши СССР као земља, највећи су произвођачи вишње у свету. Следе захтев: САД, Немачка, Југославија, Италија, Француска и др.
Постојбина вишње је јужна Европа и Западна Азија—подручје од Балканског полуострва до Каспијског језера.
Вишња, која је редован пратилац трешње, снађа такође у најстарије воћке које је човек користио. То потврђују и коптице откривене у пешчарама Америке, као и на Скандинавском полуострву.
Прве писане податке о гајењу вишње даје нам Плиције Старији (1 век пре нове ере), који Луцијусу Лукулусу приписује као заслугу доношење вишње са прибрежја Црног мора у Рим. Оратле се временом ширила и у друге земље Европе и света.
Данас се вишња гаји на свим континентима у умерено прохладној клими.
Плод вишње је високе биолошке вредности. Он садржи: 12–22% сурова материја, 10–13% шећера, 1,02–2,40% органских киселина, око 0,2% танинских материја, око 0,3% пектинских материја, од 0,7 до 1,9% белачевина, око 0,5% минералних материја, око 15 mg% витамина С, велике количине бојених материја антоцијана (чиниоца вида), као и других корисних супстанци.
Плод вишње је велике технологске вредности и представља изузетно погодну сировину за индустрију прераде у сокове, компоте, слатка и ракију, као и за замрзавање, сушење и кондиторске производе.
Плод неких сорти вишње може да се користи и као стоно воће.

ПРОИЗВОДЊА ВИШЊЕ У ЈУГОСЛАВИЈИ

Вишња је трећа воћка по значају у Југославији, иза шљиве и јабуке. Годишње се у нас произведе 99.088 t (ф 1989/93) или 9,77 kg по становнику.
У укупној произвођњи воћа, на вишњу отпада 8,86%.
У протекле четири деценије број стабала вишње се повећао за нешто више од 8 пута, а производња за 6 и по пута (таб. 80).
Производња вишње у последњој периоду је доживела праву експанзију. То је првенствено због проналаска и увођења у производњу домаћег екотипа тзв. обличинске вишње, која се лако размножава изданицима, рано пророди, обилато рађа и одличног је квалитета плода. Она је у укупном сортименту вишње заступљена са око 60%.
Таб. 80— Број стабала и производња вишње у Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабла у хиљ.</th>
<th>производња (л)</th>
<th>принос по стаблу (кг)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>1.261</td>
<td>1.037</td>
<td>13.993</td>
</tr>
<tr>
<td>1965</td>
<td>2.214</td>
<td>1.540</td>
<td>14.960</td>
</tr>
<tr>
<td>1975</td>
<td>4.324</td>
<td>3.412</td>
<td>32.701</td>
</tr>
<tr>
<td>1985</td>
<td>12.165</td>
<td>10.403</td>
<td>100.272</td>
</tr>
<tr>
<td>1988</td>
<td>11.163</td>
<td>10.056</td>
<td>111.691</td>
</tr>
<tr>
<td>1990</td>
<td>11.142</td>
<td>9.857</td>
<td>92.392</td>
</tr>
<tr>
<td>1991</td>
<td>10.457</td>
<td>9.807</td>
<td>89.692</td>
</tr>
<tr>
<td>1993</td>
<td>10.213</td>
<td>9.235</td>
<td>93.105</td>
</tr>
</tbody>
</table>

С обзиром да је Југославија велики извозник вишње, а да у структури сортимента доминирају домаће сорте (екотипови облачинске и авалске) и сорте обојеног сока, уз незнатно учење сорти безбојног сока, последњих година се осећају потреси у плесману наше вишње, првенствено на западноевропском тржишту.

У циљу унапређења вишњарства, као и бољег плесмана, треба побољшати структуру сортимента (учешћем квалитетнијих сорти вишње безбојног или обојеног сока), као и ниво агroteхнике.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ ВИШЊЕ

Вишња заузима следеће место у систематици биљака:

Одељак: Magnoliophyta (Angiospermae, скривеносеменице)
Класа: Magnoliatae (Dicotyledones, дикотиле)
Поткласа: Rosidae (руже)
Надред: Rosanae (руже)
Ред: Rosales (руже)
Фамилија: Rosaceae (руже)
Потфамилија: Prunoideae (Amygdalaceae, коштичаво воће)
Род: Prunus L.
Подрод: Cerasus Pers
Секција: Eucerasus Koehne

У стварању сорти вишње учествовало је 7 врста из подрода Cerasus pers. и 1 врста из подрода Padus (Prunus padus — srezma)
Врсте подрода Cerasus су груписане у четири секције: Mahaleb, Eucerasus Koehne, Microcerasus Webb, и Pseudocerasus.

Важније врсте су:

I Секција Mahaleb

II Секција Eucerasus Koehne

III Секција Microcerasus Webb.

5. Prunus tomentosa Th. (маљава вишња). – Мале је бујности стабла. Плодови су доброг квалитета и укуса. Отпорна је према мразу.

СОРТЕ ВИШЊЕ

Облачинска вишња

Проанађена је у селу Облачина, у источној Србији. То није сорта, већ екотип издвојен из спонтане популације.
Сазрева средином јуна.
Стабло је слабе бујности, округласте крнке. Самооплодна је, рано пророди и обилно рађа. Отпорна је према позним пролећним мразевима. Размножава се изданцима.
Плод је ситан (око 3–3,5 g), округласт, тамноцрвен (покожица, месо и сок), киселкасто-слатког укуса, одличног квалитета.
Погодна је за све видове прераде. Не може да се бере механизовано због врло плитког кореновог система. Веома је расширена у Србији. Од укупне површине под вишњом, 60% отпада на облачинску.

Керешка

Пореклом је из Мађарске. То је клон мађарске сорте пандц. Сазрева крајем јуна, почетком јула.
Стабло је бујно. Самоципловидна је и са већином општевида је интеринкомпактивног облика, што је разлог њене врло слабе и нередовне родности. Релативно је осетљива према сушењу врхова, а отпорна према већини болести и штеточина.
Плод је врло крупан (преко 6 g) округластог благо-спљоштеног облика. Покожица је транспортабилна, тамноцрвене боје. Месо и сок су такође тамноцрвени. Укус је слатко-накиселог (без трпкости). Квалитета је најбољег. Отвор на плоду је запломбирањ, сок не цури.
Могла би да се користи и као стона сорта, а за све видове прераде.

Рексел (Rexelle)

Пореклом је из Немачке. Настала је као сејанац сорте крупна лотова (шатенмарело).
Сазрева у другој половини до краја јуна.
Стабло је средње бујности, широке разгранате крune. Самооплодна је сорта. Рано пророди, рађа добро и редовно. Отпорна је према ниским температурама. Средње је осетљива према монилији.
Плод је средње крупан (око 5 g), лоптасто-срнастог облика. Покожица је танка, глатка, сјајна, тамноцрвене боје. Месо је средње чврсто, такође тамноцрвене боје, накисело, ароматично, квалитетно.
Обавезна је резидбана, због склоности ка огољавању грана. Индустријска сорта.

Хајманова конзервна (Heimanns konservenweich)

Пореклом је из Немачке. Настала је као спонтани сејанац крупне лотове. Сазрева крајем јуна.
Стабло је средње бујно, широкоокругле, разгранате крune. Самооплодна је. Рано пророди и добро рађа. Отпорна је према суши и мразу. Осетљив је према пегавости лишћа (Coomyces hymalis) и монилији (Sclerotinis sp.). Слона је огољавању грана – треба је резати.
Плод је крупан (преко 5 g). Покожица, месо, сок су тамноцрвене боје. Лако се бере машинским путем. Месо је киселог укуса, ароматично, квалитетно.
Индустријска сорта.

Монтморенси (Montmorency)

Француског је порекла. Непознатих родитеља. Сазрева крајем јуна.
Стабло је умерено бујно, густе круне пирамидалног облика, са гранама најпре управним, а после повијеним надоле.
Самооплодна је и обилне родности.
Плод је средње крупноће (од 4 до 5 g) плоснато-округластог облика. Покожица је чврста светлоцрвене боје. Месо је мекано, изразито киселог укуса. Сок је светлоцрвене боје. Коптица се лако одваја.
Ова сорта је погодна за кондиторску индустрију, као и за разне друге видове прераде.

Ричморенсди (Richmorends)

Енглеског је порекла. Непознатих родитеља. Сазрева крајем јуна.
Стабло је умерено бујно. Самооплодно је и добре родности.
Плод је средње крупан (око 4 g), округластог облика. Покожица је светлије црвене боје. Месо је светлоцрвено, киселкастог укуса. Сок је безбојан.
Погодна је за замрзавање и кондиторску индустрију.

Келерис 14 (Kelleris 14)

Пореклом је из Данске.
Сазрева у првој декади јула.
Стабло је средње бујности, релативно мале, растресите круне, пирамидалног облика. Делимично је самооплодна. Рађа веома добро и редовно. Лако се бере механизовано. Умерено је о сетива према монилији, а отпорна према зимским мразевима.
Плод је средње крупан (4,5–5 g), округласто-срцастог облика. Покожица је танка, интензивно црвене боје. Месо плода је сочно, црвено, проткани жућкастим нитима, слатко-накселог, ароматичног укуса, квалитетно. Сок је тамно обојен. Оtwor плода је запломнбиран, сок не цури.
Може да се користи као стона и индустријска сорта.

* *
* *

Поред наведених сорти вишње у нашим комерцијалним и експерименталним засадима се могу срећти и следеће сорте:
1. мајска вишња (May Ducke) – сазрева крајем маја,
2. лотова (Schattenmorello) – сазрева крајем јуна,
3. рани метеор (Meteor Koraë) – сазрева у првој половини јуна,
4. нортстар (Northstar) – сазрева у другој половини јуна,
5. мајурка (Петроварадинска) – сазрева у другој половини маја,
6. метеор (Metteor) – сазрева крајем јуна,
7. шпанска (Spanische Glakirsche) – сазрева половином јуна,
8. келерис 16 (Kelleris 16) – сазрева почетком јула,
9. церела (Cerella) – сазрева у току прве декаде јула,
10. дворфрич (Dwarfrich) – сазрева у току прве декаде јула.

У Југославији су у послератном периоду створене три сорте вишње:
1. чачански рубин (Chasse Morello х керешка) – сазрева у другој половини јуна,
2. шумадинка (керешка х хајманова конзервна) – сазрева у току прве декаде јула,
3. лара (келерис 14 х рекселе) – сазрева у другој половини јуна.
ВОЂКЕ С ЈЕЗГРАСТИМ ПЛОДОВИМА

Йезгарсто вође, односно вођке с језгарстим плодовима: орах, бадем, леска и кестен значајне су, али и занемарене врсте воњака. Оне се готово и не третирају као воњке, него више као шумско дрво. Ова група воњака тек почиње да се афирмише подизањем нових засада у којима треба да се примењују савремени поступци у производњи.

У нас постоји раскорак између потреба за овим вођем и могућности да се оно производи у много већој мери. Очекuje се, да се у наредном периоду повећа производња плодова ових воњака. За то постоје готово сви услови – повољни климатски чиниоци, економска заинтересованост производњача и обезбеђен пласман не само у земљи, већ и на страним тржиштима.

Плодови језгарских воњака су одлична концентрована храна с низом предности, као што су лака манипулација и чување. Поред тога, одликују се разноврсншћу хранљивих материја – градивне, енергетске и заштитне. Велике су биолошке вредности и због тога што не садрже резиду љетици и загађивача јер је језгро заштићено љуком.

Хемијски састав језгарстог вођа и могућност његовог лаког и дугог чувања чине ово воње значајним и у стратетичком плану, што се не сме губити из вида.

Само вођке с језгарстим плодовима су значајне јер побољшавају климу, служе као биолошка мера борбе против ерозије, доприносе регулисању хидролошког режима и унапређењу многих других делатности. Дрво неких од ових воњака је ценено и користи се у различитим сврхама.

И поред великог економског значаја, у нас се не зна бројно стање ових воњака јер статистика прати само стање ораха.

ОРАХ

Орах се са производњом од 808.000 т налази међу воњкама на осамнаестом месту у свету. Он је после бадема најзначајнија језгарста воњка.

Азија са производњом од 289.704 т надашује остале континенте. Следе је Европа и Северна Америка.

САД је, као земља, највећи производач ораха у свету. Иза ње су: Кина, Турска, бивши СССР, Италија, Румунија и СР Југославија.

Орах је још познат као енглески, персијски, карпатски и грчки орах.

Постојбина ораха је широка област од Карпата, преко Турске, Ирака, Ирана, Афганистана, Кашмира, јужног дела бивше СССР-а до северозападне Индије (Пенджаб) и Кине.
Пренет је у Грчку под именом „персикон” одакле се ширио на запад пратећи грчке и римске легије. Због већ тада познате велике биохемске вредности плодова, транспорта, билки и лаког чувања, орах је био саставни део опреме сваког каравана.

Писане податке о ораху срећемо код старих Грка, где се наводи да је коришћен како у исхрани због квалитетног плода, тако и у козметици. Стари Латинци су га посветили богу Јупитеру и као свету воћку користили за лећење многих болести, а посебно болести главе, доводећи у везу наборе његове језгра са наборима мозга.

Језгра ораха има високу хранљиву, енергетску и дијететску вредност. Она садржи око 65% уља, 16–18% беланчевина, око 12% угљених хидрата, око 2,5% целулозе, око 1,5% минералних материја, знатне количине витамина (A, B1, B2, C и E). Орах је познат и по веома високом садржају јода, који доприноси дијетопрофилактичкој вредности његовог плода.

Плод ораха сазрева у септембру и октобру и користи се у исхрани током целе године. Употребљава се још и у хемијској индустрији и медицини.

С обзиром да је производња ораха у нас дефинитарна, он постиже високу тржишну цену, те спада у групу веома рентабилних воћака. За његово гајење је потребно мало радне снаге. Многе операције у орашњавању, па и берба могу се механизовати.

Орах је дуговечна биљка. Користи се као воћка, шумска и хортикултурна биљка. Орахово дрво је врло квалитетна и тражена сировина у дрвно-предајивачкој индустрији.

У нашој земљи почиње ренесанса орашарства, захваљујући увођењу у производњу нових, бољих сорти и селекција ораха, које се калеме на сејанце обичног ораха.

ПРОИЗВОДЊА ОРАХА У ЈУГОСЛАВИЈИ

Орах је најзначајнија јестраста воћка у Југославији. Годишње се у нас произведе 20.401 t (ф 1989/93) или 2,35 kg po становнику.

У укупној производњи воћа, на орах отпада око 2,16%.

У протекле четири деценије број стабала ораха се незнатно повећао за 1,4 пута (таб. 81).

Производња ораха је мала, дефинитарна и не подмирује наше потребе. Ова производња је нередовна и неујединачен квалитета, јер је доминантно несоротна. Лимитирајући фактор гајења ораха је и његова осетљивост према ниским температурама, нарочито позним пролећним мразевима. Због тога би убудуће требало гајити само сорте добро квалитета плода којима одговарају дати еколошки услови. Правилан избор сорти ораха за сваки микрорејон гајења је изузетно значајан, значајнији него за било коју другу врсту воћака.
ТАБ. 81 – Број стабала и производња ораха у Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабла у хиљ.</th>
<th>производња (t)</th>
<th>принос по стаблу (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>1.548</td>
<td>1.124</td>
<td>19.413</td>
</tr>
<tr>
<td>1965</td>
<td>1.526</td>
<td>1.154</td>
<td>15.270</td>
</tr>
<tr>
<td>1975</td>
<td>1.750</td>
<td>1.437</td>
<td>16.586</td>
</tr>
<tr>
<td>1985</td>
<td>2.056</td>
<td>1.659</td>
<td>16.476</td>
</tr>
<tr>
<td>1988</td>
<td>2.210</td>
<td>1.697</td>
<td>12.956</td>
</tr>
<tr>
<td>1989</td>
<td>2.074</td>
<td>1.735</td>
<td>21.568</td>
</tr>
<tr>
<td>1990</td>
<td>2.089</td>
<td>1.752</td>
<td>17.497</td>
</tr>
<tr>
<td>1991</td>
<td>2.109</td>
<td>1.752</td>
<td>20.891</td>
</tr>
<tr>
<td>1992</td>
<td>2.032</td>
<td>1.735</td>
<td>19.666</td>
</tr>
<tr>
<td>1993</td>
<td>2.116</td>
<td>1.758</td>
<td>22.383</td>
</tr>
</tbody>
</table>

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ И СЕЛЕКЦИЈА ОРАХА

Орах заузима следеће место у систематици биљака:

- Одељак: Magnoliophyta (Angiospermae, скривеносеменице)
- Класа: Magnoliatae (Dicotyledones, дикотиле)
- Потклааса: Hamamelididae
- Надред: Hamamelidanae
- Ред: Juglandales Eucliez (ораси)
- Фамилија: Juglandaceae A. Ric. (ораси)
- Род: Juglans L. (орах)

Од 15 врста ораха рода Juglans, које се сретну у спонтаним популацијама Азије, Европе, Северне и Јужне Америке, чак 10 врста су преци (родонаучници) сорти и селекција ораха које се гаје широм света.

То су врсте:

2. **Juglans sieboldiana Maxim.** (јапански орах). – Велике је бујности стабла, изразито крупног лића, ситног плода, језгре слабог квалитета. Отпоран је према мразу.

4. *Juglans cathayensis Dode* (кинески орах)

- Већина наведених врста се међусобно укршта, али је мали број привредно значајних хибрида.

Најбоље сорте и селекције ораха настала су од врсте *Juglans regia* L (персијског ораха), који се гаји широм Европе, Азије и Северне Америке.

Велики број сорти и селекција води директно порекло од источноамеричког црног ораха *J. nigra* L. Међутим, квалитет плода црног ораха знатно заостаје за персијским орахом, те се његово гајење није проширило ван граница САД-а.

СОРЕТЕ И СЕЛЕКЦИЈЕ ОРАХА

Шампион

Сорта Пољопривредног факултета у Новом Саду, призната 1986. године. Селекционисана је као спонтани сејанац из природне популације ораха.

Сазрева у првој половини септембра.

Стабло је средње бујности, редовне и добре родности. Одликује се краћом вегетацијом, коју почиње између 20–25. априла. То је протандрична сорта, са неколико дана ранијим цветањем мушких цветова. Релативно је отпорна према *Gnomonia juglandis* i mrazu.

Плод је крупан (око 14 g) лепог, овалног облика. Љуска је танка, лако ломљива и добро затвара језгру. Језгра је светла боја, високог рандмана (преко 58%), пријатног укуса и одличног квалитета (1а класа).

Срем

Сорта Пољопривредног факултета у Новом Саду, призната 1986. године.
Селекционисана је као спонтани сејанац из природне популације ораха. Сазрева у првој половини септембра. Стабло је средње бујности, редовне и добре родности. Средње рано започиње вегетацију, а нешто је касније завршава. Практично је отпорна према Gnomonia juglandis.

Протандричног је цветања.
Плод је врло крупан (око 15 g), лепог овалног облика, танке и глатке љуске. Љуска је танка, лако помљива и добро затвара језгру. Језгра је светлозлатне боје, високог равдмана (око 58%), пријатног укуса и доброг квалитета (I класа).

Тиса
Сорта Поплопривредног факултета у Новом Саду, признахта 1986. године. Одабрана је из природне популаације ораха као спонтани сејанац. Сазрева средином септембра. Стабло је средње бујности, округласте круне, добре и редовне родности. Вегетацију започиње средње рано, а завршава нешто касније. Одликује се високим генетичким потенцијалом за родност јер припада рацемозном типу ораха (са гломерулем до 20 женских цветода). Практично је хомогамна сорта, мада се неких година може јавити протандрија. Отпорна је према Gnomonia juglandis.
Плод је врло крупан (преко 15 g), издужено-лептастог облика, танке љуске. Језгро је нешто тамије боје, високог равдмана (око 52%), пријатног укуса, доброг квалитета (I класа).

Бачка
Сорта Поплопривредног факултета у Новом Саду, признахта 1987. године. Одабрана је из природне популаације ораха као спонтани сејанац. Сазрева средином септембра. Стабло је средње бујности и високе родности, јер даје род и на леторастима са стране. Вегетацију почиње средње рано (истовремено кад и ћејново), а завршава 15 дана раније него ћејново. Протандричног је цветања.
Плод је средње крупан (око 12 g), купастог облика, светле, глатке и лако помљиве љуске. Језгра је такође светлые боје, високог равдмана (око 52%), одличног квалитета.

Мире
Сорта Поплопривредног факултета у Новом Саду, признахта 1987. године. Као спонтани сејанац одабрана је из спонтане популаације ораха. Стабло је средње бујности, одличне родности само у подручјима без позних мразева. Вегетацију почиње раније него сорта ћејново и раније је завршава. Протандричног је цветања.
Плод је средње крупан (око 12 g), глатке, танке и светле љуске. Језгро је светле боје, високог рандмана (око 55%), доброг квалитета.

Новосадски касни

Селекција Пољопривредног факултета из Новог Сада.
Стабло је умерене бујности, добре обилате родности, са родним и латералним пупољцима. Релативно је кратке вегетације, јер у пролеће крепе касно, (почетком маја) а завршава вегетацију приближно кад се њено. Избегава позн пролећне мразеве. Изражене је хомогамије, са приближним временом цветања мушких и женских цветова.
Плод је средње крупан (изнац 10 g). Језгра је светложуте боје, високог рандмана (око 55%), доброг квалитета (I класа).

Новосадски родни

Селекција Пољопривредног факултета у Новом Саду.
Стабло је изражене бујности, велике редовне родности само у подручјима без позних мразева. Показује изразиту осетљивост према пролећним мразевима јер са вегетацијом крепе релативно рано (3-4 дана пре њенога).
Плод је врло крупан (преко 15 g). Језгра је светложуте боје, лако се вади из љуске, високог је рандmana (око 51%), пријатног укуса и одличног квалитета (Ia класа).

Ибар

Селекција Института за воћарство у Чачку.
Сазрева крајем септембра.
Стабло је средње бујности, добре, редовне родности. Одликује се краћом вегетацијом (као сорта њено). Хомогамног је цветања. Релативно је отпорна према Gnomonia juglandis.
Плод је ситан до средње крупан (длжина 10 g), округласто-јајастог облика, глатке и танке љуске. Језгра је светле боје, високог рандмана (53%), доброг квалитета (I класа).

Бујан

Селекција Института за воћарство у Чачку.
Сазрева средином септембра.
Стабло је средње бујности, добре родности. Краће је вегетације као и ибар. Протандричног је цветања. Релативно је отпорна према Gnomonia juglandis.
Плод је средње крупан (око 11 g), лопасто-јајастог облика, глатке љуске. Језгра је светле боје, високог рандмана (око 56%).
Требушани

Селекција Института за воћарство у Чачку.
Сазрева крајем септембра.
Стабло је изражене бујности, добре родности. Касно креће са вегетацијом (око три недеље после других).
Плод је средње крупан (преко 10 g), издужено-овалног облика, глатке, лако ломљиве љуске. Језгра је светле боје, рандмана око 50%, доброг квалитета (I класа).

Шејново

То је најстарија бугарска сорта ораха. Одабрана је као спонтани сејанац из природне популације ораха у селу Шејново на јужним падинама планине Балкане.
Сазрева у првој половини октобра.
Стабло је изражене бујности, велике средње густе круне савијених грана, одличне родности. Почиње вегетацију у првој половини априла, а завршава средином новембра. Спорадично страда од позних пролећних мразева. Протандричног је цветања. Ресе се отварају у другој половини априла, а женски цветови крајем априла и почетком маја.
Плод је средње крупан (изнад 12 g), јајастог облика, глатке, танке, лако ломљиве љуске. Језгра је тамножуте боје, високог рандмана (око 53%), одличног квалитета (Iа класа).

Гајенхајм 139

То је западненемачка селекција ораха.
Сазрева у првој половини октобра.
Стабло је средње бујности, добре родности. Иако са вегетацијом почиње релативно рано (почетком априла), доста је отпоран према пролећним мразевима. Протогениног је цветања, а поред нормалних, образује и апомиктичне плодове.
Плод је средње крупан (око 12 g), лоптасто-јајастог облика, глатке, светле, лако ломљиве љуске. Рандман језгре је око 48%, а квалитет одличан (Iа класа).

* * *

Поред наведених сорти ораха у нашим производним, колекционим и експерименталним засадима се могу наћи и следеће сорте и селекције: elit, petovio, уу првенцац, хаусен, шнорт, колби, франкет, хартли, пайн, амиго, чико, бику, канделу, гранцан, грос посенти, мајет, меланез, дрјановски, пловдовски, циновски, сибишел 39, 41, 44, 50, естерхази I, II, милотај 10, 14, тисачећи 34, 72, гајенхајм 131, 252, 286, леди ајрин, сиркит, соренто и др.
ЛЕШНИК

Лешник је после ораха најзначајнија језграста воћка. Иако је лешник раширен на великом пространству Земљине кугле, било као шумска састојина или као гајена воћка, његова производња и у свету и код нас је дефицитарна.

Највећи производљачи лешника су: Турска, (приобаље Црног мора), Италија, Шпанија и САД (држава Орегон).

Постојбина лешника (врсте, од којих воде порекло данашње сорте) је Европа, Кипар, Мала Азија и Иран.

Лешник је вероватно једна од најстаријих воћака, уведена у културу пре више од 2.000 година. Још су стари Грци и Римљани разликовали дивљи од култивисаног лешника. Поред тога што је плод лешника древним народима служио као храна, лешник је важан и као симбол плодности, живота и бесмртности. То је дуговечна воћка која може да живи и преко 100 година.

Из Грчке и Рима лешник се поплако ширио и у осталим земљама Европе и света. Данас се највећа производња лешника постиже у земљама медитеранског поднебља, где су врло попуњени услови за његово гајење.

Од обзира на велику тражњу и високе цене лешника, он је веома рентабилан воћак. Његово гајење није комплексовано, задовољава се скромнијим условима, не нападају га многе болести и штеточине, а производне операције је могуће максимално механизовати.

Плод лешника је биолошки високо вредна намирница.

Он садржи: 52-77% уља, 16-21% беланчевина, око 14% угљених хидрата, 2,4-6,0% шећера, око 2,66% минералних материја (највише калијума - око 372 mg%; Mg - око 116 mg%; Ca - око 200 mg%; P - око 405 mg%), око 40 mg% витамина C, 0,4-0,9 mg% витамина В1 до 61 mg% витамина E, знатне количине провитамина A и витамина B2 и B3, и других корисних материја.

Захваљујући оваквом саставу плода, може се рећи да плод лешника служи и као храна и као лек.

ПРОИЗВОДЊА ЛЕШНИКА У ЈУГОСЛАВИЈИ

Производња лешника у Југославији је мала (чак и ни статистика не евиденцира), не одговара нашем могућностима, а не подмирује ни наше потребе за овим воћем.

У нашој земљи се гаји по вртовима и на мањим површинама као расута воћка. Иако је последњих година подигнуто више засада лешника, (Такође, Горњи
Милановац, Суботица) његова производња још увек не подмирује ни 20% наших потреба.

Да би се унапредила производња овог и у свету дефицитарног воћа, потребно је гајити високозатратне, приносне сорте лешника калемљене на мечјем лешнику, узгајане као стаблашице у условима наводњавања и уз максималну примену механизације.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ ЛЕШНИКА

Лешник заузима следеће место у систематици билјака:

Одељак: Magnoliophyta (Angiospermae, скривеносеменице)

Класа: Mahnoliidae (Dicotyledones, дикотиле)

Поткласа: Hamamelididae

Надред: Hamamelidanae

Ред: Betulales Nakai (брезе)

Фамилија: Betulaceae S. F. Gray (брезе)

Род: Corylus L. (леска)

Род Corylus L. обухвата 11 врста. Међу њима су најзначајније и родоначелници највећег броја сорти, врсте:

2. **Corylus maxima Mill.** (ламбертов лешник). – Родоначелник је тзв. ламбертових сорти и хибрида. Плодови су овално-издужени, са два пута дужом купулом која потпуно покрива плод.

3. **Corylus pontica Koch.** (кавкаски лешник). – Родоначелник је већег броја тзв. целских сорти. Плодови су крупни, најчешће округласти, груписани по 6–8 у

![Слика 231 - Плодови: Corylus avellana, Corylus maxima, Corylus colurna](image)
јежици. Купула је цела или расечена, потпуно обухвата плод и незнатно прелази врх плода.

СОРТЕ ЛЕШНИКА

Тонда ди ђифони (*Tonda di Giffoni*)

Сорта италијанског порекла. Издвојена је селекцијом из природне популације лешника.

Сазрева крајем августа – почетком септембра.

Жбун је срећно бујан, до бујан, добре родности. Протандричног је цветања са раним отварањем реса (у току јануара).

Аутоинкопатибилна је, те су јој потребни опрашивачи. Рано почиње вегетацију. Осељива је према пролећним мразевима, као и према лешниковој грнићи, (*Phytopus avellanae*).

Плод је срећно крупан (око 2,4 g), округластог облика. У јежици се среће по 2 до 4 плода. Купула је испод нивоа плода, љуска је срећне танка, кестењасте боје, са израженим пругама. Рандман језгре је око 46%, квалитет добар. Језгра је врло погодна за кондиторску индустрију.

Ова сорта посебно добро успева у топлим подручјима.

Халски цин (*Hall's giant*)

Сорта француског порекла. Настала је као спонтани сејанац сорте гунслебенске (*Gunslebener Zellernuss*). Припада врсти *Corylus pontica*.

Сазрева крајем августа – почетком септембра.

Жбун је срећно бујан, усправан, умерене родности. Не развија много издланака. Цвета срећно рано. Отпоран је према пролећним мразевима и лескиној грнићи. То је аутоинкопатибилна сорта.

Плод је крупан (око 3,4 g) издужено овално купастог облика. Љуска је срећне дебела, груба, жућкасто-смеђе боје, са израженим пругама. Плод лако испада из купуле. Језгра је бела, ситна до средње крупна, слатког укуса. Рандман језгре је око 40%.

Мортарела (*Mortarella*)

Сорта италијанског порекла. Настала је спонтаним међуврсним укрштањем *Corylus avellana* х *Corylus maxima*.

Сазрева крајем августа – почетком септембра.
Жбуњ је средње бујан виталан, редовне добре родности. Ствара много изданака. Цвета средње рано, протандрично до хомогамно. Аутоинкопатибилна је. Листа средње позно. Отпорна је према зимским температурама, гљивичним болестима и лисној грињи. Боље резултате постиже на плодним земљиштима.

Плод је ситан до средње крупан (око 2,1 g), издужено-овалног облика. У цвасти се развија од 4 до 5 плодова. Иако је купула душа од плода, зрели плодови лако испадају из ње. Љуска је танка са дискретним пругама. Језгра је ситна, беле боје, ароматичног укуса и квалитета. Рандман језгре је од 45–47%.

Тонда ђентиле Романа (Tonda gentile Romana)

Сорта италијанског порекла. Издвојена је селекцијом из природне популяције.

Сазрева средње рано, у првој половини септембра.

Жбуњ је средње бујан, разгранат, виталан, добре родности. Цвета средње касно, хомогамно (истовремено се отварају ресе и женски цветови су способни за опрашивање). Аутоинкопатибилна је. Листа такође средње касно. Врло је прилагодљива различитим условима средине. Отпорна је према лисној грињи.

Плод је средње крупан до крупан (око 2,7 g), округластог облика. У цвасти се развија по 2–4 плода који лако испадају из купуле. Љуска је тамносиве боје, врло танка, избраздана.

Језгра је ситна, чврста, квалитетна. Рандман језгре је око 45%.

Пијемонтски (Tonda Gentile delle Langhe)

Италијанска сорта, издвојена селекцијом из природне популатије лешина у области Пијемонта.

Сазрева у првој половини септембра.

Жбуњ је средње бујан до бујан, добре родности. Протандричног је цветања, са раним отварањем реса и средње позним отварањем женских цветова. Листа такође рано. Аутоинкопатибилна је, са поленом слабе клијавости, те не може да се користи као опрашивац.

Плод је средње крупан (око 2,3 g), округластог облика са заоштреним врхом. У јечици се развије 2 до 4 плода. Купула је исте дужине или непшто дужа од плода, при врху широко отворена, те плодови из ње лако испадају. Љуска плода је танка и тврда. Језгра је ситна, рандмана око 47%, беле боје, чврста, ароматична, укусна и врло квалитетна.
Римски (Römische zellernuss)

Сорта италијанског порекла, селекционисана из природне популације Corylus avellane L.

Сазрева средње касно (средином септембра).

Жбун је средње бујан до бујан усправног пораста, добре родности. Формира мало изданика. Спорадично је склона альтернативном рађању. Протандричног је средње касног цветања. То је аутоинкопатибилна сорта, са поленом добре кlijавости, те је добар опрашивач за неке сорте (истарски дугуљасти, халски цин и др.). Релативно је отпоран према мразевима, а средње осетљив према лешниковој грини.

Плод је крупан (око 3 g), округласто-колачастог облика. Купула је висине плода, те плодови из ње лако испадају. Љуска је доста дебела, светло смеђе боје. Рандман језгра је од 42 до 45%. Језгра је ситна до средње крупна, слатка, без изражене ароме.

Негрет (Negret)

Сорта шпанског порекла, створена селекцијом из спонтане популације лешника у провинцији Тарагана.

Сазрева средином септембра.

Жбун је средње бујан, добре родности. Протандричног је цветања, са скоро две недеље ранјим временом отварања реса од женских цветова. Листа средње рано. Умерено је осетљива према ниским температурама и лисној грини.

Плод је средње крупан (око 2,2 g), округластог облика. Купула је нешто дужа од плода и плодови лако испадају из ње. У јежици се развија 2–3 плода. Љуска је танка, лако ломљива. Језгра је ситна, рандмана око 48%, чврста, беле боје, пријатног укуса, погодна за индустрију чоколаде.

Косфорд (Cosford)

Стара енглеска сорта. Врло раширана.

Сазрева средње касно (средином септембра).

Жбун је бујног раста, округласте форме, добре родности. Ствара много изданика. Протандричног је, средње касног цветања. Аутоинкопатибилна је са полем добре кlijавости, те је добар опрашивач за многе сорте. Релативно је отпорна према ниским температурама.

Плод је средње крупан (око 2,5 g), дугуљасти облика. Купула је висине плода и плодови лако испадају из ње. Језица се састоји најчешће од 1 до 2 плода. Језгра је рандмана око 52%, средње крупна, укусна и врло квалитетна.
Трапезунтски (Imperiale di Trebisonda)

Сорта турског порекла. Настава је селекцијом из природне популације Corylus pontica L.

Сазрева средином септембра.

Жбуне је слабе бујности, добре родности. Развија много изданака. Протандричног је, средње раног цветања. Листа, такође, средње рано. Аутоинципициона је. Веома је осетљива према ниским температурама, а средње је отпорна према грињи.

Плод је средње крупан (око 2,6 g), округласто-колачастог облика. Купула је знатно дужа од плода и плодови тешко из ње испадају. Језица је састављена од 2 до 4 плода.

Језгра је ситна, рандмана око 45%, укусна и квалитетна.

Барцелона (Barcelona)

Непознатог је порекла. Највише се гаји у САД, Француској, Италији, Шпанији итд.

Сазрева средином септембра.

Жбун је средње бујан, усправног пораста, добре родности. Формира много изданака. Протандричног је, раног цветања (неки године већ крајем децембра). Инкопатибилна је сорта. Релативно је отпорна према ниским температурама и лешниковом грињи.

Плод је крупан (око 3,3 g), округласто-купастог облика. Купула је дужине плода који из ње лако испадају. У језици се развива од 2 до 4 плода. Љуска је дебела и тешко се одваја од језгра. Језгра је рандмана око 45%, средње крупна и квалитетна.

* * *

Поред наведених сорти лешника, у нашем колекционим и експерименталним засадима се могу наћи и следеће сорте: аполда, бадемописни, барцелона, дуги шпански, евгенија, морел, црвени ламберт, сан Јовани, вебсов, боливијеров и др.
БАДЕМ

Бадем је једна од најстаријих језгратах воћака али није много распро-
страњен, те је његова производња у свету релативно мала и дефинитарна.
Највећи део светске производње сконцентрисан је у медитеранском поднебљу
Европе (преко 50%). За њом следе: Азија и Северна Америка (САД – Калифорнија).
Од земаља, највећи произвођачи бадема су: Шпанија, САД, Италија, Грчка,
Мароко, Португалија, Турска и др.
Производња бадема везана је углавном за поднебља са блашком климом
(каква је медитеранска), која се одликује релативно благим зимама и сувим пролећима
и летима.
Постојбина бадема је Средња и Централна Азија, планински масиви Тиен-
шана, Иран, Авганистан, Мала Азија.
Пре више од 4.000 година је пренет у Средоземље, где је најпре почео да се
гаји у Грчкој, а из ње се проширио у Рим, и остале земље Медитерана.
Бадем се бере у другој половини августа и у септембру, а користи се током
целе године.
Језгра има високу хранљиву, пијететску, терапеутску и техничку вредност.
Просечен хемијски састав језгра бадема је: око 55% уља (где доминирају
незасићене више масне киселине: оленика и линолна), од 15 до 37% беличевина, око
7% шећера, око 3% целулозе, од 2 до 3% минералних материја (са значајним учешћем:
K+ 239 mg%, Na – 19 mg% итд.). Од витамина језгро бадема садржи: око 5 mg% С
витамина, око 0,17 mg% провитамина A, од 0,2 до 0,4 mg% B1 витамина, око 0,65 mg%
B2 витамина, око 100 mg% витамина P и у знатним колицинама витамина PP, Е и др.
Језгра бадема се користи као сточно воће, у кулинарству (за справљање
послостица), у индустрији прерађе као сировина за производњу чоколада, посластице,
и дечје хране, а такође и као сировина у фармацеутској индустрији и козметици.
Бадем спада у групу веома рентабилних воћака за гајење у нашој земљи, јер
захтева релативно мало радне снаге, његови плодови су добре манипулативности,
транспортибилности и могу дугото да се чувају при обичним условима, а на тржишту су
тражени и постижу високу цену.

ПРОИЗВОДЊА БАДЕМА У ЈУГОСЛАВИЈИ

Производња бадема у Југославији је мала, дефинитарна и спорадична.
У нешто већем обиму се гаји дуж црногорског приморја.
СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ БАДЕМА

Бадем заузима следеће место у систематици биљака:

Одељак: *Magnoliophyta* (Angiospermae, скривеносеменице)
Класа: *Magnoliatae* (Dicotyledones, дикотиле)
Поткласа: *Rosidae* (руже)
Надред: *Rosanae* (руже)
Ред: *Rosales* (руже)
Фамилија: *Rosaceae* (руже)
Род: *Prunus* L. (ишљива)
Подрод: *Amygdalus Focke* (бадем и бресква)

У оквиру подрода *Amygdalus Focke* у спонтаним популацијама средње и југоисточне Европе, Мале Азије, југозападне и централне Азије, среће се више од 30 врста бадема.

Међу њима најзначајнија је, као родонаучник највећег броја сорти врста *Prunus amygdalus* L. (обичан бадем). То је врста бујног стабла, развијеног корена, прилагођена топлијим, аридним подручјима. Због раног цветања осетљива је према ниским температурама.

Поред ње, у стварању једног броја сорти и хибрида учествовала су и врсте: *Prunus fenzliana Frits., Prunus bucharica Fed., Prunus tenella Bat.* и *Prunus webbi Spach.*

СОРТЕ БАДЕМА

Нонпарат (Nonpareil)

Нонпарат је стара сорта издвојена селекцијом из природне популације у САД. Уведен је у производњу још 1884. године. Данас је водећа сорта бадема у САД, а врло је раширена и у Бугарској, Грчкој, Италији и Француској.

Сазрева у другој половини августа и почетком септембра.

Стабло је средње бујности, широкопирамidalне крune, добро обрасле скелетним гранама. Рано почиње да рађа (у четвртој години) и рађа врло добро на плодним и довољно влажним земљиштима. Цвета средње рано. Самобесплодна је сорта. Биљка је осетљива према монилији (*Monilia laxa*) и бактеријалном раку (*Pseudomonas syringe*), као и позним пролећним мразевима.

Плод је ситан (око 2,4 g), овалног облика, са израженим оштрим врхом. Кора је мека, наборана и најчешће пуца по шаву у време пуне зрелости. Језгра је крупна, рандмана око 66%, светло смеђе привлачне боје, врло укусна, веома погодна за индустријску прераду у слаткиште. У плову се јавља око 6% удвојене језгре.
Супернова (*Fascionello K*)

Нова италијанска сорта. Настала је зрачењем спавајућих пупољака сорте бадема *Fascionello X-зрацима (60Co)*. У производњи је од 1987. године.

Сазрева у току прве недеље септембра.

Стабло је средње бујности, редовне обилне родности. Цвета средње позно. То је прва самооплодна сорта бадема.

Плод је крупан (око 4.2 g), овалног облика. Љуска је плоска, полутврда, светле боје. Језгра је крупна, рандмана око 42%, светло браон боје, доброг квалитета. У плоду се јавља око 15% двоструких језгри.

Ароматични (*Aromatichen*)

Створен је у СССР-у на Јалти хибридним путем. Родитељи су: (Никитски 62 x *Fragilus*) x *Nonpareil*.

Сазрева у првој половини септембра.

Стабло је изражене бујности, широке, густе, округласте круне, добре родности. Цвета средње рано. Самобесподна је. Осетљива је према суши. Цветни пупољци су релативно осетљиви према зимским мразевима. Боље резултате даје у топлијим подручјима.

Плод је средње крупан (око 2.6 g), правилног, широко овалног облика. Љуска је храпава, танка и мека, светлобраон боје и пуца по шаву. Језгра је крупна, рандмана око 61%, плоска и квалитетна. У плоду се јавља велики број двоструких језгри (око 40%).

Никитски познцовцветајући (*Никиятски позноцветајући*)

Створен је у СССР-у на Јалти, хибридним путем. Родитељи су: Никитски 62 x Никитски 1.

Сазрева у првој половини септембра.

Стабло је средње бујно до бујно, широко округласте круне, добре родности. Цвета касно. Самобесподна је.

Плод је средње крупан (око 3 g), широко елиптичног облика, заобљеног врха. Љуска је храпава, светлоокеафасте боје, средње дебела, полутврда. Језгра је средње крупна, рандмана око 45%, благо ароматичног укуса, доброг квалитета. У плоду се јавља око 10% удвојених језгри.

Приморски (*Приморски*)

Створен у СССР-у на Јалти хибридним путем. Родитељи су: принцеза 2077 x никитски 53.

Сазрева у другој половини септембра.
Стабло је средње бујности, широке круне, дебљих грана добро обраслих родним дрветом, редовне и добре родности. Има дуго зимско мировање. Цвета врло касно. Пророди рано, већ у тренутку године.

Плод је средње крупан (око 2,8 g), издужено овалног облика. Љуска је храпава, светлобраон боје, танка са израженим браздама и полумекана. Шавови су јој добро срасли. Језгра је средње крупна, рандmana око 51%, дугуљастог облика, браон-касте боје, слатка, укусна и доброг квалитета. У плоду се не јављају двоструке језгри.

Филип Чeo (Filippo Ceo)

Створен је у Италији, селекцијом из природне популације бадема.
Сазрева у току септембра.
Стабло је средње бујности, добре, редовне родности. Цвета касно. Самобесплодан је.
Плод је крупан (око 4,8 g), издужено-округластог облика. Љуска је глатка, светлолокестењаст боје, тврда. Језгра је крупна, рандmana око 36%, тамно браон, неприличне боје, скромног квалитета. У плоду се јавља и до 40% двоструких језгри.

Ферадил (Ferraduel)

Створен је у Француској (у Бордоу), хибридним путем. Родитељи су: Cristomorto x Ai.
Сазрева у току септембра.
Стабло је умерене бујности, широке разгранате круне. Рано пророди и врло добро рађа. Цвета касно. Самобесплодан је.
Плод је врло крупан (око 5,2 g), издужено-ovalног облика. Љуска је тврда. Језгра је средње крупна, рандmana око 28%, светлолокестењасте, приличне боје, доброг квалитета. Нема двоструких језгри. Језгра се неких година врло тешко одваја од љуске.

Ферање (Ferragnez)

Створен је у Француској (у Бордоу), хибридним путем. Родитељи су: Cristomorti x Ai.
Сазрева у другој половини септембра.
Стабло је изражене бујности, широке, разгранате круне, добре родности. Цвета касно. Самобесплодан је.
Плод је крупан (око 4,3 g), дугуљаст. Љуска је глатка, дебела, светлолокестењасте боје, тврда. Језгра је крупна, рандmana око 39%, светлолокестењасте боје, укусна, квалитетна. Нема двоструких језгри.
Туоне (Tuono)
Створен је у Италији, селекцијом из природне популяције бадема. Сазрева у току септембра. Стабло је умерене бујности, благо округласте круне, одличне родности. Плод је крупан (око 4,5 г), округластог облика. Кора је глатка, светлокестена боје, тврда. Језгра је крупна, рандмана око 39%, светлобраон, приличне боје, укусна, доброг квалитета. У плоду се јавља око 25% двоструких језгри.

Кримски (Crimean)
Створен је у СССР-у на Јанти, хибридним путем. Родитељи су: Languedoc x Nikitski 58. Сазрева крајем септембра. Стабло је слабе до средње бујности, ретке, пирамидалне круне, склоне оглјавању, врло добре и редовне родности. Зимско миравање му је доста дуго. Касно цвета (нешто ранје од приморског).
Плод је средње крупан (око 2,6 г), издужено-овалног облика. Кора је релативно глатка, светло браон боје, полутврда. Језгра је ситна до средње крупна, рандмана од 39 до 46%, чоколадне боје, слатка и квалитетна. У плоду се јавља 5-15% удвојених језгри.

Тексас (Texas)
Створен је у САД (у Тексасу). Претпоставља се да је спонтани сејанац сорте Languedoc. Поред сорте нонпареј, то је најраширенija сорта бадема. Сазрева крајем септембра. Стабло је изражене бујности и виталности, пирамидалне до широкопирамидалне круне, средње родности. Цвета средње касно (неколико дана после нонпареја).
Плод је крупан (око 3 г), округластог облика. Кора је релативно глатка, светлобраон боје, полутврда. Језгра је средње крупна, рандмана око 46%, приличног изгледа, благо-нагорког укуса, доброг квалитета. У плоду се јавља око 35% двоструких језгри.

Фра ђулно (Fra Giallo)
Створен је у Италији, селекцијом из природне популяције бадема. Сазрева крајем септембра. Стабло је средње бујности, добре родности. Цвета касно. Самобесплодан је.
Плод је крупан (око 5 g), овалног до издужено-ovalног облика. Љуска је глатка, светлоскестењасте боје, тврда. Језгра је средње крупна, рандмана око 30%, пријатног укуса, доброг квалитета. У плоду се може јавити око 5% удвојених језгри.

* * *

Поред наведених сорти бадема у нашим колекционим и експерименталним засадима се могу наћи и следеће сорте: џорданел, кармел, веста, кепарел, марково 11, дезертни, кнез черномир, чарски поznи, анкаран 28 и др.
КЕСТЕН

Питоми кестен (Castanea sativa) је стара вођка терцијарне флоре, која је преживела ледено доба и сачувала се до данас. Иако му је прапостојбина прибрезжје Средоземног мора (по неким ауторима Сардинија), захваљујући изузетној адаптивности, питоми кестен се проширио далеко ван граница природног подручја у континентални делови.

У природним шумским популацијама, питоми кестен прати храст и букву, а такође је пратилац винове лозе и бреске и у нашој земљи успева на већи висини од свих культивисаних мелитеранских врста вођака.

У СР Југославији питоми кестен је у већем обиму раширен на обалном подручју Црне Горе (Бар, Будва, Бока Которска) и на Косову и Метохији (на потесу Проклетеје–Шарско-планински систем).

Кестен је привредно значајна језграта вођка у Азии, Европи и Северној Америци. Кина је највећи светски произвођач кестена, а у Европи то су: Италија, Француска, Шпанија и Португалија, које су уједно и највећи потрошачи.

Иако је то вођка чије је гајење врло рентабилно, јефтино и уз мало учење радне снаге, у нашој земљи гајење питомог кестена је потпуно запостављено и он се најчешће среће у спонтаној популяцији. Кестен је иначе прилагођен благим, топлим и непшто влажнијим подручјима, топлим и пропустљивим земљиштима, са трошном, каменитом здравицом.

У последње време чине се покушаји да се његово гајење унапреди. Први корак ка унапређивању ове културе је селекција позитивних типова кестена из спонтане популяције и њихово организовање ширење.

Разлози за позитивнији однос према кестену су многоструки: то је дуговечна вођка, која достиже старост и до 500 година (поједина егзemplари живе и до 1.000 година). Одличне је родности. Ако се гаји у за њу повољним еколошким и земљишним условима, мало је нападају болести и штеточине, те заштита готово и није потребна.

Плод кестена је изузетне биолошке вредности. Он је извор пре свега скроба (38–42%), шећера (22–29%), од чега на сахарозу отпада 12,5–13,4% и фруктозу 9–14%, масти има од 3,0 до 7,2%, бешанчевина од 5,2 до 10,8%, целулозе од 1,6 до 2,8%, минералних материја 0,98–2,1%, витамина С од 10 до 37 mg% и др. корисних састојака.

Плод сазрева у октобру и новембру, транспортирован је, манипулиран и може дуго да се чува. Данас се све више тражи за потрошњу у свејем стању и у облику различитих преображених у кондиторској индустрији. Кестен је медоносна биљка јер је његов цвет одлична плечиња паша. Од његове коре и лишћа добијају се танинини, који имају више структуру улогу у прехранбеној, фармацевутској и индустрији намештаја.
Дрво кестена је одличног квалитета и има различиту примену у домаћинству и занатству, а нарочито се цени као грађевинско и техничко дрво.
Стабло питомог кестена достижке велике размере, разгранате је круне, декоративног изгледа, те се у пејзажној архитектури користи као украсна биљка.
Због наведених особина, а нарочито због плода изразито високе биолошке вредности, питомом кестену би у будуће требало и вођарска наука и пракса да поклоне много већу пажњу.

Сл. 233—Кестен: врхи геородне границе, а—са мушиком цветовима, б—са женским цветом у основи, 1—уевећан мушиццц цвет; 2, 3—уевећан женски цвет; 4—омотач (јекшица) плода; 5—плод
ВОЂКЕ С ЈАГОДАСТИМ ПЛОДОВИМА
(СИТНО ВОЂЕ)

Досадашњи напори у обнови воћарства на савременим основама, нарочито после 1959. године, нису били подједнаки код свих врста воћака. Вођкама с јагодастим плодовима, у које се убрајају: јагода, малина, рибизла, боровница, огроzd, купина и актинидија, посвећено је недовољно пажње.

Међутим, последње две деценије тај однос се изузетно променио, посебно код врста: малине, купине и јагоде.

Наука и пракса су уочиле компаративне предности наше земље (како природне, тако и обезбеђеност радном снагом) у односу на европске високо развијене земље, који су велики потрошачи и увозници овог воћа.

Повољне цене и потражња на светском тржишту су позитивно утицале на повећање производње овог воћа. Посебно треба истаћи повећање производње малине, које је за само две деценије нашу земљу сврстало у групу највећих европских произвођача и извозника плодова ове врсте воћа.

Гајење осталих врста воћака још је незнатно, па је и производња овог воћа недовољна. Њоме се не могу подмiritи потребе у нашој земљи, а да и не говоримо о могућностима за извоз.

Јагодаство воће спада међу привредно најкорисније. Његов велики значај огледа се, пре свега, у могућностима коришћења за људску исхрану, као сировина за индустрију прераде и у трговини. Осим тога, њега препоручују и друге особености којима се друго воће у много мањој мери одликује. Кратак период од подизања до почетка рођености врло је значајан тренутак, јер се уложене инвестиције брзо враћају. И обртна средства се одмах враћају, пошто је јагодасто воће по времену сазревања плодова међу најранјим, што значи, да произвођач добијени новац од продаје овог воћа, може исте године да уложи у неку другу производњу. Вођке по правилу доносе код сваке године, и то обилно. Оне се лако прилагођавају готово свим климатским условима, успевају и на земљишту са мање повољним агроклиматским и недоволским особинама. Њихово гајење није заметно и не угрожавају их бројне болести и штеточине. Може да се запосли и нејака радна снага — деца, старији особе и сл. Све су то погодности којима се одликују ове врсте воћака.

Редовна употреба јагодастог воћа у људској исхрани врло успешно делује на развој и здравствено стање организма, а оно утиче на физичку снагу и радну способност, па у одређеној мери и на трајање људског живота.
Драгоцени су састојци јагодастих плодова. Ово воће је корисно и као дијетална храна јер потпомаже лечење многих стомачних, бубресних и других обољења.

Поред потрошње у свежем стању, плодови су врло значајна и цењена сировина за прераду. Посебно су цењени сокови неких од ових воћних врста.

Рентабилност производње јагодастог воћа потпуно оправдава гајење. Посебно би требало да се гаји у брдско-планинском подручју.

ЈАГОДА

Јагода, производњом од 1.881.000 т. заузима међу воћкама дванаесто место у свету. Она је најзначајније јагодасто воће.

Јагода је воћка северне Земљине полулопте. Европа је производњом од 926.000 т (која представља више од 50% укупне светске производње) највећи производњач од континената. Следе је Северна Америка и Азија.

САД је као земља, прва по производњи јагоде у свету. За њом долазе: Пољска, Јапан, земље бивше СССР-а, Италија, Шпанија и Француска.

Шумска јагода (Fragaria vesca L.) је највероватније прво воће које је човек почео да користи у исхранци. Она је распрострањена на свим континентима изuzeв Аустрији.

Тек се појавом тзв. баштенске јагоде (Erananassa Duch) која је у Европи постала спонтаном хибридинизацијом чилеанске и вирџинијске јагоде у 18. веку, практично почиње гајење ове воћне врсте.

Плодови јагоде су, поред трешње, најранје воће, веома омиљено због изузетно привлачних органолептичких особина, лепог изгледа и посебно пријатног хармоничног слатко-нагислог укуса.

Плод садржи: око 8–10% суве материи, око 7–8% шећера (где доминира глукоза), око 1% органичних киселина и до 0,7% минералних материја (нарочито P), од 30 до 100 mg% витамина C и др. корисних материја.

Зато су плодови јагоде изузетно погодни за употребу у свежем стању (као стоно воће), за замрзавање и као сировина за индустрију прераде (беби каше, сокови, слатка, джемови и др.).

Јагода је врло рентабилно воће, нарочито, ако се гаји у близини великих градова. Она врло рано пророди (већ прве године по сађењу). Даје обилне приносе. Успева и на већим надморским висинама. Не напада је много болести и штеточина. Поседује и велику отпорност према ниским температурама.
ПРОИЗВОДЊА ЈАГОДЕ У ЈУГОСЛАВИЈИ

Јагода је најзначајнија јагодаста воћка у Југославији. Годишње се у нас произведе око 31.000 т (Ø 1989/93) јагоде или 3,25 kg по становнику.

Последње две деценије производња јагоде има стални тренд пораста. Међутим, површине под јагодом би се могле и знатније повећати, јер у производњи јагоде заостајемо за многим земљама Европе.

У Југославији се јагода може успешно гајити у свим крајевима. Ареал комерцијалног гајења је могућ и у брдско-планинским подручјима, на већим надморским висинама, уз правилан избор сорти и агротехнике.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ ЈАГОДЕ

Јагода заузима следеће место у систематици биљака:

Одељак: Magnoliaphyta (Angiospermae, скривеносеменчице)
Класа: Magnoliidae (Dicotyledones, дикотиле)
Поткласа: Rosidae (руже)
Надред: Rosanae (руже)
Ред: Rosales (руже)
Фамилија: Rosaceae (руже)
Потфамилија: Rosoideae (јагодасте воћке)
Племе: Potentilleae (Петопрестиче)
Род: Fragaria Linn. (јагода)

У оквиру рода Fragaria је евидентирано 47 врста јагоде, које су распро-страњене на свим континентима, изузев Аустралије.

Родонаученици највећег броја сорти јагоде су врсте:

2. Fragaria ovalis Rybr. – Охтополида врста која је родонаученик највећег броја сталнорађајућих (ремонтантних) сорти јагоде.

3. Fragaria moschatula Duch. (јагода китњача) – Хексаплоидна врста је родо-наученик једног мањег броја сорти мускатног укуса.
4. *Fragaria vesca* L. (шумска јагода) и њена сталнорађајућа форма *F. vesca semperflorens* је космополитска диплоидна врста јагоде, од које води порекло мали број сорти ситног и ароматичног плода.

СОРТЕ ЈАГОДЕ

ЈЕДНОРОДНЕ СОРТЕ

Зенга прекоса (Senga precosa)

Пореклом је из Немачке. Врло рана сорта. Понижи да зри крајем прве декаде маја. Берба траје око 20 дана. Бокор је средње бујан. Ствара доста живића. Средње је осетљива према позним мразевима. Релативно је отпорна према суши и пепелици, пегавости листа и сивој трулежи плода. Осетљива је према црвенкастој сржи корена (фитофтороза). На слабо алкалним земљиштима повремено се јавља хлороза. Родности је добре. Плод је ситан до средње крупан (8–10 g), лоптасто-срцаст, интензивно црвене боје. Лако се бере. Месо је умерени чврсто, сочно, слатко и ароматично. Стона сорта.

Покахонтас (Pocahontas)

Пореклом је из САД. Средња је рана сорта. Понижи да зри у другој половини маја, а зрење се протеже до средине јуна. Бујана је. Ствара доста живића. Релативно је отпорна према мразу, пепелици, средње отпорна према сивој трулежи, а осетљива према фитофторози. На слабо алкалним земљиштима јавља се хлороза. Родности је добре. Плод је средње крупан (10–13 g), лоптасто купастог облика, изразито црвен. Месо је изразито светлцрвене боје, сочно, чврсто, слатко-написело, квалитетно. Има малу унутрашњу шупљину. Добра је за све видове прераде, стону употребу и замрзавање.

Зенга гигана (Senga gigana)

Пореклом је из Немачке. Средње рана сорта. Сазрева крајем друге декаде маја. Берба траје око 20 дана. Бокор је бујан. Лист је крупан, тамнозелен. Боље резултате даје на плодним, баштенским земљиштима. Осетљива је према сивој трулежи плода, а релативно отпорна према другим болестима и суши. Хлороза лишћа се јавља на слабо алкалним земљиштима.
Плод је веома крупан (20–30 g, а први плодови и до 55 g). Плод је издуђен купаст, ребраст, интензивно црвен и привлачан. Месо је средње чврсто, сочно, слатко-накисело и благо-ароматично. Има изражену шупљину средње величине. Лако се бере. Средње је транспортабилан.
Изразито стона сорта.

Горела (Gorella)

Пореклом је из Холандије. Почиње да зри око 20–25. маја. Берба траје око 25 дана.
Бокор је средње бујан до бујан. Лишће је врло крупно. Ствара доста живића. Осетљива је према мразу, вертицилијуму, фитофторози, а умерено осетљива према сивој труложи плодова. Релативно је отпорна према суши, пепелици и пегавости лишћа. Не пати од хлорозе. Родност је одличне.
Плод је крупан (око 15 g), купаст, леп црвене боје. Месо је чврсто, сочно, без шупљине, слатко-накисело, ароматично и врло квалитетно. Лако се бере. Транспортабилна је.
Погодна је за сваку употребу и замрзавање.

Редчиф (Redchief)

Пореклом је из САД. Средње позна сорта. Почиње да зри у трећој декади маја.
Бокор је умерено бујан. Ствара велики број живића. Толерантна је према фитофторози, а релативно отпорна према вертицилијуму. Лист је умерено осетљив према лисној пегавости, а толерантан према пепелици. Родност је одличне.
Плод је средње крупан (12 g), купаст, тамноцрвене боје. Месо је чврсто, сочно, светлоцрвено, слатко-накисело, квалитетно. Чашница се лако одваја од плода. Може се користити као стона сорта и за све видове прераде.

Редгантлет (Redgauntlet)

Пореклом је из Шкотске. Средње је позна сорта. Почиње да зри средином треће декаде маја. Распон сазревања је 15–20 дана.
Средње је бујног бокора. Лишће је средње крупно, тамноцрвено. Ствара доста живића. Релативно је отпорна према пепелици, лисној пегавости, фитофторози, а умерено осетљива према вертицилијуму, сивој труложи плодова и мразу. Пати од хлорозе на слабо алкалним земљиштима. Рађа добро и редовно.
Плод је средње крупан до крупан (13–20 g). Задржава крупноћу током сезоне дозревања. Плод је лоптастокупаст или срцаст, црвене боје. Средње тешко се одваја од
петелке. Месо је средње чврсто, сочно, са малом шупљином, слатко-накисело, слабо ароматично и квалитетно. Транспортабилна је.
Плод је погодан за прераду, а у мањој мери за употребу у свежем стању и замрзавање.

Зенга зенгане (Senga sengana)
Пореклом је из Немачке. Привредно најзначајнија сорта јагоде у свету.
Средње позна сорта. Почиње да зри средином треће декаде маја. Распон сазревања износи око 20 дана.
Бокор је бујан, снажан и врло виталан. Лист је тамнозелен. Врло је адаптиван. Ствара умерен број животиња. Отпорна је према пепелници, фитофторози и вертицилијуму, а умерено осетљива према сивој труглеки плодова, нападу инсеката и позним мразевима. Повремено пати од хлорозе. Рађа обилно и редовно.
Плод је средње крупан (10–12 g), зарубљенокупаст до срцасти, тамноцрвен. Месо је чврсто, еластичног, сочно, слатко-накисело, тамноцрвено, ароматично и високо квалитетно. Сок је тамноцрвен и може да послужи као бојадисер.
Добро подноси транспорт.
Добра је за све видове прераде, замрзавање и стону употребу.

Веденсвил 8 (Wadenswil 8)
Пореклом је из Швајцарске.
Позна је сорта. Почиње да зри крајем маја, тј. дан-два после зенге зенгане. Умерено је бујног бокора. Образује доста животиња. Релативно је отпорна према болностима, мразу и суши. Рађа веома добро.
Плод је крупан (15–16 g), издуженокупаст, светлоцрвен. Месо је чврсто, сочно, светлоцрвено, слатко-накисело и врло ароматично. Квалитетно.
Употребљава се у свежем стању, за прераду и замрзавање.

Тардива ди ромања (Tardiva di romagnia)
Пореклом је из Италије.
Позна је сорта. Почиње да зри крајем маја, а берба траје до краја друге декаде јуна.
Бујног је бокора и виталног. Не пати од хлорозе на базним земљиштима.
Врло је родна.
Плод је крупан (16–20 g), трбушаст, интензивно црвен. Месо је чврсто, слатко-накисело, ароматично.
Добра је као стона, за замрзавање и све видове прераде.
СТАЛНОРАЂАЈУЋЕ СОРТЕ

1. хуми генто (Hummi gento)
2. хуми трискана (Hummi Triscana)
3. озарк бути (Ozark beauty)
4. елиста (Elista)
5. ред рич (Red Rich)

Све оне сазревају од средине – краја маја, до првих мразева у јесен.

ПУЗЕЋЕ СОРТЕ

1. хуми бојмхен (Hummi Bumchen) – сталнорађајућа сорта,
2. фрапендула хуми (Frpendula Hummi) – дрвородна сорта,
3. монт еверест (Mount Everest) – сталнорађајућа пузећа сорта.

* *
* *

Поред наведених сорти јагоде у нашем производним и експерименталним засадима могу се срести и следеће сорте:

1. ерлидун (Earlisdawn) – сазрева крајем прве декаде маја,
2. зенга прекозана (Senga precosana) – сазрева од половине до краја друге декаде маја,
3. роксана (Roxana) – сазрева крајем друге декаде маја,
4. белруби (Belrubi) – сазрева крајем друге декаде маја,
5. доманил (Domanil) – сазрева крајем друге декаде маја,
6. кембриц фејворит (Cambridge Favourite) – сазрева у исто време када и горела,
7. атлас (Atlas) – сазрева крајем друге декаде маја,
8. зенга тигајга (Senga tigaiga) – сазрева почетком треће декаде маја,
9. харместер (Harmester) – сазрева у трећој декади маја,
10. зенга фруктарина (Senga fructarina) – сазрева крајем маја,
11. веспер (Vesper) – сазрева крајем маја, почетком јуна,
12. флечер (Fletcher) – сазрева крајем маја, почетком јуна.
МАЛИНА

Малина је јагоде најзначајније јагода врста у свету. Производњом од 277.000 т заузима међу врхуцим последњег места у свету.

Европа по производњи малине надмашује остали континенте.

Највећи производњи малине у свету су: земље бившег СССР-а, Пољска, Југославија, Британија, Немачка и Мађарска. Наша земља учествује са око 8,5% у светску и са 17% у европску производњу малине.

Постоји и малине је гради Азија, Европа и Северна Америка. Прво је почела да се гаји у Малој Азии, у граду Ида и по њему добила латинско име Rubus idaeus. У нашој земљи малина се гаји од 1880. године, док се са интензивнијом комерцијалном производњом почело тек 1920. године.

Плод малине је велике биолошке вредности. Он у себи садржи висок процент суве материје (од 9 до 22%), укупних шећера од 3 до 7% (са доминаантном улогом глукозе и фруктозе), од 0,6 до 2,6% укупних киселина, од 0,4 до 0,8% минералних материја, од 12 до 55 mg% витамина С, пектина, бојених, ароматичних и др. материја.

Због оваквих својстава плод малине је квалитетно десертно воће. Употребљава се у свежем стању или замезнут, а погодан је и као сировина за различите облике прераде (у сокове, каше, цемове, слатка и др.).

Свежи плодови малине достављају на тржиште у јуну и јулу, а код двородних сорти и током септембра и октобра.

Због велике потражње на светском тржишту, малина је изузетно рентабилно воће. Пророди већ у другој години по сађењу. Плодови сазревају рано, те се током године уложени новац брзо враћа. Отпорна је према мразу. Лако се производи садни материјал, а техника гајења малине није компликована.

ПРОИЗВОДЊА МАЛИНЕ У ЈУГОСЛАВИЈИ

Малина је после јагоде најзначајнија врста из групе јагодастог воћа. У Србији је почела да се гаји још 1880. године, у прво време као украсна баштенска биљка.

Робна производња малине почиње после Првог светског рата (1920. год.) на подручју Ваљева и Чачка.

Дана се робна производња малине проширена и на друге брдске рејоне Југославије (Ариље, Брус и др.). Годишња производња од 49.000 т (1898/93) или 5,14 kg по становнику, свrstava Југославију је највеће европске и светске производњчаче. Са око 40.000 т извоза Југославија је највећи извозник малине у Европи.
Највећи део робне производње малине у Југославији се остварује на имањима индивидуалних производаца.

Технологија производње малине је савремена. Шпалирски начин гајења значајно је утицао на механизацију многих радних операција у малињацима. Сортимент је савремен, светски, са виламетом као водећом сортом. Све то резултира у просеку добром приносом од 20 та чак и 30 т/га.

У будућности површине под малином не би требало значајније повећавати, али би требало обратити посебну пажњу на обнављање малињака квалитетним садним материјалом, произведеном у посебним, добро контролисаним матичњацима.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ МАЛИНЕ

Малина заузима следеће место у систематичкој биљака:

- Одељак: Magnoliophyta (Angiospermae, скривеносеменце)
- Класа: Magnoliatae (Dicotyledones, дикотиле)
- Поткласа: Rosidae (руже)
- Наред: Rosanae (руже)
- Ред: Rosales (руже)
- Фамилија: Rosaceae (руже)
- Потфамилија: Rosoideae (јагодасте воћке)
- Род: Rubus L. (малина и купина)
- Подрод: Idaeobatus Focke (малина)

Подрод Idaeobatus Focke обухвата 195 врста малине које су распрострањене на свим континентима. Седамнаест врста малине су јестивог плода и родоначелници око 1,000 сорти.

Највећи број привреднозначајних сорти малине настао је од врста:

СОРТЕ МАЛИНЕ

Виламет (Willamette)

Пореклом је из САД. Настава је укрштањем сорти њубург и лојд цори. Код нас је у групи водећих сорти. Сазрева у другој половини јуна. Жбун је бујан и ствара доста изданака. Родне граничнице су средње дуге и не ломе се под теретом рода. Родности је одличне. Толерантан је према економски најштетнијим вирусима.

Плод је врло купан (око 5 g), купаст, тамноцрвене боје, чврст, транспортабилен, слатко-начисео, ароматичан и висококвалитетан. Лако се бере. Погодан је за употребу у свежем стању, за прераду и замрзвање. Једнородан је али извесних година показује склоност ка двородности, што му се замера.

Молинг промис (Malling promise)

Пореклом је из Велике Британије. Настава је вишекратним укрштањем. Код нас је у групи сорти локалног значаја. Сазрева средином јуна. Жбун је бујан са многобројним управним изданцима. Трнови (емергенце) су првени. Родне граничнице су средње дуге до дуге еластичне и не ломе се. Родности је одличне.

Плод је купан (преко 4 g), заружбено купастог је облика, светлоцрвене боје. Збирни плод је доста чврст. Коштунце у збирном плоду неравномерно дозревају, па врх плода врло често остаје недозрео. Лако се бере, али плод врло брзо омекшава, те није транспортабилен. Ако се закасни са бербом често се појави осипање плода. Квалитет плода је висок. Погодан је за употребу у свежем стању и прераду, а мање за замрзвање.

Молинг експлоз (Malling exploit)

Пореклом је из Велике Британије. Настава је вишекратним укрштањем. У групи је водећих сорти код нас. Сазрева средином јуна. Жбун је врло бујан. Има многобројне изданке који расту нешто у страну. Трнови су бледоружичasti. Родне граничнице су дуге и сразмерно еластичне. Родности је обилате (преко 10.000 kg/ha).
Плод је врло купан (преко 5 g). Облика је овално-конусног, светлоцрвене боје. Укус плода је врло хармоничан, одличан квалитет. Све коштунице у плоду истовремено дозревају. Склон је осипању плода. Слабије је транспортабилности.
Отворан је према зимским мразевима и температурним колебањима.
Плод је погодан за употребу у свежем стању, за замрзавање и прераду.

Градина

Домаћа сорта створена у Институту за воћарство у Чачку. Настала је укрштањем сорти молинг екселент и рубин.
Сазрева у другој половини јуна.
Жбуни је бујан и ствара много изданака. Изданци су чврсти и трновити и мало повијени на средини. Рађа обилно.
Плод је купан (око 5 g), зарубљенокупаст, црвен, чврст, хармоничног укуса. Све коштунице у збирном плоду истовремено дозревају. Транспортабилна је.
Добра је за све видове прераде, замрзавање и стону употребу.

Подгорина

Домаћа сорта створена у Институту за воћарство у Чачку. Хибридрог је порекла (Rote Wadenswiler x Latham). Сазрева средином јуна.
Жбуни је средње бујан, растресит. Родне граничне избијају целом дужином изданка. Рађа обилно и редовно. Избегава позне пролећне мразеве.
Плод је купан (4–5 g), зарубљено-купаст, чврст, транспортабилан. Месо плода је интензивно црвено, укусно, ароматично, квалитетно.
Добра је као стона, за замрзавање и све видове прераде.

* * *

Поред наведених сорти малине у експерименталним засадима се могу наћи и следеће сорте:

1. ривели (Reveille) – почиње да зри у првој половини друге декаде јуна,
2. саутленд (Southland) – почиње да зри у првој половини јуна,
3. молинг дилијт (Malling Delight) – почиње да зри у првој половини јуна,
4. глину мој (Glen Mo) – почиње да зри средином јуна,
5. нотка (Nootka) – почиње да зри средином јуна,
6. маски (Matsqui) – почиње да зри у другој половини јуна,
7. хилтон (Hilton) – двородна – плодови прве бербе почињу да зру у трећој декади јуна. Плодови друге бербе стижу у јесен у октобру,
8. глен просен (Glen Prosen) — малине без трња и маља. Почиње да зри у другој половини јуна.

Сл. 234 – Црна малина сорте брисел

У Југославији су у последатном периоду створене три сорте малине:

1. градина (Malling exploit x Rubin) — почиње да зри у другој половини јуна,
2. крупна двородна (Malling exploit x Rubin) — плодови прве бербе почињу да зру око 10. јуна, а плодови друге бербе зру у септембру и октобру,
3. подгорина (Rote Wadensweter x Latham) — почиње да зри у другој половини јуна.
КУПИНА

Купина је веома распрострањена у Европи и Северној Америци, у спонтаној (природној) популацији. Упркос широком распрострањењу у култури је уведена релативно касно, тек крајем 19. и почетком 20. века, где се дуго гајила само у вртовима љубитеља воћарства.

У нашој земљи расте самоникло, најчешће поред путева и то, готово на свим надморским висинама – од морског нивоа до 1.000 метара висине, прилагођавана најразличитијим земљишним и климатским условима. У Југославији је почела да се гаји тек након Другог светског рата, са озбиљном тенденцијом комерцијалне производње.

Привредни значај ове врсте јагодастог воћа је потенцијално врло велики из више разлога. Она није пробирава према земљиштима и положајима, а показује и релативну отпорност према сушни. Лако се размножава и гаји. Рано пророди, а затим рађа редовно и веома обилно (око 20 t/ha). Већина сорти купине сазрева у августу.

Плод купине садржи велики број драгоценних састојака, који веома повољно делују и препоручују се посебно деци, младима и реконвалесцентима. То су шећери (10–12%), органске киселине (0,17–1,50%), витамини (C – 20–30 mg%, провитамин A – 15–20 mg%, B комплекса и др.), бојне материје (антокијани, флавонови и др.), минералне материје (Ca, Fe, P, Zn, Co, Mo), пектини, целулоза, белачевине, уља и др. Посебно треба истаћи у плоду купине врло висок садржај гвожђа, што му даје посебан значај у спречавању и отклањању малокрвности.

Плодови су због изузетне биолошке вредности погодни за потрошњу у свежем стању, за замрзивање и као сировина за прераду (у сокове, слатка, цемове, вина и др.).

ПРОИЗВОДЊА КУПИНЕ У ЈУГОСЛАВИЈИ

Купина се у Југославији гаји на површини од око 1.200 ha и годишње произведе од 10.000 до 12.000 тона, што је мало.

У нашој земљи купина је почела да се гаји релативно касно, тек после Другог светског рата.

На унапређењу комерцијалне производње купине, у Југославији је највише урадио Пољопривредни комбинат „Цервин“ из Књажевца. Подигао је око 100 ha савремених плантажа купине на комасираним површинама индивидуалних произвођача.

Данас се купина гаји у брдско-планинском подручју широм Србије. Њена производња је у многим рејонима често угрожена августовском сушом, услед доминант-
ног ученца сорти касног времена зрења (торнфри и смутсем). Значајан проценат плодова ових сорти не дозри, што знатно умањује принос.

У циљу унапређења производње купине, требало би у будуће гајити сорте ранијег времена зрења у рејонима са довољно падавина или уз обавезно наводњавање.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ КУПИНЕ

Купина заузима следеће место у систематици биљака:

Одељак: Magnoliophyta (Angiospermae, скривеноносеменице)
Класа: Magnoliidae (Dicotyledones, дикотиле)
Поткласа: Rosidae (руже)
Надред: Rosanae (руже)
Ред: Rosales (руже)
Фамилија: Rosaceae (руже)
Потфамилија: Rosoideae (ијагодасто воће)
Род: Rubus L. (малина и купина)
Подрод: Eubetos Focke (купина)

Најважнији родоначелници сорти купине усправног пораста су врсте:

2. *Rubus allegheniensis* Por. (америчка високожбунаста купина) – која је бујног жбунака са високим, лако повијеним леторастима.
3. *Rubus frondosus* Big. – раширен је у Северној Америци, средње бујног жбунака, дугачких, извијених летораста.

Најважнији родоначелници сорти купине пузећег пораста су врсте:

1. *Rubus fragelatus* Willd. – је врло бујна, пузећа, дугих и повијених летораста.

- 4. *Rubus vitifolius* Cham. – која је бујна, пузећа, танких и врло дугих летораста.

СОРТЕ КУПИНЕ СА ТРЊЕМ

Јанг (Young)

То је сорта пузећег пораста. Настала је укрштањем сорте *Fenomenal* са *Mayesom*.

Сазрева рано, у првој декади јула.

Жбун је бујан, пузећег раста, са леторастима дужине 3–4 м. Средње је трновита. Самооплодна је. Делимично је отпорна према антракнози и пегавости лишћа. Треба је гајити уз наслоњен.

Плод је врло крупан (око 7 г), издужено-цилиндричног облика. Месо плода је меко, сочно, слатко-наксиселог укуса, пријатне ароме, доброг квалитета.

Плод је слабе транспортабилности. Може се користити за замразавање и све видове прераде.

Ебони кинг (Ebony King)

То је сорта америчког порекла, непознатих родитеља.

Сазрева сређено рано, почетком треће декаде јула.

Жбун је сређен бујан до бујан, усправног раста и релативно је отпоран према суши. Самооплодна је и врло родна.

Плод је сређен крупан (око 4,2 г), овалног облика, светло црне боје, слатко-наксиселог укуса и пријатне ароме.

Погодан је за све видове прераде.

Дероу (Darrow)

То је сорта створена у САД, сложеним укрштањем: хибрид N.Y. 15826 (*Eldorado* х *Brewer)* х (*Hedric Eldorado* х *Brewer)*.

Сазрева сређено рано, од средине треће декаде јула до краја прве декаде августа.

Жбун је бујан, усправног раста отпоран према мразу и суши. Самооплодна је и врло родна.

Плод је сређен крупан (3–4 г), издужено-купастог облика, сјајно црне боје, чврст, врло укусан и квалитетан.

Ово је једна од најбољих сорти са трњем.
Хималаја (Himalaya)

То је стара немачка сорта, пузећег пораста.
Сазрева позно, крајем јула и у првој половини августаци.
Жбун је врло бујан, пузећег раста и отпоран према ниским зимским температурама (издржава до −30°C). Самооплодна је и врло родна.
Плод је средње крупан до крупан (око 5 г), округластог облика, сјајан, интензивно црне боје. Укуса је слатко-накиселог са карактеристичном пријатном аромом, одличног квалитета.
Плодови су слабе транспортабилности.

СОРТЕ КУПИНЕ БЕЗ ТРЊА

Торифри (Thornfree)

То је сорта створена у САД, сложеним укриштањем: US 1410 (Brainerd x Merton Thornless) x US 1414 (Merton Thornless x Eldorado).
У СР Југославији се гаји од 1970. године и данас је водоћа сорта купине. Сазрева касно. Бере се у августу и септембру, а често и у октобру.
Жбун је врло бујан. Изнад је средње дуги до дуги, пузећи, без трња. Гаји се уз наслон.
Релативно је отпорна према проузрочивачима вертицилијума (Verticillium alboatrum) и пегавости липћа (Mycosphaerella rubi). Врло је осетљив према јачим зимским мразевима.
Самооплодна је и врло родна сорта. Приноси могу да буду већи од 25 т/ха.
Плод је средње крупан до крупан (око 5 г), лопастог до затупасто-купастог облика, чврст, сјајноцрне боје, накиселог укуса са средње израженом аромом, добром квалитета.
Плод је транспортабилан, погодан за замрзавање и све видове прераде.

Смутстем (Smoothstem)

Створен је у САД, као спонтани сјајан селекције US 1482 (Merton Thornless x US 1411). У нашој земљи се гаји као пратећа сорта.
Сазрева врло касно. Бере се од половине августа до почетка, краја октобра.
Жбун је врло бујан. Изнад је пузећи, без трња. Гаји се уз наслон. Осетљив је према мразевима и проузрочивачу лисне пегавости (Mycosphaerella rubi) и жуте пђе (Kuehneola uredinis). Самооплодна је и рађа добро.
Плод је средње крупан (око 4 г), затупасто-купастог облика, тамноцрне боје, чврст, накиселог, слабо ароматичног укуса, солидног квалитета.
По родности и квалитету заостаје за торифријем.

* * *

Поред наведених сорти купине у комерцијалним и експерименталним за-
садима се могу наћи и следеће сорте:
- купине са трњем:
 1. аурора (Aurora) – сазрева у току јула,
 2. бејли (Bailey) – бере се од краја јула до краја августа,
- купине без трња:
 3. дирксен торнлес (Dirksen Thornless) – берба почиње рано, у другој по-
 половини јула (две недеље пре сорте торнфри),
 4. хал торнлес (Hull Thornless) – берба почиње средње рано, у трећој декади
 јула,
 5. блек сатен (Black Satin) – берба почиње средње рано, крајем јула и траје до
 почетка септембра.

Сл. 235 – Купина сорте бејли
РИБИЗЛА И ОГРОЗД

Рибизла (црна, црвена и бела) пореклом је из северне Европе и северне Азије где је заступљена у спонтаном стању у виду популације и с већим бројем врста.

Према ниским подацима почела је да се гаји у 11. веку у Русији (око Москве и Кијева) најпре црна, а у 14. веку црвена и бела. Тек почетком 18. века почиње да се шири по Европи (нарочито у Француској и В. Британији). У 19. веку из Европе је пренета у САД.

У Југославији је рибизла донета почетком 20. века, а са нешто организованијим гајењем се почело тек после Другог светског рата.

Највећи произвођачи рибизле су Пољска, земље бившег СССР-а, Британија и Немачка.

Рибизла се лако размножава и једноставно гаји, а рано пророди (у другој години) и редовно рађа.

Плод рибизле има велику хранљиву и технолошку вредност. Рибизла је воће најбогатије витаминима. Њихов садржај је висок и подложен варирању у зависности од врсте (да ли је у питању бела, црвена и црна рибизла).

За конзум у свежем стању најукуснији су плодови беле и црвене рибизле. Међутим, највеће биолошке вредности има плодови црне рибизле. Плод црне рибизле садржи витамина С у просеку од 200 до 450 mg% на 100 g масе, витамина PP од 500 до 3.800 mg%, провитамина A око 0,06 mg%, витамина B1 и B2, пектин (око 0,4%), пећера (8–13%), органских киселина (2–4%), танина, суве материје (од 18 до 23%), минералних материја (нарочито микроелемената, Fe), антоцијана и др.

Рибизла је први извор витамина C. У односу на лимун и поморац тај садржај је 4–8 пута већи, у односу на јабуку 10–20 пута, трешњу и вишњу 20–30 пута, грожђе око 100 пута већи, итд.

Плод рибизле је и велике технолошке вредности, те може да послужи као добра сировина за производњу сокова, сирупа, ликерових, цемова, пита и др., а може и да се замрзва.

С обзиром да производња рибизле далеко заостаје за потребама наше земље, као и због велике вредности плодова, њеном гајењу треба посветити више пажње у наредном периоду.

Огроаз има мањи привредни значај од рибизле и другог јагодастог воћа.

У нашој земљи је задржао углавном карактеристике баштенског воћног жбуна.
Огроzd је биолошki изузетно квалитетног плода (сличног хемиjsког састава као рибизла, са нешто мање витамина С). Плодови су му крупнији, поједначни, али код већине европских сорти са трополиким израштајима по леторастима, што отежава бербу.

Може успешно да се гаји у брдско-планинским подручјима наше земље. Боле производне резултате ће дати на релативно дубоким, плодним, умерено влажним и растреситим земљиштима богатим хумусом.

Европске сорте огроzда показују већу осетљивост према болестима, нарочито пепелници. Америчке сорте су родниje, доброг квалитета плода и отпорније према болестима.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ РИБИЗЛЕ И ОГРОЗДА

Рибизла заузима следеће место у систематици биљака:

- **Одељак:** Magnoliophyta (Angiospermae, скривеносеменице)
- **Класа:** Magnoliaceae (Dicotyledones, дикотиле)
- **Поткласа:** Rosidae (руже)
- **Надред:** Rosanae (руже)
- **Ред:** Rosales (руже)
- **Фамилија:** Grossulariaceae (рибизле)
- **Род:** Ribes (рибизле)
- **Подрод:** Eucoriosma (црна рибизла), Ribosia (црвена рибизла), Symphocalyx (златна рибизла), Calbotrya (орнаментал рибизла), Heritiera (dwarf рибизла), Grossularioides (огроzд), Berisia (алпска рибизла), Parilla (андска рибизла)

Највећи број привредно значајних сорти црне рибизле води порекло од врста:

1. *Ribes nigrum* – која се среће у два варијетета:
 - *R. nigrum* var. *scandinavicum*;
 - *R. nigrum* var. *sibiricum*.

Ово је најраспрострањенија врста црне рибизле. Врло отпорна према ниским температурама. Она је родоначелник европских сорти.
3. *Ribes ussuriense* (манџуријска рибизла) – отпорна према мразевима,
4. *Ribes hudsonianum* – (канадска рибизла) – родонаученик једног броја канадских и америчких сорти,

Нajвећи број сорти је од брта:
1. *Ribes rubrum* – северноевропска црвена рибизла,

Највећи број сорти огровдна настао је од врста:

СОРОТЕ ЦРНЕ РИБИЗЛЕ

Бен ломонд (*Ben lomond*)

Створена је у Великој Британији. Добијена је укрштањем сорти: (*Consort x Magnus*) x (*Brodtorp x Janslunda*). Формира компактан жбун средње бујности, нешто више раширен. Отпорна је према нападу пепелнице (*Sphaeroteca mors- uvae*). Цветање је касније за неколико дана од сорте болдвин, те избегава посне мразеве. Сазревање почиње неколико дана пре сорте болдвин. Самоопловна је. Врло је родна. Бобице су врло крупне и просечно их има 7,7 по гроздићу. Погодна је за механизовану бербу. Погодна је за прераду као и за потрошњу у свежем стању.

Бен нивис (*Ben nevis*)

Створена је у Великој Британији. Добијена је укрштањем сорти: (*Consort x Magnus*) x (*Brodtorp x Jaslunda*). Формира средње бујан и усправан жбун. Отпорна је према нападу пепелнице. Цвета неколико дана касније од сорте болдвин. Сазревање почиње неколико дана пре сорте болдвин. Самоопловна је у високом степену.

Бобице су крупне (око 0,96 г) и налазе се на кратким гроздићима по 6,2. Врло је родна. Погодна је за механизовану бербу. Погодна је за прераду.
Блек риворд (Black reward)

Створена је у Холандији слободним опрашивањем локалне сорте Haarstegse. Дaje бујани жбуни, више ражирен. Врло је родна. Осетљива је на пепелиницу. Цвета нешто касније од сорте болнвин. У нашим условима сазрева неки дан пре сорте болнвин.

Бобице су кружне (око 0,89 g) и налазе се на кратким грозићима. Садржи 15,6% растворљивих материја. Погодна је за производњу сока, као и других прерађевина.

Тенах (Tenach)

Створена је у Холандији укршањем сорти: Goliath x Brodttorp. Жбун је врло бујан и има тенденцију ширења. Из базалних грана образује ново дрво. Осетљива је према пепелиници (Sphaerotheca mors-uvae) и рибизлиној гријићи (Pseudopeziza ribis). У нашим условима почиње да цвета просечно средином априла, а сазрева од средине јуна. Изузетно је родна. Самооплодна је.

Бобице су средње круглоће (око 0,7 g) и налазе се на врло дугим грозићима (просечно по 7,4). Погодна је за различите облике прераде.

Цема (Tsema)

Добијена је из истог програма опленањивања као и претходна сорта и од истих родитеља, у Холандији. Жбун је средње бујан до бујан. Има тенденцију да се шири. Врло је осетљива на пепелиницу. Цвета и сазрева неколико дана пре сорте тенах. Касни мраз може некад да умањи принос. Врло је родна. Лако се бере. Бобице су средње круглоће (око 0,7 g) и налазе се на дугим грозићима. Врло је квалитетна и погодна за прераду.

Болнвин хилтоп (Baldwin hilltop)

Створена је у Великој Британији од старе сорте Baldwin. Једна је од водећих сорти црне рибизле у Европи. Жбун је средње бујан и усправан. Гроzd је средње дуг. Бобице су средње кружне (око 0,6 g) с прилично чврстом покожицом. Бобице у гроzду постепено дозревају, али зреле не опадају са грана, па се бере у једном наврату. Погодна је за механизовану бербу. Врло је богата у садржају витамина C. Садржи 15,5% растворљивих материја. Изузетно је погодна за индустријску прераду.

Силвергитер (Silvergieter's zwarte)

Створена је у Холандији од сењанаца сорте Boskoop Giant. Била је значајно заступљена код нас у сортименту ранијих година. Жбун је бујан и висок. Гране су
усправног узрasta, али слабо разгранате. Цветa средњe рано, a сазревa неколико дана изa розентала. Добри клонови ове сорте одликуju се великом родношћu, али је склона варирањu родности, па је у многим земљамa већ напуштaјu.

Грозд је дуг и тежак. Бобице су крупне и уједначено дозревају. Покожица је танка, a месo слатко, тако да се може употребљавати и за свежу потрошњu. Према болестимa и штеточинамa јe средњe осетљива.

Веллингтон XXX (Wellington XXX)

Створена јe у Великоj Британиji укрштањем сорти Baldwin x Boskoop Giant. Дуго годинa је била једна од најраширенijих сорти у светu. Жбун јe средњe бујности, сa достa јаких гранa, којe у времe зрењa честo полежu, pa јe потребно резидбом вршити корекциjу да би се izбегло падањe плодова на земљу. Цветa ранo, a сазревa средњe ранo.

Грозд јe средњe дуг. Бобице су средњe крупне и сазревају неуједначено али сe можe с бербom причекати док не сазрe свe, јер сe зрeлe бобице добрo држе на гранамa. Покожица јe достa чврста, месo киселкастo, с оштром карактеристичном аромом. Садржи достa C витаминa.

Розентал (Rosenthal)

Створена јe у Немачкоj селекциjом од сорти Boskoop Giant, pa јe врло слична њoj. Жбун јe средњe гастa и отворен. Склетне гранe су јаке али малоброjне. Цветa средњe ранo, a сазревa врло ранo (краjем јунa или почетком јула). Грозd јe дуг, тежak и растресит, a садржи пет до десet бобица, којe уједначено сазревају. Зрeлe бобице брzo oтпадају. Осетљива јe премa пролећним мразевимa.

Данијелов септембар (Daniel's september)

Створена јe у Великоj Британиji селекциjом од сорти Baldwin. У производњu јe уведенa 1923. г. Раниje јe xод нас била заступљена у већем обимu. Жбун јeJakog растa, a сазревa xako касно, десet дo четирнаест данa изa розентала. Средњe јe осетљива премa пепелици и другим болестимa. Постоje и слабо родни типови ове сорте, pa при размножавањu требa о томe водiti Rachuna.

Грозд јe средњe дуг, сa средњe крупним бобицамa, коje постeпено сазревaјu, aли не oтпадaјu сa гранa. Богата јe C витамином.
Гроздићи су врло дуги. Састоје се од 24 до 43 бобице. Бобице су средње крупноће (око 0,58 g), жутобеле, провинци, накиселе. Плодови су погодни за индустријску прераду, али се може конзумирати и у свежем стану.

СОРТЕ ОГРОЗДА

Међуку (May duke)

Стара сорта. Жбункови су прилично бујни, усправни. Бобице су средње крупноће, округласто-лукуљасте, дозреле су тамноцрвене. Покожица је незнатно маљава. Рана сорта, која се таји првенствено за рану бербу зелених плодова. Добре је родности.

Хенинг фриест (Hönings früheste)

Створена је у Немачкој. Прилично бујна сорта, усправног хабитуса и врло трнати. Прилично је осетљива на пепелиницу. Цвета рано па може бити оштећена цветова од позних мразева.

Сазрева рано. Бобице су средње крупне, округласте, златножуте, слатке и ароматичне. Добре је родности.

Винамз индастр (Whinham's industry)

Створена је у Великој Британији. Бујна сорта. Жбун је усправан са лучним гранама. Бобице су средње крупне, овалне, дозреле су тамноцрвене, маљаве. Средње стасна сорта. Погодна је за справљање цема и за употребу у свежем стану. Успева боље на тежим земљиштима од других сорти. Врло је осетљива према пепелици. Добре је родности.
БОРОВНИЦА

Боровница је новије доместификована врста.
Са њеним гајењем се почело релативно касно, почетком овог века, а са оплемењивањем планском хибризацијом 1913. године радом F. V. Coville у САД. До данас је створено преко 60 сорти високожбунасте боровнице (V. corymbosum L.).
Гајење високожбунасте боровнице је интензивирано у САД (који су и највећи светски производачи), док се у европским земљама нешто спорије шири.
У Југославији је гајење високожбунасте – америчке боровнице тек у зачетку.
Привредни значај боровнице (Vaccinium sp.) је потенцијално велики, јер се ради о врсти изузетне биолошке вредности плода, богатој најразличитијим хранљивим материјама значајним за здравље и живот човека.
Она у себи садржи: висок садржај шећера, провитамина А, витамина В3 и В5 и изузетно много витамина С (50–350 mg%), минералних материја (P, Ca, Mg, Mn, Cu, Fe и др.), антоцијана, органских киселина, ензима, танина, пектине и др.
Посебно је интересантно да се диваља боровница (V. myrtillus) која је врло расширена у биоценозама Југославије одликује великом количином антоцијана (бојених материја), који врло повољно делује на видни пурпур, те се препоручује као здрав лек у вида екстракта или сока. Лековитост боровнице условљена је и великом количином витамина A и C и микроелемената (Fe и Cu).
Због света наведеног, може се рећи да је биолошка вредност боровнице већа од већине осталих појединачно узетих намирника. То значи да је редовна потрошња чак и малих количина овог воћа, поуздано средство против деловања многих чинилаца који угрожавају здравље човека.
Боровница (Vaccinium sp.) успева на киселим (рН=4,0–4,8), растрешитим и умерено влажним земљиштима. Не подноси кречна земљишта, на којима број страда.
Размножава се резницима. Релативно рано пророди. Родне сорте високожбунасте боровнице могу дати око 10 t/ha плода.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ БОРОВНИЦЕ

У систематици биљака боровница знајуима следеће место:

Одељак: Magnoliophyta (Angiospermae)
Класа: Magnoliatae
Поткласа: Dillenidae
Надред: Ericanae
ерикале Линдел "Ericales Lindley"
фамилија: "Ericaceae"
Подфам.: "Vacciniaceae Lindley" (боровница)
Pлеме: "Vaccinieae" (боровница)
Род: "Vaccinium L." (боровница)
Подрод: "Cyananococcus Kl."

У стварању сорти боровнице директно су учествовале четири врсте:

1. V. corymbosum (високожбунаста боровница)
2. V. angustifolium (нискожбунаста боровница)
3. V. australie (јутоисточна жбунаста боровница)
4. V. ashei (боровница „зечје око“)

СОРТЕ ВИСОКОЖБУНАСТЕ БОРОВНИЦЕ

Беркли (Berkeley)

Жбун је бујан отворено-рашiren, родан. Обично се разгранава високо изнад земље, тако да формира кратко стабло. Листови су крупи. Сазрева средње рано. Зрење почиње обично у првој декади јула, а завршава се касно, чак почетком септембра.

Гроздићи су растресити. Бобице су врло крупне (1,5 до 1,9 g), сплоштене, светлоплаве, чврсте, незнатно ароматичне, средњег квалитета. Отпорне су на пуцање покожица и незнатно опадају. Добро се чувају.

Блукроп (Bluecrop)

Створена је у САД укрштањем сорти (Jersey х Pioneer) х (Stanley х June). Уведена је у производњу 1952. године.

Жбун је бујан, усправан врло родан. Отпорна је на сушу. Сазрева средње рано, неколико дана иза сорте беркли.

Грозд је растресит. Бобице су врло крупне и чврсте, сплоштене, јако светлоплаве, незнатно ароматичне, просечног квалитета. Отпорна је према пуцању покожица и бобице не опадају.

Цењена је због постојане радиности, чврстоће и светлоплаве боје бобица.
Блуреј (Blueray)

Добијена је укрштањем истих комбинација сорти као блукроп. У производњу је уведена 1955. године.

Жбун је бујан, усправан, али се гране под теретом рода савијају и стварају расширено хабитус. Спада у групу средње-рано стасних сорти.

Гроздићи су мали и компактни. Бобице су врло крупне, светлоплаве, чврсте, ароматичне, високодесертног квалитета. Отпорна је на пуцање покожица. Добро подноси транспорт.

Изузетно је цењена због снажног жбуне и врло крупних и квалитетних плодова.

Херберт (Herbert)

Створена је у САД укрштањем сорти Stanley x (Jersey x Pioneer). У производњу је уведена 1952. године.

Жбун је бујан, отворено расширено, родан. Сазрева касно.

Грозд је средње растрецит. Бобице су врло крупне, осредње плаво обојене са виштаном превлаком, прилично мекане, ароматичне, врло високог десертног квалитета. Отпорна је према пуцању покожица.

Цењена је због врло квалитетних плодова и постојане родности.

Дароу (Darrow)

Створена је у САД укрштањем сорти (Warcham x Pioneer) x Bluecrop. Уведена је у производњу 1956. године.

Жбун је бујан са високим коефицијентом гранања. У условима Бијелог Поља дала је највећи принос у поређењу са вишем сорти. Сазрева касно. Отпорна је на сушу. Самоплодна је.

Бобице су крупне (посечено 1,29 g), светлоплаве, чврсте, накиселе и врло укусне. Садрже просечно 15,15% сувих материја, 6% укупних шећера, 1,75% укупних киселина. Грозд је средње растрецит.

Цењена је због врло квалитетних плодова и добре родности.

Ерлиблу (Earlyblue)

Створена је у САД укрштањем сорти Stanley x Weymouth. Уведена је у производњу 1952. године.

Жбун је бујан, отворенораширен, родан. Сазрева рано, цељу недељу пре осталих сорти.
Гроцки су растресити. Бобице су крупнее (1,68 г), интензивног плавог, чврсте, добро ароматичне и одличног десертног укуса. Бобице не отпадају и отпорне су на пуцање.

Цењена је због крупноће, чврстине, лепо плаве боје, раног зрела и одличног десертног укуса.

Голдтраубе (Goldtraube)

Створена је у Немачкој (dr Heerman) педесетих година. Добијена је укрштавањем *Vacc. corymbosum* L. x *V. Lamarckii Can*.

Жбун је бујан, и једна је од најплоднијих сорти у условима Бијелог Поља. Усправног је хабитуса. Грод је доста растресит. Бобице су средње крупноће, чврсте и врло су пријатног укуса. Сазрева средње рано и добрих је технолошких својстава.

Ковил (Coville)

Створена је у САД укрштавањем сорти (*Jersey x Pioneer*) x *Stanley*. Уведена је у производњу 1949. године.

Жбун је бујан, отворенораширен, од рана. Сазрева касно, од средине јула до почетка септембра.

Грод је растресит. Бобице су врло крупне (1,92 до 2,10 грама), округластог облика, средње плаво обојене, чврсте, ароматичне, киселе, врло доброг десертног квалитета. Бобице не отпадају. Плодови су врло погодни за прераду.
АКТИНИДИЈА

Актинидија је одавно позната у дивљем стању у шумама југосточне Кине. Сматра се да је и пореклом из Кине. Према неким наводима (Кинеска енциклопедија) у Кини се гајила 600 година пре нове ере.

Према легенди, најзаслужнији за доместикацију актинидије је млади стацарокинески цар Јанг, који је тражио лек за своју тешко болелу вереницу Тао. Бог му је саветовао да јој даје плодове актинидије као лек. Вереница је оздравила, а у част њеног оздрављења та чудна воћка је у Кини названа ЈАНГ-ТАО, и по препоруци цара почела да се гаји у кућним вртовима.

У научној литератури, Мичурин је први указао на значај актинидије као воћке због биолошки изузетно квалитетног плода, првенствено захваљујући великим садржају витамина С, који може да се креће од 100-400 mg%. Количина осталих витамина је: витамин A од 117 до 175 mg%, витамин B1 од 0,01 до 0,02 mg%, витамин B2 од 0,02 до 0,05 mg%, витамин PP од 0,04 до 0,50 mg%. Шећери су заступљени са око 8%, органске киселине са садржајем од 0,78 до 2,48% итд.

Данас се актинидија као нова воћка интензивно гаји на Новом Зеланду, Калифорнији, Италији, Француској, Грчкој и др. а у осталим земљама спорадично.

БИОЛОШКЕ ОСОБИНЕ АКТИНИДИЈЕ

Актинидија је вишегодишња биљка, чији је век око 40 година.
То је повијуша (лијана) из фамилије Actinidiaceae, рода Actinidia.
Поред имена актинидија које потиче од латинског назива рода, у различитим земљама се среће под различитим именима:

у Кини — Jang-Tao,
у Енглеској — Chinese gooseberry,
у САД — Kiwi,
у Француској — Grosille de Chine,
у Југославији — кинеска рибизла итд.

У оквиру рода Actinidia постоји велики број врста. Најзначајније међу њима, као родоназвеници релативно малог броја досад створених сорти су врсте:
1. Actinidia chinensis, Plan.
2. Actinidia colomicta, Maxim.
3. Actinidia polygama, Maxim.
Ова воћка рано почиње да доноси род. Родни су јој леторасти из претходне године. То је дводома воћка са једнополним цветовима на посебним биљкама. То значи да постоје биљке са женским и биљке са мужким цветовима. У засаду актинидија се због тога ради опладње мора налазити 10-15% мужких биљака. Фаза цветања је у мају. Размножава се вегетативно, али јој се резнице теже ожењавају.

Успена на оцедном земљишту и виноградарској зони. Може да издржи релативно ниске температуре, до −13°C.

Плод је бобица до 100 g масе. Плодови сазревају у октобру и не могу се конзумирати одмах после бербе, већ је потребно да одстоје извесно време.

ВАЖНИЈЕ СОРТЕ АКТИНИДИЈЕ

1. хајвард (Hayward), са крупним плодом (100 g),
2. бруно (Bruno), врло родна и за суровију климу,
3. монти (Monty), ситни, жут плодови,
4. абот (Abott), средње крупних плодова, врло расширена на Новом Зеланду,
5. тамури (Tamori), опрашивач.

Сл. 236 – Интензивно гајење актинидије на Сицилији
СУПТРОПСКЕ ВРСТЕ ВОЂАКА

У нашој земљи постоје ограничени услови за развој суптропског вођарства. За неке врсте вођака, као што су смоква, маслина и др., повољнији су услови него за поморанцу, мандарину, лимун, рогач и др.

Иако су ограничене могућности за гајење појединих вођака из ове групе, још није искоришћене све површине где се оне могу успешно гајити.

У нас је могуће да се у рејону Улици подигну плантаже агрума.

Плодови суптропских вођака су значајна намирница у исхране. Посебно је било обилно високо квалитетно маслиново уље. Оно је оснивање намирница тамошњег становништва. Плодови маслина се користе и као конзервисани. Плодови цитруса (агрума) данас у свету се највише тразе. Њихова се потрошња и у нашем земљи стално повећава.

То је јсена намирница, било као свежи плодови или прерађени. Плодови агрума, поред хранљиве вредности имају и терапеутски значај. Посебно се цене плодови лимуна. Они су сипоним за витамин С, врло значајну супстанцију за одржавање људског здравља.

Плодови осталих суптропских вођака су такође од користи у исхране.

Значај суптропских вођака долази и преко искоришћавања суптропских предела. Њима се остварује висок добиодак, тј. активира се привреда тих крајева. Постоје и многе друге предности и користи које имају поједине врсте суптропских вођака.

Суптропске вођке успевају у нашој медитеранској зони. Ова зона није велика. Простире се поред мора.

АГРУМИ ИЛИ ЦИТРУСИ

Назив агруми потиче од латинске речи acrum, што значи оштро или љуто, а заједничка је карактеристика већег броја врста вођака из ботаничке групе (надрода) Citrinæ. У истовременој употреби и је назив цитруси, који потиче од латинског назива рода Citrus у оквиру кога се налази највише привредно значајних врста (поморанца, мандарина, лимун, грејфрупт и др.).

Према Reuter и сари. (1967) све врсте надрода Citrinæ потичу из суптропских и тропских подручја Азије и Малајског архипелага, одакле су се проширше по целом свету.

Агруми или цитруси се по обиму произвође од 57,044,000 t, или 12,2 kg по становнику, трговине и потрошње, налазе међу вођем на првом месту у свету.
Агруми се гаје у суптропском и тропском појасу, између 40° северне и 40° јужне географске ширине. Највеће количине агрума се произведе у Јужној Америци. За њом следе: Северна Америка, Азија, Европа, Африка и Аустралија.

Највећи светски производац агрума је Бразил, а за њим следе: САД, Италија, Шпанија и Индија.

Од агрума, данас у свету се гаји велики број врста, као што су: четрну, лимун, слатка поморанца, горка поморанца, мандарина, чедок, грејпфрут, фортунела (кум-квајт), лимквајт и читав низ хибридна између наведених врста.

ПРОИЗВОДЊА АГРУМА У ЈУГОСЛАВИЈИ

У нашој земљи гајење агрума је ограничено на уски појас Црногорског приморја. То је најсевернија зона комерцијалног гајења Citrus у свету.

Већи производни значај има гајење мандарина, нешто мање поморанце, лимуна и грејпфрута, док се остале врсте гаје спорадично, по баштама или стакленицима.

Ограничајући чиниоци комерцијалне производње агрума на Јадранском приморју су, поред зимских мразева, ветрови (нарочито бура), као и недовољне количине падавина и воде за наводњавање.

Производња агрума у Југославији стално расте. У последње четири деценије број стабала је повећан више од 4 пута, а производња нешто мање од три пута (таб. 81).

Таб. 82 – Број стабала и производња агрума у СР Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабла, 000</th>
<th>производња, тона</th>
<th>принос по стаблу kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>63</td>
<td>31</td>
<td>466</td>
</tr>
<tr>
<td>1965</td>
<td>65</td>
<td>40</td>
<td>358</td>
</tr>
<tr>
<td>1975</td>
<td>67</td>
<td>45</td>
<td>606</td>
</tr>
<tr>
<td>1985</td>
<td>190</td>
<td>94</td>
<td>1.252</td>
</tr>
<tr>
<td>1988</td>
<td>175</td>
<td>114</td>
<td>2.409</td>
</tr>
<tr>
<td>1989</td>
<td>251</td>
<td>120</td>
<td>2.240</td>
</tr>
<tr>
<td>1990</td>
<td>254</td>
<td>138</td>
<td>2.587</td>
</tr>
<tr>
<td>1991</td>
<td>255</td>
<td>137</td>
<td>3.437</td>
</tr>
<tr>
<td>1992</td>
<td>257</td>
<td>151</td>
<td>1.690</td>
</tr>
<tr>
<td>1993</td>
<td>265</td>
<td>155</td>
<td>1.286</td>
</tr>
</tbody>
</table>

Просечна годишња производња у последњих 5 година, од 2.448 т или 0,14 kg по становнику је мала и не задовољава потребе наше тржишта. Међутим, агруми
су и поред тога најрентабилније и најпрофитабилније воће, јер приноси у пуном роду могу да достигну 40 до 60 т/ха и као дефицитарно воће да постигну високу цену.
Унапређењу агрумарства у Југославији значајну пажњу посвећује Завод за суптропске културе у Бару.
Најважнији центри гајења агрума су: Бар, Улцињ, Будва, Тиват и Херцег-Нови.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ АГРУМА

Агруми (цитруси) заузимају следеће место у систематици биљака:

- **Одељак:** Magnoliophyta (Angiospermae, скривеносеменице)
- **Класа:** Magnoliidae (Dicotyledones, дикотиле)
- **Поткласа:** Rosidae (руже)
- **Надред:** Rutanae
- **Ред:** Rutales
- **Фамилија:** Rutaceae/Juss.
- **Потфамилија:** Aurantiidae
- **Надрод:** Citrinae (цитруси)
- **Родови:** Citrus L., Fortunella, Poncirus

Надрод Citrinae, Swingle и Reece (1967) су поделили у 6 родова: Citrus, Fortunella, Poncirus, Eremocitrus, Microcitrus и Clymenia. У прва три рода налази се 13 привредно значајних врста које су родонаученици сората и то:

I род: Citrus L.

1. *Citrus aurantium* L. (горка поморанца)
2. *Citrus sinensis* Os. (слатка поморанца)
3. *Citrus reticulata* Bl. (мандарина)
4. *Citrus unshiu* Mare. (мандарина уншиу)
5. *Citrus grandis* Os. (чедок)
6. *Citrus paradisi* Mac. (грејпфрут)
7. *Citrus medica* L. (четрум)
8. *Citrus limon* Bur. (лимун)
9. *Citrus aurantifolia* Sw. (лимета)
10. *Citrus mitis* Bl.
11. *Citrus ichangensis* Sw. (каламонцин)
II род: *Fortunella Sw.*

12. *Fortunella margarita Sw.* (кумквајт)

III род: *Poncirus*

13. *Poncirus trifoliata Raf.* (poncirus)

Изузев понцируса све наведене врсте су зимзелене.

МАНДАРИНА

Мандарина је пореклом из југозападне Кине, североисточне Индије, Индонезије, Бурме и Јапана. У подручје западног Средоземља је унета тек 1828. године као куринозитет.

То је зимзелена вођка, ниског стабла (3–4 м), сјајних, козастих листова. Листови су синтези него код осталих агрума и немају крилосте зарерке. Цветови су хермафродитни, синтези, беле боје и врло миришљави.

Плодови су бобице округласта-пљоснатог облика, сјајне наранџасте боје, танке коре која се лако одваја, сочног, слатко-благог накиселог укуса, пријатног мириса.

Плод мандарине је извор: витамин – B₁ (око 0,060 mg%); B₂ (око 0,030 mg%); C (око 30 mg%), никотинске хиселине (око 0,20 mg%) и микроселемената Fe (око 0,30 mg%).

ВАЖНИЈЕ СОРТЕ МАНДАРИНЕ

У оквиру рода *Citrus* срећу се две врсте мандарине, које су родонаћелнице две групе сорти:

I *Citrus reticulata Bl.* – је родонаћелник тзв. обичних мандарина. Сорте ове групе се одликују већим присуством семенки у плоду, као и нешто већом осетљивошћу према инсекским температурама.

Најважнији представници обичне мандарине су следеће сорте:

Хавана (*Havana*)

Средње бујног је стабла, округле крупе. Рађа редовно обилато. Плод је средње крупан (40–80 g), округластог облика, са 9–11 кришки. Сазрева половином новембра.
Клементина (Clementina)

Створена је у Алжиру, укрштањем мандарине и горке поморанце. Стабло је средње бујно до бујно, округласте, густе крупе. Плод је средње купан (50–100 g), пљоснато округластог облика, са танком и глатком миришљавом кором. Садржи 9–11 кришки, које су углавном без семена, ако се гаји у хомогеном засаду. Месо је врло сочно, укусно и ароматично.

Из ове групе сорти, најотпорнија је према ниским температурама.

Сазрева половином децембра.

II Citrus unshiu *Marc.* – је родонаучени тзв. мандарине уншиу. Сорте ове групе се одликују већом отпорносту према ниским температурама (издрже и –11°C) и одсуством семенки у плоду.

Најзначајнији представници мандарине уншиу су следеће сорте:

Кавано вазе (Kawano Wase)

То је стара јапанска сорта.

Стабла је слабобујног са разгранатом округластом кружном. Леторасти су повијенијег раста са кратким интернодијама, на којима се налази по 3 пупољка.

Плод је средње купан (80–100 g), округласто-плоснатог облика, са глатком, танком, набораном кором, наранџасто-црвенкасте боје. У плоду је 10 кришки, без семена.

Месо је наранџасте боје, слатко-накиселог укуса, врло сочно и ароматично. Сазрева рано, у првој половини октобра.

Мијагава вазе (Miyagava Wase)

Стара јапанска сорта.

Стабло је слабе бујности, округласте круне, обилате родности.

Плод је купан, округласто-плоснатог облика са танком и глатком кором наранџасте боје. Месо је сочно, пријатног слатко-накиселог укуса и ароме.

Сазрева рано, од средине септембра до средине октобра. Боље се чува од осталих сорти.

Овари уншиу (Owari Unšiu – Satsuma)

Овари уншиу је стара јапанска сорта.

Стабло је слабе до средње бујности, разгранате и растресите круне. Рађа редовно и обилато.
Плод је средње крупан (50–100 г) округласто-пљоснатог облика, са храпавом кором наранчасте боје. У плоду се налази 9–12 кришћи. Месо је жућкасто-наранчасте боје, сочно, слатко са мало киселине и недовољно изражене ароме.
Сазрева крајем октобра – почетком новембра.

ПОМОРАНЦИ

Поморанци потичу из Кине, Индонезије, Бурме и Индије. Није познато кад је унета у Европу, али се претпоставља да су то учинили Арапи.
То је зимзелена вођка, ниског стабла (3–5 м), збијене, округласте круне, глатког или мало храпавог дебла. Лишће је сјајно, кожасто, јајастог облика са криластим петељкама. Цветови су хермафродитни, скупљени у цвасти, са изразито белим, меснатим, миришљавим круничним листићима.
Плод је бобица, дебеле коре, са много етеричних жлезнада. Месо је сочино, киселкасто-слатког сока.
Плод поморанце је по свом хемијском саставу изузетне биопошке вредности јер садржи: витамине В комплекса (око 0,071 mg% B1; око 0,051 mg% B2 и око 0,050 mg% B₆), око 0,26 mg% никотинске киселине, витамина С око 51 mg%, микроелементе (око 0,50 mg% Fe, око 0,25 mg% Cu, око 0,30 mg% Mn) и око 2,1 mg% јодида.
То је типична биљка умерених климатских зона, врло осетљива на зимске мразеве. Добро успева на пропусним и свежим земљиштима, осредње континенталне. Не подноси превише глиновита и кречна земљишта.

ВАЖНИЈЕ СОРТЕ ПОМОРАНЦЕ

У оквиру рода Citrus срећу се две врсте поморанце:

I Citrus aurantium L. – горка поморанца – родоначелник подлоге за све врсте агрума.
II Citrus sinensis Os. – слатка поморанца – родоначелник сорти поморанце.

У свету постоји велики број сорти поморанце. Оне се могу поделити у неколико група по времену зрелања (ране, средње ране и касне), по боји меса (сорте жутог и црвеног меса), по облику плода (пунчаре – Navel и без пунца), по присуству семена у плоду (сорте са семеном и бесемене) итд.
За наше еколошке услове највећи значај имају ране и средње ране сорте, док касне сорте практично не можемо гајити због појаве зимских мразеве.
Највише су раширени у свету, а и код нас се гаје следеће сорте:
Вашингтон невл (Washington Navel)

Пореклом је из Бразила, а веома је прошиrena на подручју Средоземља. Бујног је стабла, добре редовне родности. Плод је крпун (150–250 g), дугуљасто-округластог облика, дебеле, глатке коре, наранчасти боје, која се лако одваја од меса. Месо је сочно, пријатног слатко-накисelog укуса, са израженом аромом. Сазрева рано, крајем новембра.

Томсон невл (Thompson Navel)

Пореклом је из САД. Бујног је стабла, добре родности. Плод је крпун (150–200 g), округласто-издутог облика, са плаком, стејном кором, жутонаранчасти боје. Месо је чврсто, са мало сока и киселине, слатко и ароматично. Сазрева рано, 10 дана пре вашингтон невл.

Моро (Moro)

Пореклом је са Сицилије. Средње бујног је стабла, врло густе круне. Рађа добро и редовно. Плод је средиње крпун (100–160 g), дугуљасто-округластог до округластог облика. Коре је плака, танка, лако се одваја од меса, жутонаранчасти боје, у пуној зрелости са дифузним црвенилом. Месо је љубичасто-црвене боје, сочно, слатко-накиселог укуса, пријатне ароме. Сазрева рано, половином новембра.

Беладона (Belladonna)

Талијанског је порекла. Бујног је стабла, редовне осредње родности. Успешно се може гајити уз обавезно наводњавање. Плод је средиње крпун до крпун (150–200 g), дугуљасто-округластог облика. Коре је средиње дебела, жуто-наранчасти боје, добро се одваја од меса. Месо је жуто, сочно, ароматично, пријатног, слатко-накиселог укуса. Сазрева средиње рано, током децембра.

Тароко (Tarocco)

Талијанског је порекла. Средње бујног је стабла, под теретом рода пендуласте форме.
Плод је средње крупан до крупан (120-220 г) издужено-округластог облика. Кора је жутонаранцаште боје, са местнимичним дифузним црвенилом, средње дебела и лако се одваја од меса. Месо је проткано зрацима првене боје, сочно, пријатне ароме, слатко-нисеког укуса, одличног квалитета.
Сазрева средње рано, у току децембра.

ЛИМУН

Лимун је пореклом из југоисточне Азије. Према лигурском ботаничару и помологу Г. Галисију, (1772–1839) први опис лимуна који је донет из Индије, среће се у арапским списима из 12. века. Материјалне доказе о познавању лимуна и других цитрусас у старом Риму, срећемо на фрескама Помпеје, што значи да је лимун унет у Европу још пре 1. века.
То је зимзелена воћка ниског стабла (3–6 м), растресите круне и трноликих грана. Лице је крупно, кожасто, елиптично зашиљено. Цветови су хермафродитни, крупни, изнутра снежно беле боје, а споља с љубичастим преливом, врло мирисљиви. Плодови су крупне бобице, јајастог или елиптичног облика, коре бледожуте боје. Месо је жућкасто-зеленкасто, сочно, киселкагост укуса, са израженим крупним семенкама.
Плод лимуна има велику биолошку вредност јер садржи: витамине В комплекса (око 0,051 mg% B₁, око 0,030 mg% B₂ и око 0,060 mg% B₆), око 0,17 mg% никотинске киселине, око 53 mg% витамина С, микромелементе (Fe – око 0,45 mg%, Cu – око 0,25 mg%, Mn – око 0,01 mg% и изузетно висок садржај јодида, око 70 mg%).
Лимун је воћка семинариде, благо и топле климе. Врло је осетљив према ниским температурама. Страда већ на −4°C.

ВАЖНИЈЕ СОРТЕ ЛИМУНА

Постоји велики број сорти лимуна које се међусобно разликују по читавом низу особина. Све оне воде порекло од врсте *Citrus limoni* Bur. У нашој земљи се гаје следеће сорте:

Месечар

То је стално рађајућа сорта, која у току године више пута цвета и плодоноси. Зато је ова сорта занимљива за гајење у кућним баштама, на отвореном и у заштићеном простору.
Плод је средње крупан до крупан неуједначеног облика (полиморфизм). Кора му је глатка, дебела, светлолимунастожуте боје. Најчешће садржи 11–12 кришки, са 12–22 семенке. Месо је светлно жуто, богато соком, кисело, пријатног укуса и ароме.
Лисбон (Lisbon)

То је сорта бујног стабла, добре и редовне родности. Круна је густа са бодљивим гранама.

Плод је средње крупан, издужено овалног облика, танке и глатке коре, лимунастојуже боје. На врху плода изражена је брадавица, са шиљатим доњим делом. У плоду се налази 10—11 кришки, са 1—5 штурих семенки.

Месо је богато врло киселим соком, пријатног укуса и ароме, и бољег квалитета од месечара.

Еурека (Heureka)

Америчког је порекла, пронађена у Калифорнији пре 135 година.

Стабло је средње бујности, са границима које ретко на себи носе бодље. Рађа добро и редовно.

Плод је средње крупан, издуженог облика, са брадавицом на врху. Коре је глатка, дебела, лимунастојуже боје. У плоду се налази 10 кришки са покојом штуром семенком.

Месо је врло сочно, сок изразито кисео, бистар и изузетно квалитетан. Плодови добро поднозе дуже чување у хлађеном складишту.

Мейер (Meyer)

Пореклом је из Кине.

Стабло је слабе бујности, изузетно обилате родности.

Плод је ситан до средње крупан, округластог облика са набором у вршном делу. Коре је глатка, танка, светле лимунастојуже боје. Плод садржи 10 кришки са око 10 ситних округлих семенки.

Месо је сочно, киселкасто-слатко без типичне ароме.

Сазрева рано (у октобру), те избегава ране јесене мразеве.

ГРЕЈПФРУТ

Грејпфрут је пореклом из југосточне Азије и Барбадоса. Претпоставља се да су га Шпанији унели на Флориду у 16. веку.

То је изузетна воћка бујног стабла (10—12 м) округласте, правилно разгранате куле. Лице је јајастог облика, интензивно зелене боје, са криластим петелкама, у чијем је паузу изражен трн. Цветови су појединачни или скупљени у гроздасте цвасти, врло крупни, са белим круначним листићима са обе стране.

Плод је крупна бобица округластог облика, који може достићи пречник од 15 cm и тежину од 2—3 kg. Коре плода је глатка, танка и жуте боје.
Месо је горко-киселкастог укуса, са израженим, крупним, набораним семенкама. Плод је веома ценен због изузетно велике биолошке вредности, јер садржи обиље витамина A, B и C.

Грејпфрут је врло осетљива врста агрума према ниским температурама, те се код нас може само спорадичнога гајити у кућним баштама.

ВАЖНИЈЕ СОРТЕ ГРЕЈПФРУТА

Иако постоји више сорти грејпфрута, у нашем еколошким условима је релативно добре резултате показала сорта Нацумикан.

Нацумикан (Natsumikan)

Ова сорта је интродукована из Јапана још 1933. године и најпре је почела да се гаји у околини Бара.

По отпорности према ниским температурама, понаша се као мандарина из групе Уншиу.

Стабло је средње бујности, а лишће слично мандарини Уншиу.

Плод је крупан (250–400 g) округласти плионоснатог облика, са дебелом, мало храпавом кором наранџасте боје. У плоду се налази 14 кришки са много семенки.

Месо је бледонаранџасто, горкасто-киселкастог слаткастог укуса. Плодови у пуној зрелости имају пријатан укус попут поморанце.

Сазрева крајем децембра.

† Сл. 237 – Детаљ стабла мандарине уншиу
МАСЛИНА

Маслина је пореклом из источног дела средоземног басена, највероватније из Мале Азије.

Иако је гајење маслине старо колико и цивилизација, смatra се да је откривена много касније, после винове лозе и смокве. Вероватни разлог су ситни и неугледни плодови који не привлаче ни величином ни укусом, а сличију плодовима разног грмља макије.

Практично, тек почетком цивилизације, формирањем првих засада, маслина добија права значај и гаји се као уљарина.

Од тада до данас, она је нераздвојни део средоземља, један од важних чинилаца за опстанак човека на том простору.

Маслина је привредно веома значајна вођка. Са производњом од 9,476,000 т заузима пето место у свету.

Медитеранске земље су највећи произвођачи маслине у свету. У укупној светској производњи, маслине учествују са 98%.

Од земаља, највећи произвођачи маслине су: Италија, Шпанија, Грчка, Турска, Тунис, Сирија, Мароко, Португалија, Алжир и Либија.

Маслина је врло бујног стабла. Одликује се кривим, усукањим и гукањим деблом. Од маслине се може формирати круна жељеног облика. То је дуговечна зимзелена вођка, јер јој лишће отпада после 2–3 године.

Доноси плод на једногодишњим гранцицама.

Врло касно цвета (од средине маја до средине јуна). Маслина је једнодома вођка, јер на истој биљци има цветове који су морфолошки хермафродитни, а функционално, женски или мушки. Опрашује се анемофилно (ветром).

Већина сорти су странооплодне, а само мали број сорти су самооплодне (picolino, frontoio и др.).

Плод је копнтица, крупноће 2–25 г, са покожицом зелене или тамно-љубичасте боје у пуном зрелисти.

Плодови су врло богати уљем (око 13,9%), минералним материјама (око 5,80 %) и витаминима В комплекса (око 0,030 mg% B1, око 0,080 mg% B2, око 0,11 mg% B6). По правилу, стоне сорте су са мањим садржајем уља.

Плодови маслине се могу користити за стону потрошњу (конзервисани) или за производњу уља.
ПРОИЗВОДЊА МАСЛИНЕ У ЈУГОСЛАВИЈИ

У Југославији се маслина гаји на црногорском Приморју. Најважнији центри производње маслине су: Улцињ и Бар.

Гајене маслине на тлу СР Југославије је веома старо о чему најбоље говори стабло маслине (код Старог Бара) старо преко 2.000 година.

У последњем периоду број стабала и производња се нису повећавали, напротив, чак су се смањивали (таб. 82).

Таб. 83 – Број стабала и производња маслине у СР Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабла, хиљ.</th>
<th>производња, тона</th>
<th>принос по стаблу, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>515</td>
<td>455</td>
<td>70</td>
</tr>
<tr>
<td>1965</td>
<td>529</td>
<td>504</td>
<td>1.880</td>
</tr>
<tr>
<td>1975*</td>
<td>450</td>
<td>434</td>
<td>4.349</td>
</tr>
<tr>
<td>1985</td>
<td>436</td>
<td>415</td>
<td>1.728</td>
</tr>
<tr>
<td>1988</td>
<td>435</td>
<td>415</td>
<td>351</td>
</tr>
<tr>
<td>1989</td>
<td>434</td>
<td>416</td>
<td>579</td>
</tr>
<tr>
<td>1990</td>
<td>427</td>
<td>408</td>
<td>109</td>
</tr>
<tr>
<td>1991</td>
<td>427</td>
<td>407</td>
<td>11.893</td>
</tr>
<tr>
<td>1992</td>
<td>427</td>
<td>407</td>
<td>1.035</td>
</tr>
<tr>
<td>1993</td>
<td>441</td>
<td>412</td>
<td>947</td>
</tr>
</tbody>
</table>

Просечна годишња производња маслине од 2.912 t (1989/93) или 0,09 kg по становнику је изразито дефицитарна.

У укупној производњи воћа у Југославији на маслину отпада 0,09%.

Производња маслине у Југославији је имала обрнути тренд развоја из више разлога: 1. Развојем нових делатности (индустрија, угоститељство, туризам и др.) губи се пољопривредна радна снага; 2. За преостало пољопривредно становништво постаје рентабилније гајење других врста: поврћа, раног воћа, агрума, цвећа, од маслине којој политика цена никад није била наклоњена.

Међутим, у последње време чине се покушаји обнове маслинарства.

У заједници са ФАО израђена је студија развоја производње и прераде маслине у Југославији. Подигнути су савремени огледно-производни масливарци на Црногорском Приморју. Интродуковане су нове продуктивније сорте. Све то у наредном периоду требало би да резултира повећањем како површине, тако и производње маслине.
СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ МАСЛИНЕ

Маслина заузима следеће место у систематици биљака:

Одељак: Magnoliophyta (Angiospermae, скривеносеменице)
Класа: Magnoliaceae (Dicotyledones, дикотиле)
Подкласа: Asteridae
Надред: Laminae
Ред: Oleales Lin.
Фамилија: Oleaceae Hoff.
Подфамилија: Oleoidae (маслине)
Род: Olea L. (маслине)
Врста: Olea europaea L. (маслине)

Родоначелник сорти маслине је врста Olea europaea L. Она се среће у облику два варијетета:
1. Olea europaea oleaster L. (диља маслина)
2. Olea europaea sativa L. (питома маслина)

СОРТЕ МАСЛИНЕ

Данас у свету постоји преко 400 сорти маслине. Поједине земље, где је маслина више заступљена, имају национални сортимент. У нашој земљи се највише гаје следеће сорте:

1. облица 5. левантинка
2. жутица 6. ластовка
3. дробица 7. ситница
4. црница 8. мургуља

Све оне сазревају од краја октобра до краја децембра.

* * *

У експерименталним засадима проучавају се ново интродуковане сорте:

1. моријоло томасо корсини (Moraiolo Tommaso Corsini)
2. фронтојо андреа корсини (Frontoio Andrea Corsini)
3. минерва (minerva)
4. пиколен (picholine) и др.
Сл. 238 – Излез дуке - химеризије на плоду маслине (Улица)
СМОКВА

Смоква је позната као биљна култура још у далекој прошлости. У Вавилону су постојали писани подаци о гајењу смокве још 2000 год. пре нове ере. Најпре је почела да се гаји у јужној Арабији и одатле се проширила по земљама Медитерана. Гајили су је стари Феничани, Грци и Маври.

У старој Гркој плод смокве је био нарочито цењен и коришћен као храна која окрепљује организам и даје му снагу.

Смоква је типична медитеранска биљка. Међутим, среће се спорадично и у континенталним подручјима медитеранских земаља.

Португалија је највећи светски произвођач смокве. Велики произвођачи су и: Италија, Турска, Шпанија и Грчка.

Смоква је воћка која може да се гаји као стаблашица или жубун. Има широку ретку круну. Може да се развије и до 10 m висине. То је листопадна воћка са неким специфичностима. На површину реагује лучењем беле течности. Цветови су јој скупљени у затворене цвасти. Има три серије цветова: пролетње, летње и јесене. Цветови могу бити функционално женски или хермафродитни. За опрашивање женских цветова потребно је присуство инсекта смоквине осе (Blastofaga grossorum), чија ларва преживљава у јесенјој серији цветова дијала смокве. Имаго излазећи носи полен и преноси у цвасти сорти, где врши оплођење женских цветова. Овај начин опрашивања назива се кайрификација. Плодови се могу формирати и без оплођења – партенокарпно.

Смоква се размножава резницима и издланцима.

Скромних је захтева према земљиштима и агротехници. Даје задовољавајуће приносе и на слабијим земљиштима и без посебне агротехнике.

Плод смокве је изузетне биолошке вредности. Може да се користи као свеж, сув или прерађен (у компот, слатко, цем), током целе године.

Плод смокве у свежем стању садржи 18–32% суве матерije, 0,18–0,47% органских киселина, 14–23% укупних шећера, 13–21% моносахарида (глукозе и фруктозе), 1,5–2,5% пектине и значајну количину минералних материја и витамина.

Суви плодови смокве садрже: 74–79% суве материје, 0,38–0,58% органских киселина, 48–60% укупних шећера, 47–56% моносахарида, око 3,6% пектине и белачевине, од минерала: 964 mg% K, 162 mg% Ca, 116 mg% P, 71 mg% Mg, 86 mg% Mn и 3,0 mg% Fe; од витамина: 0,05 mg% каротина, 0,22 mg% витамина B1, 0,05 mg% B2, 1,7 mg% PP и 1,0 mg% C.
ПРОИЗВОДЊА СМОКВЕ У ЈУГОСЛАВИЈИ

Смоква се у Југославији гаји углавном на Црногорском приморју. Производња смокве је врло скромна и годишње износи око 2.421 т или 0,18 kg по становнику (таб. 8-). У укупној производњи воћа смокви припада 0,15%.

Таб. 84 – Број стабала и производња смокве у СР Југославији

<table>
<thead>
<tr>
<th>година</th>
<th>стабала у хиљ.</th>
<th>производња, тона</th>
<th>принос по стаблу (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>укупно</td>
<td>способно за род</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>196</td>
<td>144</td>
<td>2.650</td>
</tr>
<tr>
<td>1965</td>
<td>279</td>
<td>238</td>
<td>2.440</td>
</tr>
<tr>
<td>1975</td>
<td>282</td>
<td>262</td>
<td>4.561</td>
</tr>
<tr>
<td>1985</td>
<td>256</td>
<td>242</td>
<td>3.095</td>
</tr>
<tr>
<td>1988</td>
<td>255</td>
<td>243</td>
<td>2.884</td>
</tr>
<tr>
<td>1989</td>
<td>256</td>
<td>246</td>
<td>2.308</td>
</tr>
<tr>
<td>1990</td>
<td>356</td>
<td>246</td>
<td>3.643</td>
</tr>
<tr>
<td>1991</td>
<td>260</td>
<td>246</td>
<td>2.689</td>
</tr>
<tr>
<td>1992</td>
<td>257</td>
<td>246</td>
<td>1.731</td>
</tr>
<tr>
<td>1993</td>
<td>257</td>
<td>246</td>
<td>1.737</td>
</tr>
</tbody>
</table>

У протекле четири децении број стабала смокве се није знатније повећавао. Производња у истом периоду је варирала. Значајно увећање производње је постигнуто у периоду 1965–1975. године, да би после тога опет уследило опадајући тренд, који је посебно изражен у последње две године.

Гајење смокве у нас стагнира и назадује. Главни разлог је конкуренција другог воћа, односно гајење брескве и све више агрума на нашем Приморју.

СИСТЕМАТСКО МЕСТО И ПРЕЦИ СОРТИ СМОКВЕ

Смоква заузима следеће место у систематици биљака:

Одељак: Magnoliophyta (Angiospermae, скривеносеменице)
Класа: Magnoliatae (Dicotyledones, дикотиле)
Поткласа: Hammamamelidae
Ред: Urticales
Фамилија: Moraceae (луд)
Род: Ficus (смоква)
Подрод: Eusyce (смоква)
Врста: Carica L.
Род *Ficus* обухвата око 1.000 врста. *Corner* (1965) сае врсте рода *Ficus* групише у 48 подродова.

Родоначелник највећег броја сорти је врста *Ficus carica* из подрода *Eusyce* са своја два варијетета:
1. *Ficus carica* var. *sativa*
2. *Ficus carica* var. *caprificus*

Поред ове врсте, родоначелници мањег броја сорти су и врсте: *Ficus granifolia* Mig., *Ficus palmata* Fock., *Ficus pseudocarica* Mig. и *Ficus serrata* For.

СОРТЕ СМОКВЕ

У свету су познате многобројне сорте смокве. Међусобно се разликују и подељене су према боји покожице на беле и црне сорте. Према томе колико пута донесу род у току године, деле се на: једнородне и двородне.

- Једнородне беле смокве: резавица, бујака, зимица
- Једнородне црне смокве: црна дужица, црна патлицанка
- Двородне беле смокве: петровача, бела скадарка (султанија, бела калифорнијска)
- Двородне црне смокве: петровача црна, султанија црна, црна сушелица, црница херцеговачка.
НАР ИЛИ ШИПАК

Нар (Punica granatum) је воћка медитеранског, највероватније пореклом из Западне Азије, из Ирана. Дапас се највише гаји у земљама око Средоземног мора (у Италији, Шпанији, Турској, Грчкој, Тунису и др.).

Нар је од најдужих времена гајен као воћка, украсна и лековита биљка.

У Египту су га позnavали и употребљавали за лечење још 2.500 година пре нове ере, о чему свидетелство писмени најбољи у старим египатским гробницама.

Ова воћка је била биљка-култа у сиријско-фениканском верским обредима.

У старој Грчкој, Кайен описује сок нарна као лековит напитак, што исто чини и Хидокраї (400 год. пре нове ере), препоручујући га као освежавајући напитак за болесне од грознице.

За време римских ратова Римљани су га донели из Картагине, одакле и потиче његов латински назив Punica granatum, нако није пореклом из Африке.

У нашој земљи се спорадичан гаји, а сречно се и у спонтаној популацији, у приморском делу Црне Горе (у околини Бара, Будве и Улциња) и у басену Скадарског језера (Подгорица, Вирипазар, Даниловград).

Нар је воћка невеликих размера, неправилно разграната, жбунаста, понекад са бодљама, испуцале и разризене коре дрвета. Изузетан је лепог, крупног цвета, наранџасто-црвене боје.

Плод нарна је бобица као јабука, лепе руме боје и изузетно ђељено и омиљено воће за потрошњу у свежем стању и израду различитих прерађевина (сирупа, сокова, ликера, мармелада и др.).

У хемијском погледу плод нарна је велике биолошке вредности, јер је извор суве материје (22-32%), киселина (1,5-2,8%), нарочито лимунске, инвертиних шећера глюкозе и фруктозе (8-21%), танина (0,5-0,9%), пектине (0,7-2,0%), минералних материја (око 0,8%), витамина C (20-99%) и др. вредних састојака.

Због тога, као и због чињенице да је нар релативно отпоран према болестима и штеточинама, те се при његовом гајењу не врши готово никаква заштита хемијским средствима, његов плод има велику хранљиву и дијетотерапетску вредност.

У хори плода нарна налази се значајна количина пектинских и танинских материја, које имају велику примену у прехрамбеној индустрији (у произвођању воћних желеа, мармелада и цемова), у техници као лепак и средство за апетиту, у медицини као лек против стомачких болести и у фармацији као емулгатор и везивно средство.
Количина витамина С је такође знатна, нарочито у тзв. „дивљем нару“ из спонтане популације. Тај садржај је варијабилан у самом плоду и највише заступљен у зрну, а најмање у кори.

Нар је корисна воћка и због пошумљавања крша, јер позитивно делује на везивање терена и спречавање појаве ерозије.

То није само корисна воћка, већ и декоративна биљка током целе године, а нарочито у време цветања и у време дозревања плодова. Треба је гајити у већој мери на окућницама и вртовима у приморском подручју наше земље, како због квалитета плода, тако и због естетског ужитка.

CORTE НАРА

Иако је производња нарца у нашео земљи мала, у гајењу је заступљен релативно велики број сорти. Оне се међусобно разликују по многим особинама. На основу укуса, плода, могу се поделити у 3 групе:

1. Сорте слатког укуса – шербетлија, слатки танкокорац, слатки ситно зрнасти, коњски зуб, кара мустафа, дара дервиш, изум нари, сладун и др.
2. Сорте накиселог укуса: дивидиш, главаш, лифанка и др.
3. Сорте киселог укуса: кисели нар, пасуни нар, кисели дивидиш и др.

![Сл. 240 – Пекан (Caria pecan) je jезграшћо воће сунчаројских крајева](image-url)
ТРОПСКО ВОЂЕ

Тропско вође се гаји искључиво у тропском и суптропском климатском појасу, који се одликује релативно високим просечним температурама и стално високим релативном влажношћу ваздуха. Лета су дуга и жарка, са благим прелазима ка топлим зимама.

Управо ових неколико карактеристика тропске климе су и разлог да се ово вође у наше умереноконтиненталним условима не може гајити за комерцијалну производњу. То никако не значи да многе од ових вођака не могу бити спорадично присутне бар у нашим баштама. То је један од разлога да у овој књизи посвећујемо мало простора и овом вођу.

Други разлог, много битнији је чињеница да је то вође све присутније на нашеј тржиштима и трпези. Неки од тих плодова су присутни током целе године (као нпр. банана) и представљају омиљено вође, нарочито деце и млађих, док се већи број среће периодично, врло често пред крај зиме, кад је и понуда квалитетног континенталног вођа врло сиромашна.

Појава тих атрактивних плодова у том моменту је вишеструко значајна у исхрани човека, јер већина врста тропског вођа представља ризицу, пре свега витамина, као и других корисних материја.

БАНАНА

Банана (Musa Paradisiaca), припада фамилији Musaceae. Пореклом је из тропске Азије. То је спонтани хибрид азијских врста (Musa sapientium, Musa cavendishii и др.)

Банана је најраширенiji и, по количини плода, у светској трговини, најзаступљеније вође.

Највећи производачи банана су: САД, Бразил, Индија, Идонезија, земље Јужне Америке и др.

Порекло латинског имена рода је арапско. Карл Лине је то име прихватио у спомен на Антонија Мусу (63–14 год. пр. н. е.), личног лекара римског цара Августа, који је пловове ове тропске вођке користио у својим терапијама као лек.

Надземни део банана условно се може назвати „стабло” јер је, (као код палме) „дебло” саграђено од преосталих основа отпадних листова и на врху се завршава рукавицами, те се не грана. Висина билке је умерена и среће се од 3 до 9 m.
Корен је врежаст и из његових пупољака избijaју нови издаци, којима се у интензивној производњи врши умножавање сорти банана.

Лишће је крупно, кожно, сјајно, зелене боje. Врло је развијеног централног нерва и многоброjних паралелних нерава другог реда који досежу до ивице лиске. Лишће је распоређено спирално и ствара врши чуперах. Цветови су жуте боje, скупљени у класасте цвасте са израженим љубичастим пазуширним залисцима.

Плодови настају парченокарпијом без оплодиње и семена.

Плод је крупна дугуљаста бобица, са нешто дебљом покожишном зелене до жуте боje. Месо је путерасте консистенције, врло укусно, ароматично, квалитетно.

Плод банане је врло богат скробом (69–79%), шећерима (11–22%), танинima (1,0–2,5%), витаминима: C (6–16 mg%), B, A, D, K, угљима (0,1–0,4%), минералним материјама (посебно K) и другим хранљивим супстанцама.

Због изузетног пријатног укуса, плод се највише користи као стоно вође, у свежем стању.

Банане су врло осетљиво вође, те за манипулисање захтевају посебне услове. Транспортују се бродовима са уграђеним коморама у којима се могу одржавати најповољније услови температуре (од 13 до 14°C) за поједине сорте. Банане се чувају (око 3–4 недеље) у истим условима, као и за време транспорта, уз контролу етилена преветравањем и обновљањем ваздуха, као и контролом садрања CO2 и O2 у коморама.

Данас се у свету гаји велики броj сорти банана. Најразвијеније су сорте: грос мишелин, кевениди и њени мутанти, лакатан, рамајана и др.

МАНГО

Манго (Magnifera indica L.), припада фамилии Anacardiaceae. Пореклом је из Јужне Америке.

Данас су највећи светски производачи манга: Индија, Индонезија, Полинезија, Хаваји, Мадагаскар, Канарска острва, Куба, Јамајка, Бразил, Мексико, Јужна Африка и др.

За манго се каже, да је у Азији оно, што је јабука у Европи. У Европу су га први пут донели португалски морепловци у 18. веку.

Име му потиче од речи манго, што је индијски назив за плод ове вођке и латинске речи fero – што значи носим.

То је вођка умерено бујног стабла 5–6 m, мада поједини егземплиар могу достићи висину и до 30 m.

Лишће је кожно, дугуљасто (могу бити дужине и до 35 cm), тамнозелене боje, често таласастих изица. Миришљави црвенкасти или жућкасти цветови су скуп-
љени у метасте цвасти. На истој цветној оси се могу наћи једнополни (мушки) и двополни (хермафродитни) цветови. Плодове замење апомиктично.

Плодови су монокарпне коштинице, овално дугуљастог облика, најчешће ћилибарне, а могу бити и пупурне боје, масе 100–500 g, а могу бити и 1–2–8 kg.

Месо плода је жуто-наранџасто, ароматично, врло сочно и изузетно квалитетно. Богато је шећерима (15–20%), витамином C који се креће у зависности од сорте од 50–178 mg на 100 g масе. Изузетно је богат каротином (провитамином А), као и витамином В комплекса (нарочито В1 и В2).

Плод манга може да се користи у свежем стању, конзервисан, смрзнут, прерађен као пире, пам, сок и осушен.

Плодови се беру у Јужној Америци од септембра до половине јануара, а у Индији у јуну.

На температуре 7–8–10°C плодови манга могу се чувати 1–2 месеца.

Данас у свету постоји око 1.000 сорти манга. Најпознатије и највише гајене сорте су: боданик, нелан, распури, извин, зил, кент итд.

ПАПАЈА

Папаја (Carica papaya) припада фамилији Caricaceae. Пореклом је из тропске Америке. Од давнина се гаји у јужном Мексику и државама Средње Америке. Данас се још гаји и у Индији, на Филипинима и Јужној Африци.

Папају су у Европу донели шпански морепловци у 16. веку.

Име јој потиче од латинске речи carica, што значи смоква, због велике сличности лишића ове две врсте.

Стабло је змизелено средње бујности (6–8 m), меснатог дебла због меканог дрвета и сиво-смеђе коре. На деблу су уочљиви ојиљаци од листова који отпадају. Стабло ове воћне врсте се не грана, већ се на врху налази велики чуперак престао режњевитих листова, широких око 50 cm и исто толико дугачких шупљих петељки.

Папаја је дводома биљка и често ствара цветове на стаблу (каулифлорија). Цветови су ситни, жути – мушки левкастог облика, а женски састављени од 5 крупних листића. Међутим, постоји и сорте са хермафродитним (двойником) цветовима.

Плод је врло крупна бобица, масе 1–6 kg, дугуљастог облика, зелене до жуте боје покожице.

Месо је сочно, меко као путер, црвенкасто до жуто, слаткасто ароматичног укуса, биолошки високог квалитета.

Плод папаје је богат, пре свега витамином C (до 180 mg%), скробом (85–90%), каротином (до 0,24 mg%), шећерима (9–10%) и др.
ТРОПСКО ВОЊЕ

Плод папаје може да се користи у свежем стању: као десерт (једе се као динђа) и као салата (уз мало соли). Зелени плодови се могу кувати као поврће. У земљама где се гаји плод папаје се ради једе за доручак, уз мало лимуну.

Незрели плодови су још интересантни због млечног сока, који је богат ензимом папанином који поспеваје варење.

На тржишту се плод папаје може наћи и као конзервисан, прерађен у слатка, мармеладе, спадолед итд.

Плодови се чувају око 3 недеље на температури од 8°С и релативној влажности ваздуха од 85%.

АВОКАДО

Авокадо (Persea americana) припада фамилији Lauraceae. Пореклом је из Средње Америке, одакле се распрострањило у великим деловима тропског и суптропског појаса.

Највећи светски произвођач плодова је Мексико, Колумбија, Гватемала, Еквадор и Индија.

Име му потиче од грчке речи persea, што је назив неодређеног египатског стабла.

То је зимзелено, брзорастуће бујно стабло, висине 10–20 м, растресите, округласте круне. Носеће грани су му крте, лако ломљиве под тежином плода или налетима ветра. Лице је кожасто, елиптично шиљастог облика, зелене боје, најчешће маљаво, изражене нерватура са наличја лиске. Цветови су хермафродитни, ситни, зеленкасте боје, скупљени у метличасте цвасти.

Плод је монокаприна коштунца крупколиког, јајастог или округластог облика, масе од 100 до 400 г. Покожица плода је више или мање глатка, тамнозелене или пурпуране боје, дебела 1,5–2 см.

Месо плода је врло развјено, пустерасте консистенције, жутозелене боје, киселасти гукаса, високог квалитета.

Авокадо је врло богат витаминима C, B комплекса, Е, А, Е и К, уљима (10–30%), сувом матерijом (25–30%), протеинима (1,6–2,1%), минералним материјама (1,0–1,8%), нарочито фосфором и калијумом) и другим хранљивим материјама. Треба посебно истаћи врло мали процент шећера (0,5–1%).

У средини плода се налази велика семенка крупкастог облика, тамнобраон боје. Семе је такође богато садржајем масти (око 2%), скроба (око 30%), протеина, јабучасте киселине, шећера, пектине, танине и гумине.

Плодови се употребљавају у свежем стању као десерт (уз додатак млека и шећера), у воћној салати (заједно са ананасом, поморанцом и лимуном) или као салата (уз додатак лука, бибера и соли).
Плодови се бере у технолошкој зрелости и на температури од 4,5 до 7°C могу да се чувавају до 2 месеца.
Данас се у свету гаји велики број сорти авокада различитих својстава, које се по пореклу могу груписати у три еколошке групе: мексичку, гватемалску и западноиндичку.

КОКОСОВ ОРАХ

Кокосов орах (*Cocos nucifera*) припада фамилији *Palmaeae*. Пореклом је из Јужне Америке.
Данас се највише гаји у Индонезији, Индији, Филипинима, Шри Ланки, Африци, Австралији, Јужној Америци и југоисточној Азији.
Кокосова палма је стабло висине 25–30 м, са перастим лишћем на врху.
Плод је кокосов орах, масе од 500 г до 1 до 4 кг. Плод се састоји од сполашњег влакнастог омотача браон боје, црвте дрвенасти љуске (на коју отпада око 25% масе) и језгра.
Кокосов орах може да се конзумира у незрелој фази развоја плода – у облику млечне течности, која је врло укусна и хранљива јер садржи 23–34% масноће, око 4% беланчевина, 12–17% шећера и 16–30 mg% витамина C.
У зрелој фази, језгро постаје чврсто, сапунасто и мање укусно за конуим у свежем стану. Може се сушити, млети у тзв. кокосово брашно, које је врло квалитетно јер садржи 60–70% масноће, око 0,3% беланчевина и 16–30 mg% витамина C.
У земљама где се гаји из језгра се екстракује јестиво уље, од кога се прави маргарин, а користи се и за справљање сапуна. Од влакнастог омотача праве се ужак, четке, застирачи и сл.
Плодови кокосовог ораха се могу чувати 1–2 месеца на температуре од −1 до 0°C и влажности ваздуха од 80–90%.

ГУЈАВА

Гујана (*Psidium guajava*) је тропско воће из фамилије *Myrtaceae*, пореклом из Средње Америке. Име јој потиче од грчког израза *psidion*, што значи мограњ, због велике сличности плодова. Данас је распрострањена у тропском и суптропском подручју, и посебно у Индонезији, под именом „дамбузи“.
У Европу је донета у 19. веку и интензивније се гаји у Италији, на Сицилији. Стабло је средње бујно, висине до 8 m, танког дебла, прекривеног зеленкастом смеђом љускастом кором. То је зимзелена воћка, кожастих листова, дугуласто-ја-
јастог облика. Лишеће је светлозелене боје, са лица маљаво а са налица врло изражене нерватуре. Лисне држи су кратке. Лишеће је у паровима распоређено са обе стране гране.

У пазуху лишећа јављају се цветови појединачно или 2–3 заједно. Цветови су хермафродитни, белих круничастих листића.

Плод је бобица, округластог или крушковитог облика, масе 30–150 г, на чијем врху се налазе остаци чашчичних листића.

Месо је беле, жућкасте или ружичасте боје, врло јаког опојног мириса, биолошке високог квалитета (богато витаминима).

Постоји велики број сорти гујаве, које се разликују међусобно. Најраширенiji и најбоља је сорта „банкок".

У зависности од условия гајења постижу се врло различити приноси, од 2 до 20 kg по стаблу.

Плодови се беру од септембра до јануара.

Могу да се користе као столо воће или као прерађено у пекмезе и цемове.

ТАМАРИЛО

Тамарило (Syphomandra betaceaе) припада фамилији Solanaceae, по-фамилији Solanaceae.

Род Syphomandra садржи око 30 врста, које су пореклом из централне и јужне Америке и западне Индии. Све сорте тамариле припадају врсти Syphomandra betacea која потиче из Перуанских Анда.

Данас се тамарило гаји, осим у својој домовини (Перуу) у Индији, Индонезији, Цејлону, а последњих година се нарочито много шири на Новом Зеланду.

Стабло је малих размера, висине око 3,5 m. Лишеће је зелено, појединачно, крупно, елиптично-широког облика, зелене боје.

Цветови су крупни, миришљави, врло привлачни за пчеле и остале инсекте.

Плод је бобица масе 50–100 g, глатке, нежне покожице, жуте, наранчасти или црвени боје. Месо је светлонаранчасте боје, сочно, меко, укусно, ароматично и врло квалитетно.

Плод тамарила је изузетно богат витаминима, каротинима (560–780 mg на 100 kg масе), В комплекса (нарочито B6, кога има од 190 до 400 mg/100 g, B1 и B2), витамином E (од 1.860 до 2.010 mg/100 g), витамином C (око 30 mg%) и др. Такође је врло богат минералним материјама (нарочито K, микроелементима Fe, Mn и Zn) и другим хранљивим супстанцама.

Плод је врло погодан за конзум у свежем стању, а може се користити у кулинарству за справљање колача и као прерађен у цемове, пире итд.
ФЕЈОА

Фејоа (*Feijoa sellowiana*) припада фамилији *Myrtaceae*. Пореклом је из тропске Америке, од Бразила до северне Аргентине.

Данас се гаји у ограниченом обиму у свим земљама тропског појаса. У Европу је унета крајем прошлог века и релативно успешно се гаји на талĳанско-француској обали.

Име је добила у 19. веку, у част бразилског ботаничара de Silva Feijoa.

Стабло је малих размера (до 5 m) и више личи на грм, јер се разгранањава од површине земље.

Лишће је такође релативно ситно, елиптичног облика, зимзелено, појединачно, сјајнозелене боје с лица и сребрнасто сиво с наличја.

Цветови су појединачни или скупљени у китице у пазуху листова. Цветови су лепог изгледа због врло изражена 4 прашника који су споља беле боје, а изнутра тамноцрвене до љубичасте.

Плодови су бобице дугуласти-округластог облика (дужине око 5 cm), са трајно заосталом чашницом на врху. Кора плода је кожаста, тамноцрвене, а затим смеђе боје. Месо је сочно, меко, беле боје, са много ситних семенки, укусно и квалитетно.

Плодови се могу користити као свежи, ушћерени у облику желеа или прерађени у цемове.

ЈУВИЈА (БРАЗИЈСКИ ОРАХ)

Јувија (*Bertholletia excelsa*) припада фамилији *Lecythisae*. Пореклом је из Јужне Америке, са подручја Амазона и Рио Негра у Бразилу, где ствара велике шуме.

Данас се гаји у тропским земљама Америке и Азије.

Стабло ове воћке је врло бујно, висине 30–40 m, пречника дебла преко 1 m, изобраздане коре и релативно мале округле круне која се ствара у вршном делу стабла.

Лишће је појединачно, кожасто, крупно (дугачко до 50 cm), зелене боје, наизменично распоређено.

Цветови су хермафродитни, скупљени у цвасти метлице, светложућкaste боје, са 6 крупних листића.

Плод је монокарпна коштуница, округласто-издуженог облика, пречника око 10 cm, споља одрвенаца. Унутар плода се налази око 20 угластих семенки, које су одрвенеле, храпаве, тврде или меке љуске. Јестиви део плода је као код свих ораха, семе са врло увећаним ендолпермом.

Семе је врло богато уљем, витаминима (нарочито D, E и K), шећерима, и др. корисним материјама.

Може да се одржава свежо или суво.
ЛИЧИ

Личи (Litchi chinensis) припада фамилији Sapindaceae. Пореклом је из Јужне Кине.
Данас је врло раширен у Индији, Индонезији и другим земљама тропског појаса.
Име је кинеског порекла.
Стабло му је средње бујно (6–8 m), али у спонтаним шумама поједини егземплири могу бити и преко 12 m висине. Круна је округласта, густо обрасла висећим гранама.
Лишће је парно перасто, састављено од 2 до 4 пара елиптично ушиљених лиски, које су с лица сјајнозелене, а са налица тамнозелене боје.
Цветови су скупљени у дуге (до 30 cm) цвасти – метлицу, које се налазе на врховима грана. Појединачни цветови су ситни, неупадљивог изгледа, беле боје.
Плод је крупна монокарпна коштунница. Она се састоји од плодовог омотача (арилуса) и врло крупне семенке. Месо плода је јестиво, сочно, прозирно, жепатинасто, беле боје, врло пријатног укуса и мириса (попут најквалитетнијих сорти гроздја – мускатног укуса).
Плод може да се користи у свежем етану или као осушен за справљање брашна које налази примену у кондиторској индустрији.
Пожежица плода (кора) је храново-брадавичаста. У почетку је розикасто-првепне боје, а касније у пуној зрелости прелази у браон боју и одрвењава.
Данас се гаји вели број форми и сорти личија.
Неки аутори личи поистовећују са тропским воћем рамбутаном. Сличност постоји у изгледу плода иако се ради о различитим врстама. Рамбутан води порекло од врсте Nephelium lappaceum и врло је раширен у Индонезији.

КАРАМБОЛА

Карамбола (Averrhoa carambola) припада фамилији Oxalidaceae.
Пореклом је са Малајског архипелага.
Данас се највише гаји у Кини, Индонезији, Индији, Хавајима и Бразилу.
Стабло је средње бујности висине до 9 m. Лишће је парно перасто (2–8 лиски дужине од 3,5 до 8 cm).
Плод је врло кружна бобица (200–800 g) необичног изгледа, издухено цилиндричног облика, на пресеку звездастог.
Пожежица плода је светлозеленкасте боје, какво је и месо, које је сочно, изразито киселкастог укуса, високог квалитета.
Плод је врло богат витамином С (100–200 mg на 100 g масе), витамином В комплекса, шећерима, организким киселинама и др. Може да се користи као дезерт или као салата уз егзотична јела.

ОПУНЦИЈА (КАКТУС)

Опунција је спонтани хибрид врста Opuntia ficus indica и Opuntia megasanta. Припада фамилији Cactaceae. Пореклом је из југоисточне Азије. Дана се највише гаји у Индији, Индонезији, Филипинима и другим земљама тропског појаса. Крајем 19. века донета је у Европу и солидно успела на Сицилији и Корзици.

Биљка је типичан кактус висине 1–1,5 m са меснатим, овално широким, бодљикавим листовима. Плод је бобица, масе 100–300 g, различите боје (од зелене преко жуте до љубичасте), издужено-овалног облика. Месо је сочно, мекано, слатко накиселог укуса, одличног квалитета. Овај плод је врло богат каротинима (од 2,8 до 4,3%), сахарозом (до 20%), организким киселинама (око 1%), уљима, и др. корисним супстанцама. Може да се користи као стино воће, или прерађен у љемове, пире, сокове.

АНАНАС

Ананас (Ananas comosus) припада фамилији Bromeliaceae. Пореклом је из тропске Јужне Америке, Бразила и Парагваја. У Европу је донет Кулумбо, 1493. год. Највећи светски производачи ананasa су: земље Јужне Америке, Тајланд, Малезија, Хаваји, Кина, Јужна Африка.

Надземни део биљке је розета, састављена од кожастих листова, зелене боје, назубљене ивице. Розета је висине 60–90 cm, а ширине 60–120 cm. На врху розете формира се плод без семена. Зато се ананас размножава вегетативно. Свака биљка носи само један плод. Од садбе оживљене резнице до бербе прође 18–22 месеца. Плод је купидон, масе 500–2000 g, издужено-кружкастог облика, дебеле одрвене коре, која у процесу дозревања прелази од зелене преко жуте (када се беру плодови) до светлобраон. На врху плода остају зелени листови.

Месо плода је сочно, жућкасто-зеленкаст боје, ароматично и врло квалитетно. Плод је богат витаминима A и В комплекса, сувом материјом (око 15%), шећерима (1,2-13,6%), организким киселинама (0,6–1,8%) и другим хранљивим супстанцима.
Опунция - Кактус
Тамарилло
Карамбола
Ювила
Фейоа

Пасифлора

Планшета кактуса на Сицилии
Зрели плодови анасаса се чувају од 2 до 4 недеље на температуре од 4,5 до 7°C и влажности ваздуха од 85 до 90%.
Плод се користи за потрошњу у свежем стању за воћне салате, конзервисан, или за справљање сокова.

ПАСИФЛОРА

Пасифлора припада фамилији *Passifloraceae* која броји преко 400 врста.
Најзначајније међу њима су родоначелници данашњих гајених сорти и форми, врсте:

1. *Passiflora edulis*
2. *Passiflora laurifolia*
3. *Passiflora quadrangularis*

Ово тропско воће је пореклом из тропске Јужне Америке.
Највећи светски производачи пасифлоре су: Бразил, Аустралија, Цејлон, Хаваји, Јужна Африка, Нови Зеланд, Нова Гвинеја и др.
У Европу је донета у 17. веку.
Пасифлора је типична лијана, врло дугачког стабла (25–80 m). Размножава се вегетативно оживљавањем резница или положница.
Лишће је крупно, прстесто усечено, к敁асто, тамно зелене боје. Цвет је крупан, хермафродитан, са врло израженим звездастим жигом и множтвом кончастих прашника. Крунчични листићи су беле боје.
Плод је бобица, округласто-ovalног облика, крупноће 50–80 g, наранцаосторо-браон боје. Сочна и врло квалитетна. Плод је богат сувом материјом (15–21%), шећерима (13–15%), органским киселинама (0,7–0,9%), а посебно витамином A (0,6–0,9 mg%), витамином C (20–46 mg%) и витамином K (1,7–2,2 mg%).
Плод пасифлоре се може користити за јело у свежем или сувом стању.

АНОНА

Анона – керимола (*Annona cherimola*) припада фамилији *Annonaceae*. Потиче из тропских и суптропских подручја Латинске Америке. Према неким истраживањима прадомовина су јој перуански Аанди.
Данас је у Јужној Америци познато око 65 врста ове фамилије, од којих су само четири врсте јестивих плодова, а само се плодови једне од њих (*Annona cherimola*) увозе у Европу.
Име *anona* је народни хаићански израз.
То је стабло малих размера (5–7 m), громоликог изгледа. Често се разгранава од земље, а младе гране су прекривене црвенкастим пепељком. Лишће је крупно, обрнуто јајастог облика са израженим врхом, наизменично распоређено. Лице лиске је благо маљаво, интензивно зелене боје, а наличје сомотасто и модро зелено.

Цветови су појединачни, врло мирислива и развијају се на супротној страни нодуса, паралелно са листовима.

Ретко кад се цветови јављају у пазуху листова. Цветови се понекад јављају и у паровима, сомотастог су изгледа и сраслих чашичних и круничилих листића. Цветови се састоје од 6 листића распоређених у два реда. Спољашња три листића су дугуластих облика с лица беле, а с наличја зеленкасте или црвенкасте боје. Унутрашња три листића су ситна, љускава, драпкесте или љубичасте боје.

Плод, због кога се билка и гаји је брадавичаста синкарпна коштуница. Плодови су крупноће око 100–150 g различитог облика, од округластог до неправилног, прекривени су зеленом кожастом оном, љускостог изгледа. На први поглед лице на велике зелене шипарице. Зрењем плода општа добија тамно црвенкасту боју, омекшава и тек тада може да се једе. Месо је беле боје, укуса на јагоду преливну шлагом.

Ова громолика воћка данас се гаји у многим тропским и суптропским деловима широм света. Нарочито добро успева у пределима погојним за гајење лимуна. На тражишту Европе већина пловова анон доспева из Шпаније и Израела.
ЛИТЕРАТУРА

Булатовић, С.: Производња важнијег континенталног воћа у СФРЈ као сировинска база за конзервну индустрију. Технологија воћа и поврћа, бр. 11, Београд, 1976.

Булатовић, С.: Воћарство, Завод за издавање уџбеника и наставна средства, Београд, 1980.

Булатовић, С.: Воћарство, Завод за издавање уџбеника и наставна средства, Београд, 1989.

Булатовић, С.: Прилог познавању важнијих сорти бресака у Сmederевском Подунављу. Архив за пољопривредне науке 12, 1953, Београд.

Булатовић, С.: Утицај температуре на време цветања бресака. Зборник радова Пољопривредног факултета Београд, св. 2, 1954.

Булатовић, С.: Жабука, крушка и дуња. Задружна књига, Београд, 1967.

Булайовић, С.: Однос коштице и мезокарпа у плодовима бресака различите крупноће и његов значај за технологију и исхрану. „Храна и исхрана”, бр. 6, Београд, 1963.

Булайовић, С. – Раховић, Д.: Утицај концентрације крезанана на вегетативне и генеративне органе неких сорти бреске. „Заштита биља” 78/1964, Београд.

Булайовић, С. – Раховић, Д.: Утицај резидбе на принос и вегетативни прираст пионске ране и гермерсдорфске трешње. Архив за пољопривредне науке, бр. 64/1966, Београд.

Булайовић, С. – Раховић, Д.: Изучавање биолошког потенцијала пораста и родности вишње керешке и сенешке у условима Смедеревског Подунавља. Архив за пољопривредне науке бр. 79/1969, Београд.

Childers, N.: The Peach Editor Rutgers University, New Brunswick, 1975.

Childers, i dr.: Mineral Nutrition of Fruit Crops, 1954.

Howlett, E.: Modern Fruit Production, 1957.

Кауешевић, Н.: Прилог познавању питомог кестена у сливу горња Неретва. Арх. за пољ. науке бр. 10. Београд, 1952.

Колекције аутора Института за воћарство – Чачак: Воћарство, Београд.

Лучић, П.: Изучавање развоја корјена и надземних грана шљиве пожегаче на изданку и цанаракти на терасастом земљишту. Докторска дисертација. Пољ. фак. Сарајево, 1970.

Mеhдрерад, З.: Агротехника плодовних култур, 1950.
Мураиовић, А.: Изучавање особина родних гранчица сорти јабука као израз њихове биолошке природе. Зборник радова Завода за воћарство и виноградарство, Сарајево, 1970.
Павићевић, Н.: Физика земљишта, Пољопривредни факултет, Београд, 1972.

Пејкић, Б.; Ненадовић-Мрашић, Евица; Вулић, Т.: Утицај ниских температур на измрзавање цветних пупољака неких сорти кајсије, шљиве и вишње, Југословенско воћарство, 21-80 (1987)/2/19/25, Чачак.

Пејкић, Б.; Ненадовић-Мрашић, Евица; Вулић, Т.: Утицај ниских температур на измрзавање цветних пупољака у неких сорти јабуке и крушка, Југословенско воћарство, бр. 83, 9-15, 1988, Чачак.

Василенко, И.: Новие дија култури вишни, 1954.
Производња и прерада воћа и поврћа. Први конгрес о производњи људске хране. Нови Сад, 1975.
Mele e Pere de Trentino–Alto Adige. Edito a cura dell’Assessorato Agr. e commercio della reg. Trentino – Alto – Adige.
Пољопривредни приручник. Задружна књига, Београд, 1959.
Pomologia Republicii Socialiste Romania, Tom IV, 1965.
| САДРЖАЈ |
|-----------------|---------------|---------------|
| ПРЕДГОВОР | МЕТРИ | 1 |
| УВОД | 3 |
| ВОЂАРСТВО У ПРИВРЕДИ ЈУГОСЛАВИЈЕ | 6 |
| ПОВРШИНЕ ПОД БОЂАЦИМА И ЊИХОВА ЛОКАЦИЈА У СР ЈУГОСЛАВИЈИ | 8 |
| ПРИНОСИ И КВАЛИТЕТ ПЛОДОВА | 10 |
| НАЧИНИ ИСКОРИШЋЕЊА БОЂА | 11 |
| ВИШКОВИ БОЂА ЗА ИЗВОЗ | 13 |
| МОГУЋНОСТИ ПРЕРАДЕ И КОНЗЕРВИСАЊА БОЂА НА ПРОИЗВОДНИМ ГАΖИНСТВИМА | 14 |
| ВАЖНИЈИ ЧИННИЦИ ЗА ДАЉИ РАЗВОЈ ВОЂАРСТВА ЈУГОСЛАВИЈЕ | 18 |
| БОЂКЕ И ЕКОЛОШКИ ЧИННИЦИ | 21 |
| БОЂКЕ И ЗЕМЉИШТЕ (Физичке особине земљишта, Хемијске особине земљишта, Биолошке особине земљишта, Типови земљишта за заједне вођака) | 21 |
| ВОЂКЕ И КЛИМА (Светлост, Топлота, Шлемерашура, Вођа, Већар) | 26 |
| ОРОГРАФИЈА (Надморска висина, Положај шерена, Надиб шерена, Велике вођне боравиште) | 43 |
| МОРФОЛОГИЈА БОЂАКА | 49 |
| КОРЕН | 49 |
| Микориза у ризосфери вођака | 52 |
| КОРЕНОВ ВРАТ | 53 |
| СТАБЛО | 53 |
| Дебло | 55 |
| Круна | 56 |
| Гране и границе | 58 |
| Лисеа | 65 |
| Пушњаци | 67 |
| Цвета | 69 |
| Плод | 73 |
| Семе | 75 |
| БИОЛОГИЈА БОЂАКА | 77 |
| ИНДИВИДУАЛНО РАСТИЊЕ (ОНТОГЕНЕЗА) БОЂАКА | 77 |
| ПЕРИОДИЧНОСТ У ЖИВОТНОМ ЦИКЛУСУ БОЂАКА | 80 |
| ПЕРИОДИЧНОСТ У ГОДИШЊЕМ ЦИКЛУСУ БОЂАКА | 82 |
| Перид зимског мироња | 83 |
| Перид вегетације вођака | 85 |
Распање корена .. 86
Лисиње ... 88
Опавање йоулака .. 88
Формирање и распање линеорасгда (младра) 90
Формирање стора и йолних јелија (пимета) 93
Цвење вођака .. 94
Опрашивање (поделка) вођака ... 98
Опавање вођака .. 101
Развијање йоулка и семена ... 108
Опавање йолода ... 110
Формирање цвећних йоулака .. 105
Опавање лишћа .. 111
Хормони и њихов значај у вођарштву 112
ТЕХНОЛОГИЈА ПРОИЗВОДЊЕ ПОДЛОТА И САДНИЦА 115
Размножавање вођака ... 115
Генерацијно размножавање (размножавање семеном) 115
Вегетацијско размножавање .. 115
Воћни расадник ... 116
Врсте йоулка и сорте вођака за умножавање 121
Програм припрема за производњу йоулка и садница вођака 133
Производња генерацијних йоулода 133
Производња вегетацијских йоулода 139
Калемљење вођака ... 148
Окулаирање (очење) .. 149
Просио слајање ... 150
Калемљење "енглеским" слајање 150
Слајање са стране .. 152
Калемљење йод кору .. 152
Калемљење на исечак .. 152
Калемљење на моси ... 153
Калемљење са стране .. 154
Калемљење ораха .. 155
Прибор и материјал за калемљење 157
Неговање садница у распању 158
Производња садница јадоастичих врста вођака 161
Посадујање са садницама до садње на садилом месту 164
Вођење садница ... 164
Паковање садница .. 165
Произиси који регулишу производњу и аромат садишћа материјала ... 167
<table>
<thead>
<tr>
<th>Садржај</th>
<th>Стр.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ПОДИЗАЊЕ ВОЋАКА</td>
<td>171</td>
</tr>
<tr>
<td>ОБЛИЦИ ВОЋАРСКЕ ПРОИЗВОДЊЕ</td>
<td>171</td>
</tr>
<tr>
<td>ПРИПРЕМЕ ЗА ПОДИЗАЊЕ ВОЋАКА</td>
<td>174</td>
</tr>
<tr>
<td>Процена рејона</td>
<td>174</td>
</tr>
<tr>
<td>Избор йоштога јаја</td>
<td>174</td>
</tr>
<tr>
<td>Избор штапа воћа</td>
<td>175</td>
</tr>
<tr>
<td>Избор врсти воћа</td>
<td>176</td>
</tr>
<tr>
<td>Избор сорти воћа</td>
<td>176</td>
</tr>
<tr>
<td>Изграђу јаљана воћа</td>
<td>177</td>
</tr>
<tr>
<td>ИСТРАЖНИ РАДОВИ ЗА ПОДИЗАЊЕ ВОЋАКА</td>
<td>178</td>
</tr>
<tr>
<td>Природни услови</td>
<td>178</td>
</tr>
<tr>
<td>Земљиште</td>
<td>179</td>
</tr>
<tr>
<td>Квалитетивно одређивање CaCO₃</td>
<td>179</td>
</tr>
<tr>
<td>Важнији особине земљишта</td>
<td>180</td>
</tr>
<tr>
<td>Извођење агромелиорације</td>
<td>183</td>
</tr>
<tr>
<td>Хидротехничке мелиорације</td>
<td>184</td>
</tr>
<tr>
<td>Одређивање јачина вође</td>
<td>184</td>
</tr>
<tr>
<td>Економски услови</td>
<td>187</td>
</tr>
<tr>
<td>Технички и други услови</td>
<td>190</td>
</tr>
<tr>
<td>Садница материјал</td>
<td>190</td>
</tr>
<tr>
<td>НЕПОСРЕДНО ПОДИЗАЊЕ ВОЋАКА</td>
<td>191</td>
</tr>
<tr>
<td>Припрема земљишта</td>
<td>191</td>
</tr>
<tr>
<td>Чишћење, равнање и шерасирање</td>
<td>191</td>
</tr>
<tr>
<td>Организација земљишне шерасирације</td>
<td>192</td>
</tr>
<tr>
<td>Распоред воћа</td>
<td>192</td>
</tr>
<tr>
<td>Размер - распоређење и одржавање између воћа</td>
<td>196</td>
</tr>
<tr>
<td>Израчунање броја садница Је хектару</td>
<td>205</td>
</tr>
<tr>
<td>Размеравање цевиште и обележавање местима за воћне саднице</td>
<td>206</td>
</tr>
<tr>
<td>Основна обрада - припрема за садњу</td>
<td>208</td>
</tr>
<tr>
<td>Распоред сорти за боље одржавање</td>
<td>210</td>
</tr>
<tr>
<td>Припрема садница</td>
<td>222</td>
</tr>
<tr>
<td>Техника садње</td>
<td>225</td>
</tr>
<tr>
<td>Радови после садње</td>
<td>227</td>
</tr>
<tr>
<td>АГРОТЕХНИКА И ПОМОТЕХНИКА У ГАЈЕЊУ ВОЋАКА</td>
<td>233</td>
</tr>
<tr>
<td>РЕЗИДБА ВОЋАКА</td>
<td>233</td>
</tr>
<tr>
<td>Особености резицибе у основним јериходима живог воћа</td>
<td>234</td>
</tr>
<tr>
<td>Резициба воћа Је намени</td>
<td>237</td>
</tr>
<tr>
<td>Време извођења резицибе воћа</td>
<td>238</td>
</tr>
<tr>
<td>Аллай, прибор и машине за извођење резицибе воћа</td>
<td>238</td>
</tr>
<tr>
<td>Садржај</td>
<td>Страна</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Круне воћака</td>
<td>247</td>
</tr>
<tr>
<td>Резициба јабуке за облик крнне</td>
<td>246</td>
</tr>
<tr>
<td>Облици јабуке за облик крнне</td>
<td>246</td>
</tr>
<tr>
<td>Пилар крнна</td>
<td>249</td>
</tr>
<tr>
<td>Вишко врело (Schlanke Spindel)</td>
<td>251</td>
</tr>
<tr>
<td>Хајшек (Hüteck) сишајем</td>
<td>255</td>
</tr>
<tr>
<td>Резициба крунке за облик крнне</td>
<td>259</td>
</tr>
<tr>
<td>Резициба брскве за облик крнне</td>
<td>263</td>
</tr>
<tr>
<td>Рећи облици крнне брскве</td>
<td>269</td>
</tr>
<tr>
<td>Резициба шилве за облик крнне</td>
<td>269</td>
</tr>
<tr>
<td>Резициба кајсије за облик крнне</td>
<td>271</td>
</tr>
<tr>
<td>Резициба брешиње за облик крнне</td>
<td>272</td>
</tr>
<tr>
<td>Резициба вишне и мапење за облик крнне</td>
<td>272</td>
</tr>
<tr>
<td>Резициба ораха за облик крнне</td>
<td>273</td>
</tr>
<tr>
<td>Резициба лешника за облик крнне</td>
<td>275</td>
</tr>
<tr>
<td>Резициба басема за облик крнне</td>
<td>276</td>
</tr>
<tr>
<td>Резициба малине</td>
<td>277</td>
</tr>
<tr>
<td>Резициба акципације за облик крнне</td>
<td>281</td>
</tr>
<tr>
<td>Резицибе воћака за рог</td>
<td>283</td>
</tr>
<tr>
<td>Воћке са јабучастим илодовима</td>
<td>283</td>
</tr>
<tr>
<td>Морфо-физиолошке основе за примену резициба јабуке за рог</td>
<td>283</td>
</tr>
<tr>
<td>Резициба јабуке у Јошуног развијености</td>
<td>287</td>
</tr>
<tr>
<td>Резициба крунке за рог</td>
<td>295</td>
</tr>
<tr>
<td>Резициба дунге и мукумуле за рог</td>
<td>309</td>
</tr>
<tr>
<td>Резициба воћака са концичавим илодовима</td>
<td>310</td>
</tr>
<tr>
<td>Резициба брскве за рог</td>
<td>310</td>
</tr>
<tr>
<td>Морфо-физиолошке особине</td>
<td>310</td>
</tr>
<tr>
<td>Техника резицибе брскве за рог</td>
<td>311</td>
</tr>
<tr>
<td>Дуђа резициба брскве</td>
<td>313</td>
</tr>
<tr>
<td>Крајска резициба брскве</td>
<td>314</td>
</tr>
<tr>
<td>Резициба брскве у ведељарости (зелена резициба)</td>
<td>316</td>
</tr>
<tr>
<td>Резициба шилве за рог</td>
<td>320</td>
</tr>
<tr>
<td>Резициба кајсије за рог</td>
<td>323</td>
</tr>
<tr>
<td>Резициба брешиње за рог</td>
<td>326</td>
</tr>
<tr>
<td>Морфо-физиолошке особине</td>
<td>326</td>
</tr>
<tr>
<td>Резициба вишне и мапење за рог</td>
<td>329</td>
</tr>
<tr>
<td>Резициба воћака са језерастим илодовима</td>
<td>331</td>
</tr>
<tr>
<td>Резициба ораха за рог</td>
<td>331</td>
</tr>
<tr>
<td>Резициба лешника за рог</td>
<td>334</td>
</tr>
</tbody>
</table>
Резициба бадема за рог .. 328
Резициба костейца за рог .. 340
Резициба вожака са јајоднесним Јајодовима .. 340
Резициба малине ... 341
Резициба рибизе ... 342
Резициба одроза ... 344
Резициба боровишта .. 345
Резициба акцилацда за рог .. 345
МИНЕРАЛНА ИСХРАНА ВОЖАКА (ВУБРЕЊЕ ВОЖАКА) ... 348
Макроелементи и њихова улога .. 348
Микроелементи и њихова улога .. 349
Врсте ђубрина ... 353
Фактори који утичу на усвајање минералних елемената 356
Одређивање норми ђубрина .. 359
Време ђубрења вожака .. 365
Начини ђубрења вожака .. 367
НАВОДЊАВАЊЕ ВОЖАКА .. 371
Одређивање потребних количина воје ... 371
Вreme наводњавања ... 372
Начини наводњавања .. 372
Вода и њена својства за наводњавање .. 377
ОДРЖАВАЊЕ И ИСКОРИШЋАЊЕ ЗЕМЉИШТА У ВОЂАЊИМА 378
Јавни угар ... 380
Залеђење земљишта ... 380
Гајење утрошица ... 381
Гајење биљака за зеленини ђубрење .. 382
Засицање земљишта ... 384
Покривање врхине пластичним мајерјалима 384
Хербициди који се користе при пицању корова 386
Заштита од глогара .. 390
ОСНОВНА ЗНАЊА О ЗАШТИТИ ВОЂАКА ... 392
ОСТАЛЕ АГРОТЕХНИЧКЕ И ПОМОТЕХНИЧКЕ МЕРЕ У ВОЂАЊУ ... 415
Прекаљемљивање војака (промена сорти прекаљемљивањем) 415
Покривање војака ... 416
Заштита војака од ниских негајивних температура – мразева 416
Послажување војака помешаном од мраза 420
Пресаљивање стварањем војака ... 421
Хлороза – узроци, начин сакречавања бојаве и лечења 422
БЕРБА И ЧУВАЊЕ ВОЂАКА ... 423
<table>
<thead>
<tr>
<th>Наслов</th>
<th>Садржај</th>
</tr>
</thead>
<tbody>
<tr>
<td>Берба воћа</td>
<td>423</td>
</tr>
<tr>
<td>Оређивање времена бера</td>
<td>424</td>
</tr>
<tr>
<td>Начин бербе</td>
<td>428</td>
</tr>
<tr>
<td>Организација и техника бере</td>
<td>430</td>
</tr>
<tr>
<td>Класирање Јлова</td>
<td>435</td>
</tr>
<tr>
<td>Паковње Јлова</td>
<td>436</td>
</tr>
<tr>
<td>Транспорти Јлова</td>
<td>438</td>
</tr>
<tr>
<td>Чување воћа</td>
<td>440</td>
</tr>
<tr>
<td>Начин (техника-технологија) чувања</td>
<td>441</td>
</tr>
<tr>
<td>Биолошка својства Јлова</td>
<td>442</td>
</tr>
<tr>
<td>Промене воћних Јлова за време чувања</td>
<td>444</td>
</tr>
<tr>
<td>Физиолошка болести Јлова из воћњака</td>
<td>446</td>
</tr>
<tr>
<td>Болести које настају у складишту</td>
<td>448</td>
</tr>
<tr>
<td>КЛАСИФИКАЦИЈА ВОЛАКА</td>
<td>453</td>
</tr>
<tr>
<td>КОНТИНЕНТАЛНЕ ВРСТЕ ВОЛАКА</td>
<td>457</td>
</tr>
<tr>
<td>Воћке са јабучастим Јловацема</td>
<td>457</td>
</tr>
<tr>
<td>Јабука</td>
<td>457</td>
</tr>
<tr>
<td>Производња Јабуке у Југославији</td>
<td>458</td>
</tr>
<tr>
<td>Систематско место и јереци сорти Јабука</td>
<td>459</td>
</tr>
<tr>
<td>Сорти Јабука</td>
<td>460</td>
</tr>
<tr>
<td>Крушка</td>
<td>473</td>
</tr>
<tr>
<td>Производња крушке у Југославији</td>
<td>473</td>
</tr>
<tr>
<td>Систематско место и јереци сорти крушка</td>
<td>474</td>
</tr>
<tr>
<td>Сорти крушке</td>
<td>475</td>
</tr>
<tr>
<td>Ђућа</td>
<td>484</td>
</tr>
<tr>
<td>Производња Ђуће у Југославији</td>
<td>485</td>
</tr>
<tr>
<td>Систематско место и јереци сорти ђућа</td>
<td>485</td>
</tr>
<tr>
<td>Сорти ђуће</td>
<td>486</td>
</tr>
<tr>
<td>Мушмула</td>
<td>488</td>
</tr>
<tr>
<td>Оскоруша</td>
<td>490</td>
</tr>
<tr>
<td>ЂОБКЕ СА КОШТИЧАВИМ ПЛОДОВИМА</td>
<td>491</td>
</tr>
<tr>
<td>Шљива</td>
<td>491</td>
</tr>
<tr>
<td>Производња Шљиве у Југославији</td>
<td>492</td>
</tr>
<tr>
<td>Систематско место и јереци сорти Шљиве</td>
<td>493</td>
</tr>
<tr>
<td>Сорти Шљиве</td>
<td>494</td>
</tr>
<tr>
<td>Бреска</td>
<td>501</td>
</tr>
<tr>
<td>Производња Бреске у Југославији</td>
<td>502</td>
</tr>
<tr>
<td>Систематско место и јереци сорти Бреске</td>
<td>502</td>
</tr>
</tbody>
</table>
Сориће брексе
Кајсија
Производња кајсије у Југославији
Сисмематско места и Јреци сорићи кајсије
Сориће кајсије
Тремља
Производња шремље у Југославији
Сисмематско места и Јреци сорићи шремље
Сориће шремље
Вишња
Производња вишње у Југославији
Сисмематско места и Јреци сорићи вишње
Сориће вишње
ВОЉКЕ С ЈЕЗГРАСТИМ ПЛОДОВИМА
Орах
Производња ораха у Југославији
Сисмематско места и Јреци сорићи ораха
Сориће и селекција ораха
Лећник
Производња лећника у Југославији
Сисмематско места и Јреци сорићи лећника
Сориће лећника
Багем
Производња багема у Југославији
Сисмематско места и Јреци сорићи багема
Сориће багема
Кесићен
ВОЉКЕ СА ЈАГОДАСТИМ ПЛОДОВИМА (СИТНО ВОЉЕ)
Јадове
Производња јадове у Југославији
Сисмематско места и Јреци сорићи јадове
Сориће јадове
Малина
Производња малине у Југославији
Сисмематско места и Јреци сорићи малине
Сориће малине
Кујиња
Производња кујине у Југославији
Сисмематско места и Јреци сорићи кујине
<table>
<thead>
<tr>
<th>Смислано име</th>
<th>Странични број</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сориће кућине</td>
<td>564</td>
</tr>
<tr>
<td>Рибизла и одроза</td>
<td>567</td>
</tr>
<tr>
<td>Систематско место и иреци сориће рибизле и одрозла</td>
<td>568</td>
</tr>
<tr>
<td>Сориће рибизле</td>
<td>569</td>
</tr>
<tr>
<td>Боровнице</td>
<td>575</td>
</tr>
<tr>
<td>Систематско место и иреци сориће боровнице</td>
<td>575</td>
</tr>
<tr>
<td>Сориће боровнице</td>
<td>576</td>
</tr>
<tr>
<td>Активица</td>
<td>579</td>
</tr>
<tr>
<td>Биолошке особине активица</td>
<td>579</td>
</tr>
<tr>
<td>Важније сориће активица</td>
<td>580</td>
</tr>
<tr>
<td>СУПТРОПСКЕ ВРСТЕ ВОЂАКА</td>
<td>581</td>
</tr>
<tr>
<td>АГРУМИ ИЛИ ЦИТРУСИ</td>
<td>581</td>
</tr>
<tr>
<td>Производња агрума у Југославији</td>
<td>582</td>
</tr>
<tr>
<td>Систематско место и иреци сориће агрума</td>
<td>583</td>
</tr>
<tr>
<td>Мандарине</td>
<td>584</td>
</tr>
<tr>
<td>Померанци</td>
<td>586</td>
</tr>
<tr>
<td>Лимун</td>
<td>588</td>
</tr>
<tr>
<td>Грејпфрути</td>
<td>589</td>
</tr>
<tr>
<td>Маслина</td>
<td>591</td>
</tr>
<tr>
<td>Производња маслина у Југославији</td>
<td>592</td>
</tr>
<tr>
<td>Систематско место и иреци сорићи маслина</td>
<td>593</td>
</tr>
<tr>
<td>Смокве</td>
<td>595</td>
</tr>
<tr>
<td>Производња смокве у Југославији</td>
<td>596</td>
</tr>
<tr>
<td>Систематско место и иреци сорићи смокве</td>
<td>596</td>
</tr>
<tr>
<td>Нар – шишка</td>
<td>598</td>
</tr>
<tr>
<td>ТРОПСКО ВОЂЕ</td>
<td>600</td>
</tr>
<tr>
<td>Банана</td>
<td>600</td>
</tr>
<tr>
<td>Манго</td>
<td>601</td>
</tr>
<tr>
<td>Папађа</td>
<td>602</td>
</tr>
<tr>
<td>Авокадо</td>
<td>603</td>
</tr>
<tr>
<td>Кокосов орах</td>
<td>604</td>
</tr>
<tr>
<td>Гујава</td>
<td>604</td>
</tr>
<tr>
<td>Тамарило</td>
<td>605</td>
</tr>
<tr>
<td>Фејоа</td>
<td>606</td>
</tr>
<tr>
<td>Јувија (бразилски орах)</td>
<td>606</td>
</tr>
<tr>
<td>Личи</td>
<td>607</td>
</tr>
<tr>
<td>Карамбола</td>
<td>607</td>
</tr>
<tr>
<td>Оуглепија (какаус)</td>
<td>608</td>
</tr>
<tr>
<td>Элемент</td>
<td>Страница</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Ананас</td>
<td>608</td>
</tr>
<tr>
<td>Пасифлора</td>
<td>609</td>
</tr>
<tr>
<td>Айона</td>
<td>609</td>
</tr>
<tr>
<td>ЛИТЕРАТУРА</td>
<td>611</td>
</tr>
</tbody>
</table>
ОСНОВНИ ПОДАЦИ О ДП ПИК "ЈУЖНИ БАНАТ"
БЕЛА ЦРКВА

ДП ПИК "Јужни Банат" своје производно деловање обавља на територији Општине Бела Црква. Општина Бела Црква налази се у југоисточном делу Баната и граничи се са територијом Општине Вршац, територијом Општине Ковин, са државном границом Румуније, реком Нером и Каналом ДТД, а простире се на површини од 353 квадратних километара.

На подручју Општине је укупно 27.782 ha, пољопривредних површина.
ДП ПИК "Јужни Банат" заузима површину од 1.800 ha. Под дугогодишњим засадом има око 1.000 ha воћњака и око 250 ha винограда. Земљишна територија на којој су воћњаци и виногради налази се на обронцима Карпата и Делиблатске пешчаре. Конфигурација терена је валовита са изванредном могућносту осушавања и као таква је идеална за производњу воћа и грожђа. Приноси који се остварују као и квалитет то и сведене.

У гајењу винове лозе подручје Беле Цркве има дугогодишње искуство. На овом подручју виноградарска производња је била позната пре стотинак и више година. Гајење воћа на овом подручју је најстарији датум, а уведен је у производњу пре 40-ак година. Данас се гајење воћа и винограда обавља на најсавременији начин и постало је прекретница у доскорашњој производњи на подручју Општине Бела Црква, а и данас је основни носилац развоја у овој Општини.

ДП ПИК "Јужни Банат" у свом пословању има заокружен процес производње, од производње садног материјала, гајења дугогодишњих засада, до складиштења воћа у хладњачама, а у току је изградња Фабрике за хладну прераду воћа.

Производи ДП ПИК "Јужни Банат" су познати широм земље, а пре санкција воће и грожђа са ових терена је изважено у Аустрију, Италију, Чехословачку, Грчку. И данас је ДП ПИК "Јужни Банат" спреман за извоз својих производа па се у том правцу врше и преговори.

ДП ПИК "Јужни Банат" дужи низ година учествује на јесенем Новосадском сајму са производима воћарско-виноградарске производње. У току дугогодишњег излагања производи су освојили низ медаља, више пута титулу Апсолутног шампиона Југославије у производњи воћа и грожђа. На Новосадском сајму одржаном 1996. год. ДП ПИК "Јужни Банат" је поново освојио титулу Апсолутног шампиона Југославије у производњи воћа и грожђа и низ златних и сребрних медаља за своје производе.
ПДС за пол. производњу, прераду, промет и кооперацију
Тел.: Дир. 035/711-039. Комерц. 035/711-038
Факс: 035/711-038
Ж.Р. 63505-601-5033 СДК Рековац

ПДС "Леваč" - Рековац је носилац производње грожђа, вина, шљива, ракија и воћних сиропа у подручју Леваč.

Винова лоза је одлажена на површине отпорне за успевање на погодним винородним брегу главног поднебља, сада се гаји на површини од 1,300 ha, у савременим виноградима ПДС "Леваč". На површини од 110 ha, производе се квалитетне грожђе сората: Ризлинг, Италянски, Гарме Црни, Франковка, Гарме Болдисер и Седеревка. Ове сорте се добијају гајењем у виноградима приватних производила у винском подруму у Рековац, чији капацитет износи 400 вагона, производе се следеће категорије и врста вина:

Ова вина носе знаку заштићеног географског порекла, јер имају све позитивне карактеристике гајења и савременог производња. Осим ових, производе се и вина без географског порекла.

ПДС "Леваč" је и познати производњач воћница. На површини од 300 ha сопствених шљивника гаје се најпознатије сточе сорте и наша позната сорта похрабарача, чији се укусни плодови и рагни веома цени показајем у домашем и иностраном тржишту.

Асортиране производње рагници од вина и грожђа је веома ботаничког предувода стања и сорте парфено, које су веома квалитетне и производње рагници, карактеристичне ароме и укуса, те су стекуле висок реноме на домашем и иностраном тржишту.

ПДС "Леваč" - Рековац производи и квалитетне воћне сирупе од малине, купине, боровинке, вишње, лимуна, помарањице и екзотика.
MI POMAŽEMO PRIRODI DA DAJE VIŠE

PROGRAM ZAŠTITE U VOĆARSTVU

FITOFARMACIJ A
GALENICA HOLDING

ФИТОФАРМАЦИЈА ГАЛЕНИКА ХОЛДИНГ ПРЕДУЗЕЋЕ - БАТАЈНИЧКИ ДРУМ Б.Б. 11080 ЗЕМУН, ЈУГОСЛАВИЈА

ТЕЛ. (011) 390-371, 390-423, 619-333, 618-212 - ФАКС 199-065 - ТЕЛЕЛЕКС 1701, 11289 ГАЛЕН ЈУ

<table>
<thead>
<tr>
<th>SUZBILJANJE ŠTETOČINA</th>
<th>SUZBILJANJE PROZROKOVAĆA BOLESTI</th>
<th>SUZBILJANJE KOROVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insekata:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETIOL TEČNI (Malation)</td>
<td>0,15 - 0,3% ORSIIHORID-50</td>
<td>0,5 - 0,75% CASORON - G (Dihlobenil)</td>
</tr>
<tr>
<td>FENITROXON (Fenitroxon)</td>
<td>0,1 - 0,15% KAPTAFLON (Kaptan)</td>
<td>0,2 - 0,25% RACER 25-EC (Flurochloridin)</td>
</tr>
<tr>
<td>GALPAR (Paratonic + M. ulje)</td>
<td>0,5% FOLPET 50-WP (Folpet)</td>
<td>0,2% GALOLIN KOMBI (Alahlor-Lanuron)</td>
</tr>
<tr>
<td>GALMIN (Mineralno ulje)</td>
<td>1 - 3% MANKOGAL-50 (Mankozeb)</td>
<td>0,2 - 0,25% GALOKSON - GRAMOXONE</td>
</tr>
<tr>
<td>RPCORD 20-EC (Cipermetrina)</td>
<td>0,02 - 0,03% KARATHANE FN-57 (Dimokap)</td>
<td>0,06 - 0,12% (Parakvat)</td>
</tr>
<tr>
<td>FASTAC 10% SC (Alfa-cipermetrina)</td>
<td>0,01 - SYSTHANE 12-E</td>
<td>0,025 - ROUNDA (Glifosat)</td>
</tr>
<tr>
<td>DIMILIN WP-10 (Diffubenzuron)</td>
<td>0,15% SYSTHANE-MZ (Miklobutanil)</td>
<td>0,035%</td>
</tr>
<tr>
<td>KARATE 2,5-EC (Lambda – Cibaetrimin)</td>
<td>0,15% MANKOGAL-50 (Mankozeb)</td>
<td>0,2 - 0,3% CINKPOSIF MAMAK 5 - 10 g/rap</td>
</tr>
<tr>
<td>Grinja:</td>
<td></td>
<td>0,03% (Cinkfosid)</td>
</tr>
<tr>
<td>DANJURIN 11-EC (Tenipropatrin + Heksziatoks)</td>
<td>0,06% GALOVIT (Teflazat-metil)</td>
<td>0,07% sadržaj u %</td>
</tr>
<tr>
<td>OMITE 57-E (Propargit)</td>
<td>0,15% (Benomil)</td>
<td>N - 6</td>
</tr>
<tr>
<td>KELTHANE - E (Dikofol)</td>
<td>0,1% (Heksakonzol)</td>
<td>F3O5 - 4</td>
</tr>
</tbody>
</table>

FOLIJARNA PRIHRANA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FOLIGAL - V</td>
<td>0,07% sadržaj u %</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
</tr>
<tr>
<td>K3O</td>
<td>7</td>
</tr>
<tr>
<td>Fe, Mn, B, Cu, Zn, Mo</td>
<td>0,05% mikroelementi</td>
</tr>
</tbody>
</table>
ГРАФОМАЧВА
лозница ТРГОВИНА ДД

Издавачко-туристичко-трговинско друштво у мешовитој својини са Д.О.
Ж. рачун 42200-601-5-10787 СПП Лозница.
Телефон 015/ 89-005
Факс: 015/ 84-297

Ако се вркаште јурови
срепиште и до нас.

ВОЂАРСКЕ ПЛАНТАЖЕ

ветеринар 291-11 / 856-124; 856-102
ТП Јабука
Београд, Чика Илијина 6

Ваљево промет
Ваљево

Манг- eksport
Ваљево

Тргопродукт - комерц
Ваљево

Арфа - Ваљево
Ваљево

Агроном
Ваљево

Беласица
Ваљево

Земљорадничка задруга "Копаоничанка"
Брус

"Србијанка - Аграр"
Ваљево

ДП "Поречје" - Вучје
Лесковац

 Вођар - Паланка
Смедеревска Паланка

Маја промет
Београд
СИР – Каталогизација у публикацији Народна библиотека Србије, Београд 634.1/.7(075.8)
БУЛАТОВИЋ, Спасоје
Биотехнологске основе воћарства / Спасоје Булатовић, Евица Мратинић.
[48] стр. С табака: илустр. 26 cm
Тираж 1000 – Библиографија: стр. 617–623
1 Мратинић, Евица а) Воћарство
ID = 50235148